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Abstract

The e-commercial search engine is the primary gateway for
customers to find desired products and engage in online
shopping. Besides displaying items to optimize for a sin-
gle objective (i.e., relevance), ranking items needs to satisfy
some other business requirements in practice. Recently, traf-
fic shaping was introduced to incorporate multiple objectives
in a constrained optimization framework. However, many
practical business requirements can not explicitly represented
by linear constraints as in the existing work, and this may
limit the scalability of their framework. This paper presents a
unified framework from the aspect of multi-objective welfare
maximization where we regard all business requirements as
objectives to optimize. Our framework can naturally incorpo-
rate a wide range of application-driven requirements. In ad-
dition to formulating the problem, we design an online traffic
splitting algorithm that allows us to flexibly adjust the pri-
orities of different objectives, and it has rigorous theoretical
guarantees over the adversarial scenario. We also run exper-
iments on both synthetic and real-world datasets to validate
our algorithms.

Introduction
With the rapid growth of e-commerce, online product search
has emerged as a popular and effective paradigm for users to
find desired products and engage in online shopping. When
a user enters a query, search engine returns a page consists
of relevant items. To maximize user engagement, it is prac-
tical and common to predict the relevance scores by a well-
designed machine learning model (or multiple models) and
select the topK items with the highest relevance to the query
as the final ranking result.

Proxies such as click-through rate (CTR) or conversion
rate (CVR) are used for computing relevance scores. While
such a single metric-focused ranking method drives up
short-term engagement, it ignores long-term sustainability.
A click or purchase is only a part of a user’s journey in
the platform and subsequent downstream utilities such as
retention, re-purchase and browsing time-spent are also im-
portant. On the other hand, the e-commerce platform is a
two-sided marketplace that have customers not only on the
demand side (e.g. users), but also on the supply side (e.g.
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sellers), but simply maximizing users’ immediate engage-
ment may fail to satisfy many sellers’ demands. For exam-
ple, since the items from top sellers are usually temporarily
more attractable (higher predicted CTR and CVR) than that
of new sellers, new sellers may be hard to survive. The atten-
tion given to sellers as a result of predicted relevance is often
vastly unequal. A relatively small group of superstar sellers
receive a large portion of attention in the platform while the
majority of sellers in the long tail receives very little. In or-
der to boost market vitality, the e-commerce platform, as a
distribution channel to match items/sellers and users, needs
to balance different stakeholders’ short/long-term desires.

Therefore, the traffic shaping is crucial and has received
significant attention by scholars and practitioners, which
aims at re-ranking the candidate items to consider additional
business requirements. Shaping traffic in such scenarios of-
ten entails balancing multiple conflicting objectives and be-
comes a non-trivial task. Another challenge is the online as-
pect of the problem: each time a query arrives dynamically,
one needs to make an instant and irrevocable decision on
what items to display while satisfying global business re-
quirements over the entire set of queries. In this paper, we
aim to design a smoothly online matching policy (between
items and queries) that balances the trade-off among multi-
ple objectives.

Before we proceed, we very briefly review the existing
literature on the traffic shaping problem and position our
contributions. Most previous studies consider the problem
of maximizing myopic objectives like CTR but subject to
some constraints that are intuitive and help in driving long-
term value the platform seeks to attain (Agarwal et al. 2011,
2012; Chen and Wang 2015; Gupta et al. 2016; Ding, Govin-
daraj, and Vishwanathan 2019). In this way, the traffic shap-
ing is regarded as an online constrained optimization prob-
lem. To design an online algorithm, they draw on ideas from
the primal-dual method by incorporating a dual-learning
phase followed by an online decision-making phase (Deva-
nur and Hayes 2009; Agrawal, Wang, and Ye 2014; Chen
and Wang 2015). The algorithm is empirically shown to
be effective under the assumption that the traffic distribu-
tion is stationary. However, the stationariness is generally
not true due to the traffic spike as pointed out by (Esfan-
diari, Korula, and Mirrokni 2018), and the algorithm may
suffer severely degenerated performance. Besides, most of
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them do not present theoretical guarantees on the solution
quality except (Shah, Soni, and Chevalier 2017). Moreover,
many practical business requirements can not explicitly rep-
resented by linear constraints as in all the aforementioned
prior work, and this may limit the scalability of their frame-
work.

