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Abstract
This study proposes DeepWriteSYN, a novel on-line hand-
writing synthesis approach via deep short-term representa-
tions. It comprises two modules: i) an optional and inter-
changeable temporal segmentation, which divides the hand-
writing into short-time segments consisting of individual or
multiple concatenated strokes; and ii) the on-line synthesis
of those short-time handwriting segments, which is based on
a sequence-to-sequence Variational Autoencoder (VAE). The
main advantages of the proposed approach are that the syn-
thesis is carried out in short-time segments (that can run from
a character fraction to full characters) and that the VAE can
be trained on a configurable handwriting dataset. These two
properties give a lot of flexibility to our synthesiser, e.g., as
shown in our experiments, DeepWriteSYN can generate real-
istic handwriting variations of a given handwritten structure
corresponding to the natural variation within a given popu-
lation or a given subject. These two cases are developed ex-
perimentally for individual digits and handwriting signatures,
respectively, achieving in both cases remarkable results.
Also, we provide experimental results for the task of on-line
signature verification showing the high potential of Deep-
WriteSYN to improve significantly one-shot learning scenar-
ios. To the best of our knowledge, this is the first synthesis
approach capable of generating realistic on-line handwriting
in the short term (including handwritten signatures) via deep
learning. This can be very useful as a module toward long-
term realistic handwriting generation either completely syn-
thetic or as natural variation of given handwriting samples.

The availability of large-scale public databases, together
with the remarkable progress of deep learning, have led to
the achievement of very impressive results in many differ-
ent fields. However, there are still applications and scenarios
in which data are scarce, achieving in general poor results.
These scenarios are usually known in the literature as zero-,
one-, and few-shot learning (Wang et al. 2019, 2020).

Different approaches have been proposed in response to
the lack of data, being the synthesis of artificial data one
of the main research lines followed nowadays. This is of
special relevance in image-based scenarios due to the pop-
ular Generative Adversarial Networks (GAN) and Trans-
fer Learning techniques (Goodfellow et al. 2014; Tan et al.
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2018). However, when the scenarios considered are based
on time sequences, and not images, the synthesis of new
data seems to be a more challenging task (or at least less
developed). In this study we focus on the synthesis of time-
sequences data for on-line handwriting applications such as
signature and digit recognition.

Handwriting has been largely considered along the cen-
turies as one of the most robust approaches to authenticate a
person (Faundez-Zanuy et al. 2020). Its application has been
extended to many different authentication scenarios such as
handwriting (Zhang et al. 2016), signature (Diaz et al. 2019),
password (Tolosana et al. 2020a), or doodles (Martinez-
Diaz, Fierrez, and Galbally 2016), among others. However,
a key aspect for the success of these authentication tech-
nologies is the amount of data available for subject mod-
elling. Contrary to physiological biometric traits such as face
and fingerprint, handwriting is a behavioral biometric trait,
which implies that every handwritten execution is differ-
ent (Jain, Nandakumar, and Ross 2016). As a result, the per-
formance of handwriting-based authentication systems can
be critically affected under one-shot learning scenarios due
to the high intra-subject variability (Lai et al. 2020). This as-
pect is exacerbated by the restrictions to acquire and share
handwriting biometric information for improving the learn-
ing due to legal aspects.

This study proposes DeepWriteSYN, a novel on-line
handwriting synthesis approach via deep short-term repre-
sentations in order to overcome the lack of existing data in
handwriting applications. Fig. 1 provides a graphical repre-
sentation of DeepWriteSYN. It comprises two modules: i)
an optional short-term handwriting segmentation, which di-
vides the handwriting into short segments (e.g., individual
strokes), and ii) on-line synthesis of those short segments,
which is based on deep learning technology. The main con-
tributions of this study are:

• DeepWriteSYN, a novel on-line handwriting synthesiser
based on a Variational Autoencoder (VAE). One of the
main advantages of the approach is that the synthesis is
carried out in short-time segments, being able to synthe-
sise both given handwriting structures from unseen sub-
jects and natural handwriting variations of given subjects.

