The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Embracing Domain Differences in Fake News: Cross-domain Fake News Detection
using Multi-modal Data

Amila Silva, Ling Luo, Shanika Karunasekera, Christopher Leckie

School of Computing and Information Systems
The University of Melbourne
Parkville, Victoria, Australia
{amila.silva@student., ling.luo @, karus @, caleckie @ }unimelb.edu.au

Abstract

With the rapid evolution of social media, fake news has be-
come a significant social problem, which cannot be addressed
in a timely manner using manual investigation. This has mo-
tivated numerous studies on automating fake news detection.
Most studies explore supervised training models with differ-
ent modalities (e.g., text, images, and propagation networks)
of news records to identify fake news. However, the perfor-
mance of such techniques generally drops if news records
are coming from different domains (e.g., politics, entertain-
ment), especially for domains that are unseen or rarely-seen
during training. As motivation, we empirically show that
news records from different domains have significantly dif-
ferent word usage and propagation patterns. Furthermore, due
to the sheer volume of unlabelled news records, it is chal-
lenging to select news records for manual labelling so that
the domain-coverage of the labelled dataset is maximized.
Hence, this work: (1) proposes a novel framework that jointly
preserves domain-specific and cross-domain knowledge in
news records to detect fake news from different domains;
and (2) introduces an unsupervised technique to select a set
of unlabelled informative news records for manual labelling,
which can be ultimately used to train a fake news detection
model that performs well for many domains while minimiz-
ing the labelling cost. Our experiments show that the integra-
tion of the proposed fake news model and the selective an-
notation approach achieves state-of-the-art performance for
cross-domain news datasets, while yielding notable improve-
ments for rarely-appearing domains in news datasets.

Introduction

Motivation. Today, social media is considered as one of
the leading and fastest media to seek news information on-
line.Thus, social media platforms provide an ideal environ-
ment to spread fake news (i.e., disinformation). Many times
the cost and damage due to fake news are high and early de-
tection to stop spreading such information is of importance.
For example, it has been estimated that at least 800 people
died and 5800 were admitted to hospital as a result of false
information related to the COVID-19 pandemic, e.g., believ-
ing alcohol-based cleaning products are a cure for the virus!.
Due to the high volumes of news generated on a daily basis,
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it is not practical to identify fake news using manual fact
checking. Therefore, automatic detection of fake news has
recently become a significant problem attracting immense
research effort.

Challenges. Nevertheless, most existing fake news detec-
tion techniques fail to identify fake news in a real-world
news stream for the following reasons. First, most existing
techniques (Silva et al. 2020; Zhou et al. 2020; Shu et al.
2019, 2020b; Ruchansky et al. 2017) are trained and evalu-
ated using datasets (Shu et al. 2020a; Cui et al. 2020) that
are limited to a single domain such as politics, entertain-
ment, healthcare. However, a real news stream typically cov-
ers a wide variety of domains. We have empirically found
that existing fake news detection techniques perform poorly
for such a cross-domain news dataset despite yielding good
results for domain-specific news datasets. This observation
may be due to two reasons: (1) domain-specific word usage;
and (2) domain-specific propagation patterns. For example,
Figure 1 adopts two datasets from different domains, Poli-
tiFact for politics and GossipCop for entertainment, which
are two widely used labelled datasets to train fake news
detection models. Fig. 1 shows that there are significant
differences in the frequently used words and propagation
patterns of these two datasets. To address this challenge,
some previous works (Wang et al. 2018; Castelo et al. 2019)
learned models to overlook such domain-specific informa-
tion and only rely on cross-domain information (e.g., web-
markup and readability features) for fake news detection.
However, domain-specific knowledge could be useful for ac-
curate identification of fake news. As a solution, this work
aims to address how to preserve domain-specific and cross-
domain knowledge in news records to detect fake news in
cross-domain news datasets. Second, the studies in (Han
et al. 2020; Janicka et al. 2019) show that most fake news
detection techniques are not good at identifying fake news
records from unseen or rarely-seen domains during training.
As a solution, fake news detection models can be learned us-
ing a dataset that covers as many domains as possible. Here
we assume that the fake news detection model requires su-
pervision as supervised techniques are known to be substan-
tially better at identifying fake news compared to the unsu-
pervised methods (Yang et al. 2019a). In such a supervised
learning setting, each training (i.e., labelled) data point has
an associated labelling cost. Thus, the total labelling budget
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Figure 1: (a) Word clouds for the top 20 words in PolitiFact
and GossipCop. (b) Two-sample t-test results conducted us-
ing different graph-level features extracted from the propa-
gation networks in PolitiFact and GossipCop.