In this paper, we propose a unified framework from the as-
pect of multi-objective optimization for dealing with traffic
shaping problem. The key insight is that instead of imposing
the business constraints, we regard all business requirements
as objective to optimize. The designed algorithm allows us
to flexibly adjust the priorities of different objectives. It is
robust with any traffic distributions and has rigorous the-
oretical guarantees. Our framework can naturally incorpo-
rate a wide range of application-driven requirements. At the
time of writing, the method was fully deployed on a large
e-commerce website for the traffic shaping task. To summa-
rize, this paper provides three-fold contributions.

• First, we propose a unified framework for dealing with
the traffic shaping problem in e-commercial search en-
gine, where users arrive in an online manner and we wish
to make decisions that optimize for multiple objectives.
In particular, we aim at maximizing the sum of relevance
scores, the delivery of guaranteed impressions/clicks and
the number of sold items.

• Second, we develop a provably efficient traffic splitting al-
gorithm and provide formal mathematical guarantees. To
do so, we show that the objective functions are submodu-
lar (linear, budget-additive and probabilistic coverage, re-
spectively) and exploit the primal-dual techniques to de-
sign and analyze the online algorithm. In particular, under
some mild assumptions, we prove the following main the-
orem.

Theorem 1. There is a (p1, p2(1− e−
1
p2 ), p3/(1 + p3))-

competitive algorithm for our tri-objective traffic shaping
problem, for any given p1, p2, p3 ≥ 0 with p1 +p2 +p3 ≤
1.

• Third, extensive experiments are conducted. The simula-
tion results on a synthetic dataset validate the effective-
ness of our proposed algorithm and the A/B testing re-
sults in the real-world production environment exhibit the
effectiveness and practicability of the method.

The remainder of the paper is structured as follows. Sec-
tion 2 gives some preliminaries. Section 3 introduces the
problem statement and formulation. The basic algorithm and
the improved algorithm are presented in Section 4. Section 5
reports our experiments followed by additional related work
in Section 6, and Section 7 concludes the paper.

Preliminaries
In this section, we present some definitions and useful tools
that are necessary for our explanation and analysis through-
out the paper.

Submodular function. If Ω is a finite set, a submodular
function is a valuation function w : 2|Ω| → R, where 2|Ω|

denotes the power set of Ω, which satisfied the following

condition:
w(S ∪ e)− w(S) ≥ w(T ∪ e)− w(T ) (1)

for every S, T ⊆ Ω with S ⊆ T and every e ∈ Ω\T .
Moreover, we say w is monotone if for every S ⊆ T ⊆ Ω,
w(S) ≤ w(T ).

There are other equivalent definitions but the above for-
mula intuitively shows that submodular functions capture
a natural diminishing returns property, which makes them
suitable for many applications. Therefore it is natural to
study submodular optimization, and there is a large amount
of work on minimizing/maximizing submodular functions
subject to some constraints. Among them, we are concerned
with the submodular welfare maximization in this paper.

Welfare maximization and its variants. In the welfare
maximization problem (sometimes also referred to as ”com-
binatorial auctions”), the goal is to allocate |Ω| items to n
agents with valuation functions wi : 2|Ω| → R+ in a way
that maximizes

∑n
i=1 wi(Si) ,where Si is the set of items

allocated to agent i (satisfying Si∩Sj = ∅ for i 6= j in most
cases).

In the online version of the problem, items arrive one by
one and we have to allocate each item when it arrives, know-
ing only the agents’ valuations on the items that have arrived
so far. If the valuation functions are monotone and submod-
ular, we call it the online submodular welfare maximization
(online SWM) problem. Moreover, if each agent is associ-
ated multiple valuation functions that we hope to optimize
simultaneously, it becomes multi-objective online submodu-
lar welfare maximization problem. In later sections, we will
see that our problem falls into this variant. Besides, in our
problem, an item is allowed to allocate to multiple agents,
and we call this feature as ”multiple allocation”.