• An in-depth qualitative analysis of DeepWriteSYN over
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Figure 1: Diagram of DeepWriteSYN, the proposed on-line handwriting synthesis approach via deep short-term representations,
in the two proposed architectures: without and with temporal segmentation. This study focuses experimentally on handwritten
digits and signatures, but it can be extended to general handwriting synthesis.

two different on-line handwriting applications: signature
and digit recognition, achieving good visual results.

• A quantitative experimental framework for on-line sig-
nature verification, showing the high potential of Deep-
WriteSYN for improving one-shot learning scenarios.

• To the best of our knowledge, this is the first deep syn-
thesis approach proposed for on-line handwritten signa-
ture capable of modelling the non-linear features present
in the signals as current approaches are based on the tradi-
tional Sigma LogNormal writer generation model (Reilly
and Plamondon 2009; Ferrer et al. 2020; Lai et al. 2020).

The application of DeepWriteSYN extends from the im-
provement of handwriting authentication scenarios using it
as data augmentation technique to the generation of realistic
forgeries with different quality levels (Tolosana et al. 2019),
which is one of the main limitations of real authentication
scenarios. In addition, it could also benefit other research
lines based on time sequences such as keystroke biomet-
rics (Morales et al. 2020) or human activity/mood recogni-
tion (Zhu et al. 2015), among many others.

Related Works
On-line handwriting synthesis has been extensively studied
in the last decade (Elarian et al. 2014).

One of the most popular deep learning approaches in the

literature is (Graves 2013). In that study, Graves proposed
the use of Recurrent Neural Networks (RNN), in particu-
lar Long Short-Term Memory (LSTM), to generate com-
plex sequences, predicting one data point at a time. His pro-
posed synthesis approach was tested on handwriting, achiev-
ing good visual results.

Another important related work is (Ha and Eck 2018),
where the authors presented Sketch-RNN, a sequence-to-
sequence VAE trained with huge amount of data that takes
in a sketch as input and outputs a synthetic sketch with dif-
ferent levels of variability.

Handwriting synthesis approaches able to convert off-line
images to on-line time sequences have also been proposed
in the literature. In (Bhunia et al. 2018; Zhao, Yang, and Tao
2018), the authors presented synthesis approaches based on
the combination of Convolutional Neural Networks (CNN)
and RNN/regression to predict the probability of the next
stroke point position. An interesting approach was recently
presented in (Sumi et al. 2019) where the authors presented
a network consisted of two VAE with a shared latent space,
named Cross-VAE. Their results showed it is possible to re-
construct the images and time sequences.

On-line signature verification is undoubtedly one of the
most important scenarios for the handwriting synthesis. This
is motivated due to: i) the lack of massive public databases,
ii) the low number of genuine signatures acquired per sub-
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ject during the enrolment stage, and iii) the lack of forgery
signatures in real scenarios. All these aspects make it dif-
ficult to train robust biometric signature verification sys-
tems (Diaz et al. 2019).

Currently, the Sigma LogNormal is the most popular on-
line signature synthesis approach (Reilly and Plamondon
2009), although other different approaches have been pro-
posed in the literature (Galbally et al. 2012; Ferrer et al.
2016). These synthesis approaches have been successfully
applied to on-line signature verification, generating syn-
thetic samples from just one genuine signature and improv-
ing to a large extent the performance of the systems (Diaz
et al. 2016; Lai et al. 2020). However, these synthesis ap-
proaches have an important limitation: the synthesis of the
signatures are only based on linear features. This motivates
DeepWriteSYN, the first deep synthesis approach proposed
for on-line handwritten signature capable of modelling the
non-linear features present in the handwriting signals.

Proposed Approach: DeepWriteSYN
Fig. 1 provides a graphical representation of Deep-
WriteSYN, the proposed on-line handwriting synthesis ap-
proach. It comprises two modules: i) an optional temporal
segmentation recommended to break long-term into short-
term handwriting structures1, and ii) the short-term on-
line handwriting synthesis implemented with a VAE. That
VAE is based on the popular Sketch-RNN approach pre-
sented in (Ha and Eck 2018). Despite the good visual re-
sults achieved for sketches, it is important to highlight sev-
eral limitations of that work by Ha and Eck when directly
applied to handwriting: i) Sketch-RNN does not work prop-
erly for time sequences higher than 300 samples, which is
the most typical case in handwriting applications with sam-
pling frequencies around 100-200 Hz (Tolosana et al. 2017),
and ii) a specific neural network model should be trained for
each specific class to achieve accurate results.