constrains the number of data instances that can be selected
for manual labelling. Due to the sheer volume of unlabelled
news records available, there is a need to identify informa-
tive news records to annotate such that the labelled dataset
ultimately covers many domains while avoiding any selec-
tion biases.

Contribution. To address the aforementioned challenges,
this work makes the following contributions:
e We propose a multimodal? fake news detection technique
for cross-domain news datasets that learns domain-specific
and cross-domain information of news records using two in-
dependent embedding spaces, which are subsequently used
to identify fake news records. Our experiments show that the
proposed framework outperforms state-of-the-art fake news
detection models by as much as 7.55% in F1-score.
e We propose an unsupervised technique to select a given
number of news records from a large data pool such that the
selected dataset maximizes the domain coverage. By using
such a dataset to train a fake news detection model, we show
that the model achieves around 25% F1-score improvements
for rarely-appearing domains in news datasets.

Related Work

Fake news detection methods mainly rely on different at-
tributes (text, image, social context) of news records to de-
termine their veracity. Text content-based approaches (Yang
et al. 2016; Volkova et al. 2017; Pérez-Rosas et al. 2018;
Pennebaker et al. 2015) mainly explore word usage and lin-
guistic styles in the headline and body of news records to
identify fake news. Some works analyse the images in news
records along with the text content for fake news detection.
For example, the studies in (Jin et al. 2017; Wang et al. 2018;
Khattar et al. 2019) use pre-trained image models (e.g.,

2We define multimodality as information acquired from differ-
ent sources/attributes following (Zhang et al. 2017), instead of re-
stricting just for sensory media (e.g., text, image).
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VGG-19, ResNet) to extract features from images, which
are integrated with text features to identify fake news. Also,
some works consider the social context of a news record,
i.e., how the record is propagated across social media, as
another modality to differentiate fake news records from
real ones. Existing work in this line mostly applies various
machine learning techniques to extract features from prop-
agation patterns, including Propagation Tree Kernels (Ma
et al. 2017), Recurrent Neural Networks (Wu et al. 2018;
Liu et al. 2018), and Graph Neural Networks (Monti et al.
2019). However, all these modalities (i.e., text, propagation
patterns) generally show notable differences (see Figure 1)
for news records in different domains. Thus, most existing
techniques perform poorly for cross-domain news datasets
due to their inability to capture such domain-specific vari-
ations. Our model also relies on the text content and social
context of news. However, the main objective of our model is
to capture such domain-specific variations of news records.

Domain-agnostic Fake News Detection. Several previ-
ous works have attempted to perform fake news detection
using cross-domain datasets. In (Wang et al. 2018), an event
discriminator is learned along with a multimodal fake news
detector to overlook domain-specific information in news
records. The study in (Castelo et al. 2019) carefully se-
lects a set of features (e.g., psychological features, readabil-
ity features) from news records that are domain-invariant.
These techniques rely only on cross-domain information in
news records. In contrast, Han et al. (2020) consider cross-
domain fake news detection as a continual learning task,
which learns a model for a large number of tasks sequen-
tially. This work adopts Graph Neural Networks to detect
fake news using their propagation patterns and applies well-
known continual learning approaches Elastic Weight Con-
solidation (Kirkpatrick et al. 2017) and Gradient Episodic
Memory (Lopez-Paz et al. 2017) to address cross-domain
fake news detection problem. This approach has two lim-
itations: (1) it assumes that the news records from differ-
ent domains arrive sequentially, though this is not always
true for real-world streams; and (2) it requires the domain of
news records to be known, which is not generally available.
In contrast, our approach exploits both domain-specific and
cross-domain knowledge of news records without knowing
the actual domain of news records.