Competitive ratio. The competitive ratio is a commonly-
used metric to evaluate the performance of online algo-
rithms. Consider an online maximization problem for ex-
ample. Let ALG(I) = E[ALG(I)] denote the expected
performance of ALG on a concrete instance I , where
the expectation is taken over the arrival sequence I . Let
OPT (I) = E[OPT (I)] denote the expected offline opti-
mal, where OPT (I) refers to the optimal value after we ob-
serve the full arrival sequence I . Then, the competitive ratio
is defined as minI

ALG(I)
OPT (I) . In our paper, we conduct com-

petitive ratio analysis on triple objectives.
Primal-dual framework. In the online optimization lit-

erature, it is common to use the primal-dual framework to
design or analyze the algorithm. The idea is briefly stated
as follows. We use a Linear Program (LP) to upper bound
OPT and note its corresponding dual problem. Let P and
D be the values of the objective functions of the primal and
dual solutions produced, respectively. Initially, P = D = 0.
We focus on a single iteration of the algorithm and denote
by ∆P and ∆D the change in the primal and dual cost, re-
spectively. When the algorithm runs, we maintain a pair of
primal and dual solutions to keep the primal and dual fea-
sible and ∆P ≥ Γ · ∆D all the time. As a result, we have
ALG ≥ Γ ·D ≥ Γ ·OPT where the second inequality fol-
lows the weak duality property. Hence the competitive ra-
tio is ALG

OPT ≥ Γ. For more details, we refer the interested
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readers to (Buchbinder and Naor 2007; Devanur, Jain, and
Kleinberg 2013).

Problem Statement and Formulation
As established in Section 1, when a query arrives, we need
to return a list of items to optimize several objectives. In this
section, we formally describe the details of the traffic shap-
ing problem that arises in the e-commercial search engine
and present the offline tri-objective optimization formula-
tion.

Notations. Let I, J denote the collections of items and
queries respectively. For any query j ∈ J , let N(j) be the
set of items that are retrieved for ranking by the search en-
gine. Similarly, for any item i ∈ I, let N(i) denote the set
of matched queries. We use Si to represent the query set that
allocated to item i. Other notations will be introduced when
needed.

In the following, we elaborate on three typically objec-
tives considered in the e-commerce platform.

• Relevance. To optimize the short-term user engagement,
the first and essential objective is to maximize the sum
of relevance scores. Let rij be the relevance score be-
tween item i and query j predicted by the machine learn-
ing model 1. The objective can be written as:

max
S

∑
i∈I

fi(Si) =
∑
i∈I

∑
j∈Si

rij . (2)

• Guaranteed impressions/clicks. As we state before, in
practice there are often other business requirements in
place. The most common one adopted in industry is the
the minimum number of impressions certain items are
served with, or in some cases the minimum number of
clicks obtained by certain items. This requirement is in-
tuitive and easy to specify from a business perspective:
it may protect the interests of premium or new sellers
in e-commerce. To accommodate the requirement in our
unified multi-objective optimization framework, we claim
that it can be expressed as an objective instead of a con-
straint in the literature. Since the study on guaranteed im-
pressions is a special case of that on guaranteed clicks (by
supposing that every exposed item will be clicked), we fo-
cus on the latter. We use Ci to denote the target number
of clicks of item i and Ic the set of guaranteed items. Let
vij be the click probability. The second objective can be
formulated as:

max
S

∑
i∈Ic

gi(Si) =
∑
i∈Ic

min{
∑
j∈Si

vij , Ci}. (3)

This means that we can not benefit from the extra clicks.