In order to overcome these limitations, the approach pre-
sented here is based on the synthesis via short-term repre-
sentations trained on datasets incorporating multiple classes,
which is flexible enough to generate realistic handwriting
variations of a given handwritten structure within a given
population or a given subject.

Temporal Segmentation
The temporal segmentation is an optional module consid-
ered to generate short-term representations of the handwrit-
ing. Depending on the length of the time sequences to syn-
thesise, this module is needed to overcome the limitations
of Sketch-RNN (≤ 300 samples). Different segmentation
approaches such as the Sigma Lognormal could be consid-
ered to extract short-term representations. For reproducibil-
ity reasons, we make use of a simple implementation based
on the velocity profile V of the handwriting.

1We use short-term in our work for small handwriting segments
from a fraction to full characters, doodles, or simple handwritten
graphics, where higher level language or graphical structures are
not present, in contrast to long-term handwriting where those lan-
guage or graphical structures are present.
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Figure 2: Temporal segmentation into strokes using velocity
profiles. (Color image.)

For each handwriting information acquired, time se-
quences X and Y related to the screen coordinates of the
handwriting are captured. These signals can be defined as:

X = x1, x2, . . . , xn, . . . , xN
Y = y1, y2, . . . , yn, . . . , yN

(1)

whereN indicates the total number of time samples. The ve-
locity magnitude of the writing V = v1, v2, . . . , vn, . . . , vN
can be obtained as:

υn =
√
ẋ2n + ẏ2n (2)

where ẋn and ẏn represent the first order time derivative of
consecutive samples of x and y, respectively. Once the ve-
locity profile of the writing is obtained, strokes are extracted
similar to the approach proposed in (Khan, Niazi, and Khan
2006). The velocity profile is divided into four regions using
the mean (µ) and standard deviation (σ) of the velocity pro-
file V . The following three thresholds are considered: µ−σ,
µ, and µ + σ. Every time the velocity profile crosses one
of the three thresholds, a stroke is extracted from the orig-
inal handwriting. Fig. 2 shows an example of the proposed
segmentation, including the velocity profile of the handwrit-
ing, the three thresholds considered, and the corresponding
strokes extracted. As can be seen, this method allows to ex-
tract simple strokes composed of straight lines and small
curves.

Short-Term Variational Autoencoder
Architecture. The short-term handwriting synthesis is
based on the original Sketch-RNN presented in (Ha and Eck
2018). This is a sequence-to-sequence VAE composed of an
encoder and a decoder. The source code is publicly available
in GitHub2. Fig. 3 shows the architecture of the proposed
on-line handwriting synthesis module.

2https://github.com/magenta/magenta-js/tree/master/sketch
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The encoder is based on a Bidirectional RNN (BRNN).
It takes in a time sequence as input and outputs a non-
deterministic latent feature vector z of size Nz , representing
the BRNN state as a Gaussian mixed with a random sample.

Regarding the decoder, it considers an autoregressive
RNN that generates output sequences conditional on a given
latent feature vector z. The following steps are considered in
the decoder: i) first, the outputs of the decoder RNN at each
time step are the parameters for a probability distribution of
the next data point; and ii) those parameters are inserted into
a Gaussian Mixture Model (GMM) withM normal distribu-
tions in order to finally predict the most likely data points.
It is important to highlight that, similar to the encoder, the
stroke output is not deterministic, but a random sequence,
conditioned on the input latent feature vector z. The level of
randomness of the output sequence can be controlled in the
decoder using a temperature parameter τ , which can scale
the parameters of the GMM. This parameter is usually set
between 0 and 1. In case τ = 0, the model becomes deter-
ministic and samples will consist of the most likely point in
the probability density function.