Active Learning for Fake News Detection. Almost all
the aforementioned models are supervised. Although there
are unsupervised fake news detection techniques (Yang et al.
2019b; Hosseinimotlagh et al. 2018), they are generally in-
ferior to the supervised approaches in terms of accuracy.
However, the training of supervised models requires large
labelled datasets, which are costly to collect. Therefore,
how to obtain fresh and high-quality labelled samples for
a given labelling budget is challenging. Some works (Wang
et al. 2020; Bhattacharjee et al. 2017) adopt conventional
active learning frameworks to select high-quality samples,
in which the model is initially trained using a small ran-
domly selected dataset. Then, the beliefs derived from the
initial model are used to select subsequent instances to an-
notate. This approach has two limitations: (1) it requires a
pre-trained model to select instances; and (2) it is known
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Figure 2: Overview of the proposed framework. In the illustrated embedding spaces, each data point’s colour and shape denote
its domain label and veracity label (i.e., triangle for fake news and circle otherwise) respectively.

Table 1: Descriptive statistics of PolitiFact, GossipCop and
CoAID datasets.

Dataset PolitiFact | GossipCop | CoAID
# Fake News 269 1269 135
# Real News 230 2466 1568

to be highly vulnerable to the biases introduced by the ini-
tial model. In contrast, our instance selection approach does
not depend on such an initial model. Also, none of the pre-
vious works attempted to explicitly maximize the domain-
coverage of the labelled dataset, which is vital to train a
model that perform equally well for multiple domains.

Problem Statement

Let R be a set of news records. Each record r € R is repre-
sented as a tuple (t", W”, G"), where (1) t" is the timestamp
when 7 is published online; (2) W is the text content of r;
and (3) G is the propagation network of r for time bound
AT. We keep AT low (= five hours) for our experiments to
evaluate early detection performance. Each propagation net-
work G" is an attributed directed graph (V" E”, X"), where
nodes V" represent the tweets/retweets of  and the edges
E™ represent the retweet relationships among them. X" is
the set of attributes of the nodes (i.e., tweets) in G". More
details about E” and G" are given in (Silva et al. 2021).
Our problem consists of two sub-tasks: (1) select a set of
instances R from R to label while adhering to the given la-
belling budget B, which constrains the number of instances
in RY. The labelling process assigns a binary label 3" for
each record 7: y" is 1 if r is false and O otherwise; (2) learn
an effective model using R” to predict the label 3" for unla-
belled news records r € RY as false or real news records. In
this work, R (R U RY) is not constrained to a specific do-
main. To emulate such a domain-agnostic dataset, we com-
bine three publicly available datasets: (1) PolitiFact (Shu
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et al. 2020a), which consists of news related to politics; (2)
GossipCop (Shu et al. 2020a), a set of news related to en-
tertainment stories; and (3) CoAID (Cui et al. 2020), a news
collection related to COVID-19. All three datasets provide
labelled news records and all the tweets related to each news
item. The statistics of the datasets are shown in Table 1.

Our Approach

As shown in Fig. 2, the proposed fake news detection model
consists of two main components: (1) unsupervised do-
main embedding learning (Module A); and (2) supervised
domain-agnostic news classification (Module B). These two
components are integrated to identify fake news while ex-
ploiting domain-specific and cross-domain knowledge in the
news records. In addition, the proposed instance selection
approach (Module C) adopts the same domain embedding
learning component to select informative news records for
labelling, which eventually yields a labelled dataset that
maximizes the domain-coverage.

Unsupervised Domain Discovery

For a given news record 7, assume that its domain label is not
available. The proposed unsupervised domain embedding
learning technique exploits multimodal content (e.g., text,
propagation network) of r to represent the domain of r as a
low-dimensional vector fgyomain (7). Our approach is moti-
vated by: (1) the tendency of users to form groups contain-
ing people with similar interests (i.e., homophily) (McPher-
son et al. 2001), which results in different domains hav-
ing distinct user bases; and (2) the significant differences in
domain-specific word usage as shown in Figure 1a.