• Number of sold items. We present another crucial busi-
ness requirement in e-commerce: maximizing the number
of sold items. There are usually a huge number of items
on the platform, but only a few of them have sales. One
key metric to evaluate the prosperity of the market is the

1In this paper, we make the simplifying assumption that the pre-
dictions are “perfect”.

total number of sold items. Once the new items are sold
smoothly in the platform, sellers are more active to pub-
lish new products and users are more likely to browse.
Thus it creates a virtuous circle and is beneficial to the
sustainability of the platform. We use uij to denote the
probability that query (user) j will buy item i and Is the
set of items with no sales that we hope to be purchased.
Note that in practice not all items with no sales are in-
cluded and the target items are selected due to some busi-
ness considerations. Assuming that the queries are inde-
pendent with each other, the probability that item i ∈ Is
is sold at least once over a set of queries Si is:

hi(Si) = Pri(sold|Si) = 1−
∏
j∈Si

(1− uij). (4)

Therefore the third objective can be written as

max
S

∑
i∈Is

hi(Si) =
∑
i∈Is

(1−
∏
j∈Si

(1− uij)). (5)

We further assume that when query j arrives, a list of bj
distinct items is asked to display in the slots. Let cj(Si) de-
note whether item j is included in set Si. Put all the pieces
together, we get the following ultimate multi-objective opti-
mization formulation:

max
S

∑
i∈I

fi(Si),
∑
i∈I

gi(Si),
∑
i∈I

hi(Si)

s.t.
∑

j∈N(i)

cj(Si) = bj , ∀j ∈ J .
(6)

Note that for item i ∈ I\Ic, gi(Si) = 0 and for item i ∈
I\Is, hi(Si) = 0.

Multi-objective SWM problem with multiple alloca-
tion. Finally, we show that the above problem happens to
be a multi-objective SWM problem with multiple allocation.
The queries and users here are ”agents” and ”items” respec-
tively defined in the previous section. Each item i ∈ I is
associated with three functions which evaluate the values of
set of queries exposed to it. We verify that all three valuation
functions are submodular:
• fi(Si) =

∑
j∈Si

rij . It is a linear function, known as be-
ing submodular(modular).

• gi(Si) = min{
∑
j∈Si

vij , Ci}. It is a budget-additive
function, a typical submodular function.

• hi(Si) = 1−
∏
j∈Si

(1−uij). We call it the probabilistic
coverage function. It is submodular by definition since it
satisfies the condition (without loss of generality, the sub-
script i is omitted):

h(S′ ∪ j′)− h(S′)

=
∏
j∈S′

(1− uj)−
∏
j∈S′

(1− uj)(1− uj′)

=
∏
j∈S′

(1− uj)uj′

≤
∏
j∈S

(1− uj)uj′

=h(S ∪ j′)− h(S)

(7)
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where S ⊆ S′ and j′ /∈ S′\S.

Now the only distinction between our problem and the
standard multi-objective SWM problem is that a query is al-
lowed to allocate to multiple items in different slots since
bj > 1 in most real-world cases. We will show in the sub-
sequent section that the idea for dealing with the single slot
setting remains in force by some slight modifications since
the position bias and item mutual influence are beyond the
scope of this paper.

Traffic Splitting Algorithm
Greedy Traffic Splitting Algorithm (GTSA)
To motivate our idea, we begin with the general multi-
objective online SWM with multiple allocation (without
considering the particularities of objective functions). The
idea of the algorithm is simple but effective: we split the
incoming traffic to optimize for different objectives respec-
tively, and the optimization method here is the greedy algo-
rithm which is widely adopted in the submodular optimiza-
tion. The approach is called the Greedy Traffic Splitting Al-
gorithm (GTSA) and its details are shown in Algorithm 1.

Algorithm 1: Greedy Traffic Splitting Algorithm
Input: p1, p2, p3 > 0 with p1 + p2 + p3 = 1.
Output: Allocation plan.
Initialize Si = ∅ for all i ∈ I.
while query j arrives do

T = ∅.
for k = 1 to bj do

With probability p1,
i∗ = arg maxi∈N(j)\T [fi(Si ∪ j)− fi(Si)].
With probability p2,
i∗ = arg maxi∈N(j)\T [gi(Si ∪ j)− gi(Si)].
With probability p3,
i∗ = arg maxi∈N(j)\T [hi(Si ∪ j)− hi(Si)].
Si∗ = Si∗ ∪ {j}.
T = T ∪ {i∗}.

end
Display the items from set T .

end

To obtain the theoretical guarantees of the algorithm,
we consider the simplified Probabilistic Greedy Algorithm
(PGA) as described in Lemma 1.