Training. Both encoder and decoder are trained end-to-
end following the traditional approach of the VAE (Kingma
and Welling 2014), where the loss function is:

Loss = LR + wKLLKL (3)
being LR the Reconstruction Loss, LKL the Kullback-
Leibler Divergence Loss, and wKL a weight parameter con-
figurable during training. If wKL = 0, the model behaves
like a pure Autoencoder (AE), training to synthesise the
same strokes introduced as input. Each model considered in
this study is trained from scratch.

Configuration. We consider the same setup suggested
in (Ha and Eck 2018). LSTM (Tolosana et al. 2018) and Hy-
perLSTM (Ha, Dai, and Le 2017) are considered for the en-
coder and decoder RNN, respectively. Regarding the number
of memory blocks, 512 are used in the encoder and 2,048 in
the decoder. For the GMM, M = 20 mixture components.
The size of the latent feature vector Nz is 128. During train-
ing, layer normalization and recurrent dropout with a proba-
bility of 90% are considered. Adam optimiser is considered
with default parameters (learning rate of 0.0001).

Digit Synthesis
We first analyse in this section DeepWriteSYN over an ini-
tial qualitative example: synthesis of handwritten digits from

0 to 9. In this scenario: i) the number of classes to synthe-
sise is fixed to ten (0-9 digits), and ii) the number of time
samples of each handwritten digit is always ≤ 100 and there
are no long-term handwriting structures in place. Therefore,
we process this case purely short-term without temporal seg-
mentation, as indicated in the upper half of Fig. 1.

Experimental Protocol
DeepWriteSYN is trained from scratch using handwritten
digits of the public eBioDigitDB database3 (Tolosana, Vera-
Rodriguez, and Fierrez 2019). This database comprises on-
line handwritten digits from 0 to 9 acquired using 93 total
subjects. Handwritten digits were captured using the finger
over a Samsung Galaxy Note 10.1 device. Two different ac-
quisition sessions are considered with a time gap of at least
three weeks between them.

In this experimental framework, eBioDigitDB is divided
into development and evaluation datasets, which comprise
different subjects. The development dataset is considered in
the training process, using 6,200 total samples (620 sam-
ples per digit). Finally, after training, we consider the unseen
subjects included in the evaluation. This evaluation dataset
comprises 1,200 total samples (120 samples per digit).

Results
The following two parameters of the short-term VAE are
configured to control the variability of the generated digits:

• τ : the temperature parameter that can scale the values of
the GMM, controlling the randomness of the output se-
quence.

• wKL: the weight parameter of the loss function that con-
trols the relation between LR and LKL, see Eq. 3.

Fig. 4 shows the effect of wKL and τ parameters in the
synthesis process. Both images and time sequences (X and
Y coordinates) are included for completeness.

Analysing the effect of the wKL parameter for a fixed
τ = 0, very similar results are obtained for the Autoencoder
approach (i.e., wKL = 0) compared with the real samples.
When the value of wKL increases, a higher variability of the
synthetic samples is observed. For example, generating sam-
ples with different geometrical aspects of the loops, and also
with strokes longer/shorter in time.

The variability observed in the synthetic strokes is even
higher when we increase the values of thewKL and τ param-
eters. However, in some cases, values of wKL and τ close to
1 can distort the input digit as shown in Fig. 4. A combina-
tion of differentwKL and τ parameters for each stroke could
further modify the intra-subject variability of the samples.

Finally, to provide further insights, we show in Fig. 5 the
t-Distributed Stochastic Neighbor Embedding (t-SNE) fea-
ture distributions of real and synthetic handwritten digits
generated using DeepWriteSYN. As can be seen, the pro-
posed synthesis approach (in Fig. 5(b), wKL = 0.25, τ = 0)
is able to fill more densely the feature space following ap-
proximately the same class distributions and relations of the
original feature space.

3https://github.com/BiDAlab/eBioDigitDB
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Figure 5: t-SNE distributions of real and synthetic handwrit-
ten digits generated using DeepWriteSYN. (Color image.)