We exploit the aforementioned motivations by construct-
ing a heterogeneous network which consists of both users
tweeting the news items and words in the news title as nodes,
using the following steps (Line 1-9 in Algo. 1): (1) create a
set S” for each news record r by adding all the users U”



Algorithm 1: Domain Embedding Learning

Input: A collection of news records R
Output: Domain embeddings fyomain(r) of r € R
// Network construction
1 Initialize an empty graph G;
2 forr € Rdo
ST+ XTuur
for each pair (s1,s2) € S do
e« ({s1,s2},1);
if edge e exists in graph G then
\ Increment edge e in graph G by 1;
else
| Add edge e to graph G}
// Community Detection
C <+ Find communities in G using Louvain;
// Embedding Learning
11 forr € Rdo
12 | Compute fiomain(r) using Eq. 2
13 Return fiomain(r) of r € R.

N=T-LREEN B N

10

in the propagation network G" and all the words appearing
in the news title W" (tokenized using whitespaces); (2) for
each pair of items in S”, build a weighted edge e linking the
two items in the graph; and (3) repeat Steps 1 and 2 for all
the news records, until we obtain the final network GG. Then,
we adopt the Louvain algorithm® (Blondel et al. 2008) to
identify communities in G. Here, we select the Louvain al-
gorithm as it was shown to be one of the best performing
parameter-free community detection algorithms in (Fortu-
nato 2010). At the end of this step, we obtain a set of com-
munities/clusters C, each having either a highly connected
set of users or words. As the nodes of GG contain both users
and words, such communities may have formed either due to
a set of users engaging with similar news records or a set of
words only appearing within a fraction of news records. Fol-
lowing the aforementioned motivations, this work assumes
each community in C' belongs to a single domain.

In the next step, we compute the soft membership p(r €
¢) of r in a cluster ¢ using the following equation:

p(’f’ € C) = Z Udeg/ Z Zvdeg

vECNT ceC ver

ey

Here p(r € c) is proportional to the number of common
users or words that r and ¢ have. Each node (i.e., user or
word) v is weighted using the degree v4.4 in G (i.e., number
of occurrences) to reflect their varying importance for the
corresponding community. Finally, we produce the domain
embedding fiomain () € RIC! of 7 as the concatenation of
r’s likelihood belonging to communities in C":

Jaomain(r) =p(r € c1) @p(r € c2) ®...p(r € ¢c)) (2)

where @ denotes concatenation.
In Figure 3, we adopt t-SNE (Maaten et al. 2008) to vi-
sualize the domain embedding space of the proposed ap-

3Please see Supplementary Material in (Silva et al. 2021) for
detailed pseudo code of the Louvain algorithm
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e PolitiFact + GossipCop = CoAID |

Figure 3: t-SNE visualization of domain embeddings from:
(a) user-based domain discovery algorithm in (Chen et al.
2020) and (b) multimodal domain discovery approach pro-
posed in this work.

proach and the user-based domain discovery algorithm pro-
posed in (Chen et al. 2020). Due to space limitations, we
present more details about the baseline in (Silva et al. 2021).
As can be seen in Figure 3, the proposed approach yields a
clear separation between the domains compared to the base-
line. This may be mainly due to the ability of our approach to
jointly exploit multimodalities, both users and text of news
records to discover their domains. In addition, most previous
works on domain discovery ultimately assign hard domain
labels for news records, which could lead to substantial in-
formation loss. For example, some news records may belong
to multiple domains, which cannot be captured using hard
domain labels. Hence, by having a low-dimensional vector
to represent embedding, our approach could preserve such
knowledge related to the domains of news records.

Domain-agnostic News Classification

In our news classification model, each news record r is
represented as a vector finpue(r) using the textual con-
tent W7 and the propagation network G" of r (elabo-
rated in the section Experiments). Then, our classification
model maps finpy: () into two different subspaces such that
one preserves the domain-specific knowledge, fopecific :
Finput(r) — R4, and the other preserves the cross-domain
knowledge fihared @ finput(r) — R4, of r. Here d is
the dimension of the subspaces. Then, the concatenation
Fspecific(r) and fsparea(r) is used to recover the label y”
and the input representation fiypy¢(r) of r during training
via two decoder functions g,,eq and grecons Tespectively.