Lemma 1. When a query arrives, pass it to the greedy al-
gorithm for allocation in each slot with probability p, and
leave it unmatched otherwise. This Probabilistic Greedy Al-
gorithm (PGA) is p

1+p -competitive for the online SWM with
multiple allocation.

Proof. LetAi denote the query set that allocated to item i by
the algorithm and thus wi(Ai) is the actual cumulative gain
of item i at the end of the algorithm. Similarly, let Oi be the
query set that allocated to item i in the optimal solution. We
use gainj to represent the marginal gain by the algorithm

from allocating query j upon its arrival and gainj =
gainj

bj

the average gain. Note that gainj is a random variable, so
the expected average marginal gain of allocating query i is
pE[gainj ]. We first prove that the following key inequality
holds for any i ∈ I and j ∈ J :

gainj ≥ wi(Ai ∪ j)− wi(Ai). (8)

Let Ati denote the query set allocated to item i at iteration t
(before query j arrives), thus by definition we obtain:

gainj =
1

bj

bj∑
k=1

wik(Atik ∪ j)− wik(Atik). (9)

For the first case, suppose that i /∈ {i1, i2, ..., ibj} (i.e. item
i is not displayed to query j), then for any 1 ≤ k ≤ bj , we
have:

wik(Atik ∪ j)− wik(Atik) ≥ wi(Ati ∪ j)− wi(Ati)
≥ wi(Ai ∪ j)− wi(Ai)

(10)

The first inequality follows since our algorithm is greedy and
the second inequality follows from the submodularity. For
the second case, suppose that i ∈ {i1, i2, ..., ibj}, in other
words, item i and query j is matched by the algorithm (j ∈
Ai). This implies:

wi(Ai ∪ j)− wi(Ai) = 0. (11)

Combining all of the above inequalities and equations, the
key inequality (8) holds. By taking the expected value of
both sides of inequality (8), we have:

pE[gainj ] ≥ E[wi(Ai ∪ j)− wi(Ai)]. (12)

Furthermore, we can establish the relationship between
OPT and ALG by linearity of expectation:

E[ALG] =
∑
i∈I

∑
j∈Oi

pE[gainj ]

≥
∑
i∈I

∑
j∈Oi

pE[wi(Ai ∪ j)− wi(Ai)]

≥
∑
i∈I

pE[wi(Ai ∪Oi)− wi(Ai)]

≥
∑
i∈I

pE[wi(Oi)− wi(Ai)]

= pE[OPT ]− pE[ALG]

(13)

where the second inequality follows from the submodularity,
and the last inequality from the monotonicity. Therefore we
obtain the competitive ratio:

E[ALG]

E[OPT ]
≥ p

1 + p
. (14)

The main theorem of this subsection follows immediately.
Theorem 2. The GTSA is ( p1

1+p1
, p2

1+p2
, p3

1+p3
)-competitive

for the general tri-objective online SWM with multiple allo-
cation, for any given p1, p2, p3 with p1 + p2 + p3 ≤ 1.
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Improved Traffic Splitting Algorithm (ITSA)
The GTSA can be further improved from both analysis and
design, because the first and second objective functions in
our problem are a little special. In the following, we first
prove that the PGA is indeed better than 1

1+p -competitive
for the first objective (linear valuation functions) and then
present a tailored-made algorithm for the second objective
(budget-additive valuation functions).

Probabilistic Greedy Algorithm for the First Objective
Lemma 2. When a query arrives, pass it to the greedy al-
gorithm for allocation in each slot with probability p, and
leave it unmatched otherwise. The Probabilistic Greedy Al-
gorithm is p-competitive for the online SWM with multiple
allocation and linear valuation functions.