Signature Synthesis
This section analyses qualitatively the potential of Deep-
WriteSYN over a real scenario: synthesis of handwritten sig-
natures. This scenario is more challenging than the previous
one (digit synthesis) due to: i) the number of classes to syn-
thesise is unlimited as each of us perform a unique signature,
and ii) signatures may contain complex handwriting struc-
tures such as concatenated characters, words, graphical em-
bellishment, etc. that the learning structure (Sketch-RNN)
may not represent well. Therefore, we process this case as
long-term including temporal segmentation as indicated in
the lower half of Fig. 1, so our core VAE works with short-
time segments consisting of simple handwriting structures.

Experimental Protocol
DeepWriteSYN is trained from scratch in this case using
signatures from the public DeepSignDB4 (Tolosana et al.
2020b). This database comprises 1,526 total subjects divided
into development (1,084 subjects) and evaluation (442 sub-
jects). For each subject, genuine signatures were acquired
in multiple sessions with different time gaps between them.
Also, signatures were acquired using different devices and
writing inputs. In this experimental framework, the devel-
opment dataset of DeepSignDB is only considered to train
DeepWriteSYN. Finally, after training, we consider the un-
seen subjects included in the evaluation dataset to see the
ability of the proposed approach to synthesise realistic new
realizations of a given signature from a subject unseen in the
learning stage. Only those signatures acquired through the
stylus are considered in this experiment.

Results
Fig. 6 illustrates the effect of DeepWriteSYN for on-line
handwritten signature regarding the two configuration pa-
rameters τ and wKL. Both images and time sequences (X
and Y coordinates) are included for completeness.

We first analyse the effect of the wKL parameter in the
synthesis process, considering τ = 0. When wKL = 0, the
proposed approach behaves like an Autoencoder, generating
very similar samples compared with the real ones, proving

4https://github.com/BiDAlab/DeepSignDB
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the ability of the model to generalise to strokes unseen dur-
ing the learning stage. If we increase the value ofwKL closer
to 1, a higher variability is included in the synthetic samples.
For example, generating strokes longer/shorter in time (see
the right/left movements of the time sequences along the
horizontal axis), and also with different geometrical shapes,
especially in the embellishment of the signature (see the bot-
tom signature of Fig. 6) and closed letters (see the a, l, and y
of the top signature).

Analysing the effect of the temperature parameter τ for
a specific value of wKL, the higher the value of τ is, the
higher is the resulting variability in the synthesis. For exam-
ple, shifting the spatial position of the strokes (see the vari-
ability of the X and Y coordinates in the vertical axis of the
time sequences) and also enlarging/shortening the strokes.

Finally, a combination of wKL and τ parameters can fur-
ther modify the synthetic signature compared with the real
one, simulating the typical and natural intra-subject variabil-
ity. However, in some cases, values of wKL and τ close to 1
can distort the input signature as shown in the top signature
of Fig. 6. It is important to highlight that in these examples
the same wKL and τ parameters are applied over the whole
signature. Nevertheless, different parameters could be con-
sidered for each temporal segment of the signature, control-
ling in a time-dependent way the intra-subject variability.

Application: Improving One-Shot Learning in
Signature Verification

This section analyses quantitatively the potential of Deep-
WriteSYN for handwriting scenarios. In particular, we focus

on the popular task of on-line signature verification (Diaz
et al. 2019), considering one-shot learning scenarios, i.e.,
just one enrolment signature is available per subject.

Experimental Protocol
We consider as baseline the state-of-the-art on-line signature
verification system presented in (Tolosana et al. 2018). This
system is based on BRNN with a Siamese architecture.

The BiosecurID dataset included in the public Deep-
SignDB database5 (Tolosana et al. 2020b) is considered in
this experimental framework. We consider the same exper-
imental protocol proposed by the authors of DeepSignDB:
268 subjects for development and 132 remaining subjects
for the final evaluation. Also, we focus on the most chal-
lenging impostor scenario, skilled forgeries, as the forgers
had access to the image and dynamics of the signatures to
forge and practise as many times as they wanted.

It is important to remark that DeepWriteSYN is only
considered in the development stage as a data augmenta-
tion technique for improving the enrollment of the tested
subjects. For the final evaluation of the signature verifica-
tion system, the same signature comparison files provided
in (Tolosana et al. 2020b) are considered here in order to
perform a fair and reproducible experimental framework.