Y" = Gpred(fspecific(r) © fshared(T))
Finput (1) = Grecon(Fspecific(r) ® Fsharea(r))
Lyrea = BCE(y",y") 3)
Lrecon = || finput (r) = finput (r)||” )
where y” and m denote the predicted label and the
predicted input representation respectively. BC'E stands

for the Binary Cross-Entropy loss function. We mini-
mize Lypreq and Lyecon to find the optimal parameters of

(fspecifica fshared7 YGpred; grecon)~



However, Lpreq and Ly.¢con do not leverage domain dif-
ferences in news records. Hence, we now discuss how the
mapping functions for subspaces, fspecific and fshared, are
further learned to preserve the domain-specific and cross-
domain knowledge in news records.

Leveraging Domain-specific Knowledge To preserve the
domain-specific knowledge, we introduce an auxiliary loss
term Lgpecific to learn a new decoder function gspecific
to recover the domain embedding fgomain(r) of 7 us-
ing the domain-specific representation fgpecific(r). We
minimize Lgpecific to find the optimal parameters for
(fspecific, Gspecific) to capture the domain-specific knowl-
edge by fspecific, and this process can be defined as follows:

Lspecific - I |fd0main (7") - gspecific(fspecific(r)) | |2
argmin (Lspecific) (5)
(gspecific 7fspecific

(gspecifica fspecific) =

Leveraging Cross-domain Knowledge In contrast, we
learn fspqreq to overlook domain-specific knowledge of the
news records. Consequently, fsnareq preserves the cross-
domain knowledge in the news records. Here, we train a
decoder function gspgreq to accurately predict the domain
of r using fsparea(r). Meanwhile, we learn fp,qreq to fool
the decoder gspareq by maximizing the loss of gspared-
Such a formulation forces fspqreq to only rely on cross-
domain knowledge, which are useful to transfer the knowl-
edge across domains. This process can be defined as a mini-
max game between gspgred and fspareq as follows:

Lshared = Hgshared(fshared(r)) - fdomain(r)H2

6)

(Jshareds fshared) = argmin argmax(—Lgnared)
fshared Yshared
Integrated Model Then the final loss function of the
model is formulated as:

Lfinal = Lpred + )\1Lrecon + )\2Lspecific - )\SLshared (7)

where A1, A2 and A3 controls the importance given to each
loss term compared to L,,.cq (i.€., main task).

To learn the minimax game in Lgpqreq, the final loss func-
tion Lyinqr is sequentially optimized using the following
two steps:

~

(01) = argomin Lfinal (01, 92) (8)
(62) = argmax L yinqi (01, 02) )

02

where 6, and 6, denote the parameters in ( fspeci fics fshared
gspeci,fic, gpred, grecon) and Gshared feSPeCtiVely- The em-
pirically studied convergence properties of the proposed op-
timization scheme are presented in (Silva et al. 2021).

LSH-based Instance Selection

The aforementioned model is able to exploit the domain-
specific and cross-domain knowledge in news records to
identify their veracity. Nevertheless, if the model is used to
identify fake news records in unseen or rarely appearing do-
mains during training, we empirically observe that the per-
formance of the model substantially drops. This observation
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Figure 4: Statistics of datasets selected using random selec-
tion (Rand) and the proposed LSH-based technique (LSH).
(a) Number of fake and real news records selected from each
domain when B/|R| = 0.1 and (b) domain-coverage mea-
sure A (lower A is better) for different B/|R| values.

is expected and is consistent with the findings in (Castelo
et al. 2019), which could be due to the domain-specific word
usage and propagation patterns as shown in Fig. 1. Hence,
we propose an unsupervised technique to come up with a la-
belled training dataset for a given labelling budget B such
that it covers as many domains as possible. The ultimate ob-
jective of this technique is to learn a model using such a
dataset that performs well for many domains.