Proof. It is easy to verify that greedy is optimal for online
SWM with linear valuation functions (even in the multiple
allocation scenario), which implies:

E[ALG] =
∑
i∈I

∑
j∈Oi

pE[gainj ]

=
∑
i∈I

pE[fi(Oi)] = pE[OPT ].
(15)

Therefore, we obtain:
E[ALG]

E[OPT ]
≥ p. (16)

Probabilistic Balance Algorithm for The Second Objec-
tive To design a more smart algorithm for the second ob-
jective, we leverage the primal-dual framework which is
widely used for the online optimization (as introduced in
Section 2). We note the following configuration LP:

max
x

∑
i,S

xiSgi(S)

s.t.
∑
S

xiS ≤ 1, ∀i ∈ I∑
i∈N(j)

∑
S3j

pxiS ≤ bj , ∀j ∈ J

xiS ≥ 0, ∀i ∈ I, j ∈ J

(17)

Lemma 3. The optimal value to LP (17) is a valid upper
bound of the expected gain achieved by the offline optimal
solution.

The proof of the above lemma is already quite standard
(Bansal et al. 2012; Zhao et al. 2019). Note that it suffices to
show that any allocation strategy satisfies the constraints of
the LP (17) in expectation. Let αi and βj be the associated
dual variables, then the corresponding dual problem is:

min
α,β

∑
i∈I

αi +
∑
j∈J

bjβj

s.t. αi + p
∑
j∈S

βj ≥ gi(S), ∀i ∈ I, S

α ≥ 0, βj ≥ 0, ∀i ∈ I, j ∈ J .

(18)

Following the primal-dual framework, we design the Proba-
bilistic Balance Algorithm (PBA) as shown in Algorithm 2.

Algorithm 2: Probabilistic Balance Algorithm
Fix a non-decreasing function φ : [0, 1]→ [0, 1],
0 < p ≤ 1 and Γ > 0.

Let yi =
∑

j∈Si
vij

Ci
denote the fraction of item i’s

capacity consumed.
Initialize αi = 0, βj = 0 and yi = 0 for all i ∈ I and
j ∈ J .

while query j arrives do
T = ∅.
Tvirtual = ∅.
for k = 1 to bj do

i∗ = arg maxi∈N(j)\Tvirtual
vij(1− φ(yi)).

Tvirtual = Tvirtual ∪ {i∗}.
αi∗ is incremented by vijφ(yi∗)/Γ.
With probability p:
1) T = T ∪ {i∗};
2) yi∗ = yi∗ + vi∗j/Ci∗ .

end
βj = maxi∈T vij(1− φ(yi))/Γ.
Return item set T for display.

end

By choosing φ and Γ carefully, we get the following
lemma that provides the theoretical guarantee on the com-
petitive ratio.

Lemma 4. Set φ(y) = e
1
p (y−1) and Γ = p(1 − e−

1
p ), then

the Probabilistic Balance Algorithm is Γ-competitive under
the assumption that maxi,j

vij
Ci
→ 0.

Proof. According to the principle of the primal-dual frame-
work described in Section 2, we need to prove that ∆P ≥
Γ∆D and the dual is feasible. The former is easy to ver-
ify: at each iteration (when query j arrives), we have ∆P =∑
i∈Tvirtual

vij and

Γ∆D = Γ
∑

i∈Tvirtual

∆αi + bjβj = Γ
∑

i∈Tvirtual

(∆αi + βj)

≤
∑

i∈Tvirtual

vij(φ(yi) + 1− φ(yi)) = ∆P.

(19)
Then we only need to prove the feasibility of the dual. Since
vij
Ci
→ 0 by assumption, αi can be approximated as:

αi = Ci

∫ yi

0

φ(y)dy/Γ. (20)

We have βj = maxi∈Tvirtual
vij(1− φ(yi))/Γ, thus

αi + p
∑
j∈S

βj ≥ Ci
∫ yi

0

φ(y)dy/Γ + p
∑
j∈S

vij(1− φ(yi))/Γ

≥ min{
∑
j∈S

vij , Ci}(
∫ yi

0

φ(y)dy + p− pφ(yi))/Γ.