Exp 1. Analysis of the Synthesis Parameters
This section analyses the effect of the synthesis parameters τ
andwKL on the system performance of the on-line signature
verification system. Fig. 7 (Top) shows the Detection Error

5https://github.com/BiDAlab/DeepSignDB
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Figure 7: DET curves and EER (%) results on the evaluation
dataset regarding (Top, Exp. 1) the differentwKL and τ val-
ues of the proposed synthesis approach, and (Bottom, Exp.
2) the different number of synthetic samples generated.

Tradeoff (DET) curve together with the Equal Error Rates
(EERs) achieved on the final evaluation dataset for the dif-
ferent experiments conducted. For the baseline (solid blue
curve), we consider the case of using just one real enrol-
ment signature per subject, simulating traditional scenarios.
Then, we test DeepWriteSYN (dashed curves), generating
from the original enrolment sample 3 more synthetic sam-
ples using different τ and wKL parameters. For complete-
ness, we also include the ideal scenario of having 4 real en-
rolment signatures per subject (solid orange curve).

First, we can see in Fig. 7 (Top) that all experiments based
on DeepWriteSYN outperform the baseline result (19.79%
EER). In particular, the best results are achieved for thewKL

values 0 and 0.25 when τ = 0, with EER results of 15.32%
and 16.46%, respectively. This is a relative improvement of
up to 23% EER compared with the baseline results. In addi-
tion, the results achieved are very similar compared with the
ideal case of having 4 real signatures (13.73% EER), prov-
ing the success of DeepWriteSYN.

Exp 2. Analysis of the # Synthetic Samples
This section analyses how the number of synthetic samples
generated affects the system performance of the on-line sig-
nature verification system. Fig. 7 (Bottom) shows the DET
curve and EER (%) results achieved on the final evaluation
dataset. Regarding the synthesis parameters, we consider the
wKL and τ values that achieved the best results in the previ-
ous experiment (i.e., wKL = 0/0.25 and τ = 0).

In general, a system performance improvement is ob-
served when increasing the number of synthetic samples
(up to 12). This improvement is especially considerable for
wKL = 0, with a 9.36% EER when using 12 synthetic sam-
ples. This is a relative improvement of more than 50% EER
compared with the baseline result (19.79% EER), proving
the success of DeepWriteSYN to improve already trained
deep learning systems over one-shot learning scenarios.

Finally, we compare the skilled forgery results achieved
with the state of the art (Lai et al. 2020). In that work, the
traditional Sigma LogNormal model was considered to gen-
erate synthetic samples to improve one-shot learning scenar-
ios. Signature verification systems based on deep learning
were considered, achieving relative improvements of around
7-14% EER for the scenario of using one real signature and
15 synthetic. Our DeepWriteSYN approach presented here
achieves relative improvements higher than 50% EER with
fewer synthetic signatures needed (≤12).

Limitations and Future Work
Some aspects of DeepWriteSYN are improvable, such as the
segmentation of the handwriting into short-term representa-
tions, and the final reconstruction of the output sequence.
Currently, each synthetic short-term representation is con-
catenated to form the long-term signature, following the
same order than the original signature, which is not always
realistic. To improve that, our short-term method may be
combined with other strategies able to model better the long-
term dependencies in handwriting via deep learning (like the
classical work by Graves) or stochastic methods.

For future work we will also investigate: i) the con-
figuration parameters regarding the handwriting complex-
ity (Tolosana et al. 2020c), ii) the synthesis of realistic forg-
eries with different qualities (Tolosana et al. 2019), and iii)
the application to other research lines based on time se-
quences such as keystroke biometrics (Morales et al. 2020),
and human activity recognition (Zhu et al. 2015).

Conclusions
This study has presented DeepWriteSYN, a novel on-line
handwriting synthesiser via deep short-term representations.
One of the main advantages of the approach is that the syn-
thesis is carried out in short segments, being able to synthe-
sise general handwriting even from unseen subjects.

We have performed an in-depth analysis of Deep-
WriteSYN over two different on-line handwriting scenarios:
signatures and digits, achieving good visual results. Also, we
have carried out a quantitative experimental framework for
on-line signature verification showing the high potential of
DeepWriteSYN for challenging one-shot learning scenarios.
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