Our approach initially represents each news record r € R

using its domain embedding fjomain (7). Then, we propose
a Locality-Sensitive Hashing (LSH) algorithm based on ran-
dom projection to select a set of records in R that are distant
in the domain embedding space, which can be elaborated
using the following steps:
1. Create |H| different hash functions such as H;(r)
sgn(h;: faomain(r)), whered € {0,1,...,|H|—1} and h; is
arandom vector, and sgn(.) is the sign function. The random
vectors h; are generated using the following probability dis-
tribution, as such a distribution was shown to perform well
for random projection-based techniques (Achlioptas 2001):

+1 with probability 1/6
0  with probability 2/3
—1 with probability 1/6

hi; = V3 x (10)

2. Construct an | H|-dimensional hash value for each news
record 7 as Ho(r) @ Hy(r) © ... & H -1 (r), where © de-
fines the concatenation operation. According to the Johnson-
Lindenstrauss lemma (Johnson et al. 1984), such hash val-
ues approximately preserve the distances between the news
records in the original embedding space with high probabil-
ity. Hence, neighbouring records in the domain embedding
space are mapped to similar hash values.
3. Group the news records with similar hash values to con-
struct a hash table.
4. Randomly pick a record from each bin in the hash table
and add to the selected dataset pool.
5. Repeat steps (1), (2), (3) and (4) until the size of the
dataset pool reaches the labelling budget B.

In Figure 4a, we compare 10% of the original dataset se-
lected using the proposed approach and random selection.



As can be seen, random selection follows the empirical dis-
tribution of the datasets in Table 1 and picks few instances
from rarely appearing domains (e.g., fake/real news in Poli-
tiFact, fake news in CoAID). Thus, the model trained on
such a dataset may poorly perform on rarely appearing do-
mains. In contrast, the proposed approach provides a signifi-
cant number of samples from even rarely occurring domains.

In addition, the proposed approach is efficient (O(|H|| R|)
complexity) compared to the naive farthest point selection
algorithms (e.g., k-Means (Lloyd 1982) with O(|R|?) com-
plexity, where |R| >> |H|). To measure the domain cov-
erage of the instances selected from the proposed instance
selection approach, we adopt the metric introduced in (Laib
et al. 2017), which can be computed as follows for a given
set of records r1, 79, ..., 7, that are represented using their

domain embeddings: A = (- 201, (5 — 5)2)2, where

511 = mink (L2 nOTm(fdomain(ri)v fdom,ain(rk))) and g =
>~ 8;/n. If the coverage is high, A is small. Hence, the pro-
posed approach yields a better domain-coverage compared
to random instance selection as shown in Figure 4b.

Experiments
Experimental Setup

Encoding and Decoding Functions In our model, each
record r is initially represented as a low-dimensional vec-
tor finpue () using its text content and propagation network.
We adopt RoBERTa-base, a robustly optimized BERT pre-
training model (Liu et al. 2019) to learn the text-based rep-
resentation fy.,:(r) of r. The propagation network-based
representation fy,ework () Of 7 is represented using the un-
supervised network representation learning technique pro-
posed in (Silva et al. 2020). Then, the final input represen-
tation finpue(r) is constructed as fieq(7) & fretwork (7).
where & denotes concatenation. All the other encoding and
decoding functions, (fspecific: fshared: Gspecifics Yshareds
Gpreds Yrecon), are modelled as 2-layer feed-forward net-
works with sigmoid activation®.

Dataset We combine three disinformation datasets: (1)
PolitiFact; (2) GossipCop; and (3) CoAID, to produce a
cross-domain news dataset’. Then, we randomly choose
75% of the dataset as the candidate data pool 12,,.; for train-
ing and the remaining 25% for testing. For a given labelling
budget B, we select B instances from R,y to train the
model. The same process is performed for 3 different train-
ing and test splits and the average performance is reported.
We evaluate the performance for each domain separately us-
ing the testing instances from each domain. For the evalua-
tion, we adopt four metrics: (1) Accuracy (Acc); (2) Preci-
sion (Prec); (3) Recall (Rec); and (4) F1 Score (F1).

Baselines In Table 2, we compare our approach with seven
widely used fake detection techniques and their variants*.

*We present more details about implementations and parameter
selections in the Supplementary Material in (Silva et al. 2021)

“Here we do not consider the existing datasets on rumour detec-
tion (Kochkina et al. 2018; Ma et al. 2017) as they are not consistent
with the fake news definition (i.e., disinformation).
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Parameter Settings After performing a grid search, we
have set the hyper-parameters in our model as*: A\; = 1,
Ao 10, A3 5, d 512. To satisfy the John-
son-Lindenstrauss lemma, we set |H| = 10 (>> log(|R]).
For the specific parameters of the baselines, we use the de-
fault parameters mentioned in their original papers.