(21)
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Note that by setting φ(y) = e
1
p (y−1) and Γ = p(1 −

e−
1
p ), we have the identical equation (

∫ yi
0
φ(y)dy + p −

pφ(yi))/Γ = 1 for any 0 ≤ yi ≤ 1. This indicates
the feasibility of the dual problem and the algorithm is Γ-
competitive.

Therefore, we can obtain the Improved Traffic Splitting
Algorithm (ITSA) as shown in Algorithm 3 and Theorem
1 presented in Section 1 holds immediately. We also depict
the competitive ratios on our three different objectives with
respect to the value of p.

Algorithm 3: Improved Traffic Splitting Algorithm
Input: p1, p2, p3 > 0 with p1 + p2 + p3 = 1.
Output: Allocation plan.
Initialize Si = ∅ for all i ∈ I.
while query j arrives do

T = ∅.
for k = 1 to bj do

With probability p1,
i∗ = arg maxi∈N(j)\T [fi(Si ∪ j)− fi(Si)].
With probability p2,
pass the query to the PBA where bj = 1 and
get i∗ ∈ Tvirtual.

With probability p3,
i∗ = arg maxi∈N(j)\T [hi(Si ∪ j)− hi(Si)].
Si∗ = Si∗ ∪ {j}.
T = T ∪ {i∗}.

end
Display the items from set T .

end
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Figure 1: Competitive ratios on different valuation functions
with respect to the value of p. The blue, orange and grey
lines represent the competitive ratio of the linear function,
budget-additive function and general submodular function
(probabilistic coverage function) respectively.

Experiments
To demonstrate the feasibility and effectiveness of our pro-
posed method, we conduct a suite of experiments including
offline simulation and online production A/B test.

Offline Simulation
Synthetic Dataset To generate a synthetic dataset, we fix
|I| = 10, 000 and |J | = 5, 000. The items are divided into
two parts: 2,000 mature items and 8,000 new items to ap-
proximately simulate the real environment. For each query
j, 200 randomly sampled items are retrieved for ranking,
and bj is sampled from a uniform distribution U(3, 50). For
each item-query pair (i, j), the relevance score rij is drawn
from the beta distributions Beta(3, 2) and Beta(2, 3); the
click probabilities are drawn from the uniform distributions
U(0.1, 0.3) and U(0, 0.2); the conversion probabilities fol-
low the uniform distributionsU(0, 0.01) andU(0, 0.005) for
mature and new items respectively. Then the purchase prob-
ability can be computed by multiplication of the click prob-
ability and conversion probability. We set |Ic| = 1, 000 and
|Is| = 1, 000. The new items in Ic are randomly sampled,
and |Is| is composed of 500 mature items and 500 new items
(different from items in Ic). The target numbers of clicks are
18 and 2 for mature and new items respectively.

Algorithm We compare three algorithms in the experi-
ment. The first is the relevance-focused method in which we
only optimize for a single objective: the sum of the relevance
scores. The second is the GTSA, where we fix p1 = 0.9
since the relevance is always the fundamental goal in the
search engine. To verify the influence of different values of
p, we change the value of p2 from 0 to 0.1 with the step size
0.01 and p3 = 1 − p1 − p2. The third one is the ITSA, the
parameter settings are the same as that in the GTSA.
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Figure 2: Comparison of the baseline and GTSA on three ob-
jectives. The relative performance is computed through the
division of the objective function values of the GTSA over
the baseline. The blue, orange and grey lines represent the
relative performance of the sum of relevance scores, num-
ber of clicks on items in Ic and number of sold items in Is
respectively.

Results We take the relevance-focused method as the
baseline, and focus on the relevance performance of the
GTSA and ITSA compared to it. The result of the GTSA
is shown in Figure 2. We can see that the performance of the
relevance is always above 0.95 with only less than 5% drop
in the relevance score. It is better than the strict competitive
ratio 0.9 since the exposure of any item will contribute to the
total relevance. As expected, the number of clicks of items
in Ic increase with p2 while the number of sold new items
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Figure 3: Comparison of the GTSA and ITSA on the second
objective. The relative performance is computed through the
division of the objective function values of the GTSA/ITSA
over the baseline. The blue and orange lines represent the
relative performance of the GTSA and ITSA respectively.