Results

Quantitative Results for Fake News Detection As
shown in Table 2, the proposed approach yields substantially
better results for all three domains, outperforming the best
baseline by as much as 7.55% in F1-score. The best base-
line, EANN-Multimodal, also adopts domain-information
when determining fake news. This observation shows the
importance of having domain-knowledge of news records
when identifying fake news in cross-domain datasets. In ad-
dition to the architectural differences of the model, EANN-
Multimodal is different from our approach for two reasons:
(1) EANN-Multimodal only preserves cross-domain knowl-
edge in news records. Thus, it overlooks domain-specific
knowledge, which is shown to be useful in our ablation study
in Table 2; and (2) EANN-Multimodal adopts a hard label
(i.e., exclusive membership) to represent the domain of a
news record. Our approach conversely uses a vector to rep-
resent the domain of a news record. Thus, our approach can
accurately represent the likelihood of each record for differ-
ent domains. These differences may explain the importance
of our approach compared to the best baseline.

Out of the baselines, the multimodal approaches (except
HPNF+LIWC) generally achieve better results compared
to the uni-modal approaches. Thus, we can conclude that
each modality (i.e., propagation network and text) of news
records provides unique knowledge for fake news detection.
In HPNF+LIWC, each news record is represented using a
set of hand-crafted features. In contrast, other multimodal
approaches including our approach learn data-driven latent
representations for news records, which may be able to cap-
ture latent and complex information in news records that are
useful to determine fake news. These observations further
support two main design decisions in our model: (1) to ex-
ploit multimodalities of news records; and (2) to adopt a rep-
resentation learning-based technique.

Ablation Study Our ablation study in Table 2 shows that
without the domain-specific loss (Eq. 5) and the cross-
domain loss (Eq. 6), the Fl-score of the model substan-
tially drops by around 6% and 3% for the PolitiFact dataset,
which is the smallest domain of the training dataset. Hence,
it is important to have a domain-specific layer to preserve
the domain-specific knowledge and a separate cross-domain
layer to transfer common knowledge between domains.

To check whether our model actually learns the aforemen-
tioned intuition behind each embedding layer, we visualize
each embedding layer using t-SNE in Figure 5. As can be
seen, the domain-specific embedding layer preserves the do-
main of the news records by mapping different domains into
different clusters. In contrast, we cannot identify the domain
labels of news records from the cross-domain embedding
space. Hence, this embedding space is useful to share com-



Method Type Politifact Gossipcop CoAID
T S M | Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

LIWC (Pennebaker et al. 2015) v 0.488 | 0.680 | 0.565 | 0.432 | 0.662 | 0.550 | 0.516 | 0.472 | 0.903 | 0.586 | 0.531 | 0.538
text-CNN (Kim 2014) v 0.608 | 0.621 | 0.623 | 0.608 | 0.733 | 0.698 | 0.703 | 0.701 | 0.903 | 0.679 | 0.674 | 0.677
HAN (Yang et al. 2016) v 0.632 | 0.672 | 0.651 | 0.648 | 0.716 | 0.703 | 0.709 | 0.706 | 0.919 | 0.698 | 0.682 | 0.688
EANN-Unimodal (Wang et al. 2018) v 0.794 | 0.811 | 0.790 | 0.791 | 0.765 | 0.732 | 0.738 | 0.734 | 0.925 | 0.842 | 0.763 | 0.792
HPNF (Shu et al. 2020b) v 0.697 | 0.692 | 0.683 | 0.687 | 0.721 | 0.703 | 0.689 | 0.695 | 0.902 | 0.652 | 0.693 | 0.672
AE (Silva et al. 2020) v 0.784 | 0.783 | 0.774 | 0.779 | 0.834 | 0.828 | 0.802 | 0.812 | 0.928 | 0.686 | 0.673 | 0.677
HPNF + LIWC (Shu et al. 2020b) v | 0704 | 0.723 | 0.708 | 0.716 | 0.734 | 0.715 | 0.706 | 0.708 | 0911 | 0.682 | 0.709 | 0.690
SAFE (Zhou et al. 2020) v | 0793 | 0.782 | 0.771 | 0.775 | 0.831 | 0.822 | 0.798 | 0.806 | 0.931 | 0.754 | 0.744 | 0.748
EANN-Multimodal (Wang et al. 2018) v | 0.804 | 0.808 | 0.794 | 0.798 | 0.836 | 0.812 | 0.815 | 0.813 | 0.944 | 0.849 | 0.803 | 0.808
Our Approach (B = 100%|Rpoot]) v | 0840 | 0.836 | 0.831 | 0.835 | 0.877 | 0.840 | 0.832 | 0.836 | 0.970 | 0.876 | 0.863 | 0.869
Our Approach (B = 50%]| Rpoot]) v'| 0838 | 0.836 | 0.828 | 0.833 | 0.848 | 0.822 | 0.797 | 0.808 | 0.963 | 0.870 | 0.854 | 0.862
Ablation Study (B = 100%|Rpoot])

(-) Domain-shared loss 0.823 | 0.821 | 0.812 | 0.815 | 0.864 | 0.832 | 0.828 | 0.829 | 0.956 | 0.857 | 0.861 | 0.858
(-) Domain-specific loss 0.792 | 0.800 | 0.783 | 0.786 | 0.858 | 0.832 | 0.821 | 0.828 | 0.934 | 0.850 | 0.857 | 0.853
(-) Network modality 0.816 | 0.815 | 0.817 | 0.815 | 0.765 | 0.749 | 0.745 | 0.746 | 0.945 | 0.803 | 0.855 | 0.827
(=) Text modality 0.804 | 0.798 | 0.793 | 0.795 | 0.837 | 0.835 | 0.815 | 0.817 | 0.932 | 0.711 | 0.704 | 0.707

Table 2: Results for fake news detection of different methods, which are classified under three categories

approaches (T); (2) social context-based approaches (S); and (3) multimodal approaches (M).
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Figure 5: t-SNE visualization of the (a) domain-specific and
(b) cross-domain embeddding spaces.

mon knowledge between records from different domains.

Furthermore, we analyse the contribution of each modal-
ity. It can be seen that network modality is more useful to
determine fake news in GossipCop, while text modality is
the most informative one for CoAID. This observation fur-
ther signifies the importance of multimodal approaches to
train models that generalize for multiple domains.

Evaluation of LSH-based Instance Selection As shown
in Table 2, our model outperforms the baselines even with
a constrained budget B (50%| Rpo01|) to select training data
using the LSH-based instance selection technique. To ver-
ify its significance further, Figure 6 compares the proposed
LSH-based instance selection approach with random in-
stance selection for different B values. The proposed ap-
proach substantially outperforms the random instance selec-
tion for the rarely-appearing or highly imbalanced domains.
It increases Fl-score by 24% for PolitiFact and 27% for
CoAID, when B/|Rp01| = 0.1. This may be due to the abil-
ity of our approach to maximize the coverage of domains
when selecting instances (see Figure 4), instead of biasing
towards a domain with larger number of records.
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Figure 6: Fl-scores for the fake news detection task with
different instance selection strategies.

Conclusion

In this work, we proposed a novel fake news detec-
tion framework, which exploits domain-specific and cross-
domain knowledge in news records to determine fake news
from different domains. Also, we introduced a novel unsu-
pervised approach to select informative instances for manual
labelling from a large pool of unlabelled news records. The
selected data pool is subsequently used to train a model that
can perform equally for different domains. The integration
of the aforementioned two contributions yields a model with
low labelling budgets that outperforms existing fake news
detection techniques by as much as 7.55% in Fl-score.

For future work, we intend to extend our model as an on-
line learning framework to determine fake news in a real-
world news stream, which typically covers a large number
of domains. This setting introduces new challenges such as
capturing newly emerging domains and handling temporal
changes in domains. Also, how to use the alignment in mul-
timodal information to weakly guide the learning process of
the proposed model is another interesting direction to ex-
plore, which may further reduce the labelling cost in a con-
ventional supervised learning setting.
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