50% Treatment
Experimental items

50% Control
Experimental items

50% Treatment
Queries B11 B12

50% Control
Queries B21 B22

Table 1: An illustration of the A/B testing design.

in Is decreases with p2. It is interesting to see that when
p2 or p3 is near to zero, the corresponding performances are
worse than the baseline. This is because the second and third
objectives are totally conflicting (i.e. they are optimizing for
disjoint items).

In addition, we compare the performance of the GTSA
and ITSA in terms of the second objective since the other
two are treated in the same way. The result is shown in Fig-
ure 3. We see that when p2 is small, they have the similar
performance. As p2 becomes larger, the ITSA outperforms
GTSA gradually. This is consistent with the comparison re-
sult of competitive ratios shown in Figure 1.

Online A/B Test
The method in this paper (ITSA) has been deployed on a
large e-commerce search engine where about 20 million
queries and 3 million exposed items involved every day.
Besides maximizing the relevance, the platform hopes that
more new items (20,000 items are selected) can be sold and
some other specified items (20,000 items are selected) can
get a certain number of impressions. We split the queries
and experimental items equally into two groups respectively
and the design of the A/B test is illustrated in table 1.
”Treatment” means that we run our algorithm while ”Con-
trol” means that we follow the traditional relevance-focused
method. We set p1 = 0.96, p2 = 0.02, p3 = 0.02 and the
experiment lasts for a week.

The comparison method is as follows:

• Impact on the relevance: comparing B11+B12 with B21

+ B22.
• Impact on the experimental items: comparing B11 + B21

with B12 + B22.
The results are reported as follows. In terms of the im-

pact on the relevance, we focus on the page-view CTR in
practice. The result shows that compared to the relevance-
focused ranking, there is only 0.1% drop in the page-
view CTR. However, a 3-fold reduction in underdelivery is
achieved by our algorithm. Moreover, the number of new
items sold in the treatment group is 15.6% more than that in
the control group. The results exhibit the effectiveness and
practicability of our method.

Additional Related Work
In addition to the literature mentioned in the previous sec-
tions, there are many other related work in the generalized
traffic shaping family. For example, besides the business re-
quirements considered in this paper, some studies focus on
the fairness in ranking (Biega, Gummadi, and Weikum 2018;
Singh and Joachims 2018; Geyik, Ambler, and Kenthapadi
2019) or diversity issues (Devanur et al. 2016; Dickerson
et al. 2019).

Another important concept in this paper is submodular-
ity, especially the submodular welfare maximization (SWM)
problem (Vondrák 2008). (Kapralov, Post, and Vondrák
2013) are the first to study the online version of SWM and
show that the greedy algorithm is 1

2 -competitive and optimal
in the adversarial setting. Recently, the result is improved to
0.5096-competitive under the random permutation assump-
tion by (Korula, Mirrokni, and Zadimoghaddam 2018). The
closest work to ours is that of (Esfandiari, Korula, and Mir-
rokni 2016). They investigate the bi-objective online sub-
modular welfare maximization problem, but some important
proofs are missing in their paper.

Conclusions
Traffic shaping has attracted significant attention since the
relevance-focused ranking fails to capture many realistic
business requirements. We propose a unified framework
from the aspect of multi-objective optimization for deal-
ing with traffic shaping problem. The designed algorithm
allows us to flexibly adjust the priorities of different ob-
jectives. It is robust with any traffic distributions and has
rigorous theoretical guarantees. Our framework can natu-
rally incorporate a wide range of application-driven require-
ments because in practice the agents’ utilities always exhibit
diminishing returns and multiple objectives are involved.
Our work presents many interesting directions for future re-
search. For example, which business requirements can be in-
corporated in our framework and which can not? Investigat-
ing our problem under the stochastic assumption by making
use of the past knowledge can further improve the algorithm
performance. We ignore the position bias and item mutual
influence in this paper, but some studies show that such chal-
lenges can be also tackled with the help of submodular op-
timization (Devanur et al. 2016; Dickerson et al. 2019). We
are interested in modeling these all together.
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