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Abstract
Traffic state estimation (TSE) reconstructs the traffic vari-
ables (e.g., density or average velocity) on road segments
using partially observed data, which is important for traffic
managements. Traditional TSE approaches mainly bifurcate
into two categories: model-driven and data-driven, and each
of them has shortcomings. To mitigate these limitations, hy-
brid TSE methods, which combine both model-driven and
data-driven, are becoming a promising solution. This paper
introduces a hybrid framework, physics-informed deep learn-
ing (PIDL), to combine second-order traffic flow models and
neural networks to solve the TSE problem. PIDL can encode
traffic flow models into deep neural networks to regularize the
learning process to achieve improved data efficiency and es-
timation accuracy. We focus on highway TSE with observed
data from loop detectors and probe vehicles, using both den-
sity and average velocity as the traffic variables. With numer-
ical examples, we show the use of PIDL to solve a popular
second-order traffic flow model, i.e., a Greenshields-based
Aw-Rascle-Zhang (ARZ) model, and discover the model pa-
rameters. We then evaluate the PIDL-based TSE method us-
ing the Next Generation SIMulation (NGSIM) dataset. Ex-
perimental results demonstrate the proposed PIDL-based ap-
proach to outperform advanced baseline methods in terms of
data efficiency and estimation accuracy.

Introduction
Efficient traffic control, operation, ramp metering and many
other transportation management strategies are important
building blocks of Internet-of-Things (IoT), which tackle
urban traffic challenges leveraging emerging sensing, com-
munication, and computational technologies, as well as data
science. A prerequisite step is to estimate traffic states (e.g.,
density, velocity, and flow) using observed data from traffic
sensors (e.g., inductive loop detectors and probe vehicles).
However, the estimation is nontrivial in practice because the
information from traffic sensors is limited in most cases,
making the traffic state estimation (TSE) problem a long-
standing research topic over decades. Formally, TSE refers
to the data mining problem of reconstructing traffic state
variables, including but not limited to flow (veh/h), density
(veh/km), and velocity (km/h), on road segments using par-
tially observed data from traffic sensors (Seo et al. 2017).
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Most traditional TSE methods are model-driven, i.e., to
build up a traffic state estimator on top of a priori knowl-
edge of traffic dynamics described by first-order principles.
These models were proposed based on ideal assumptions
and conditions that may fail to fully capture the phenom-
ena of real-world traffic. An alternative is the data-driven
method, which can conduct TSE without any explicit traf-
fic models nor theoretical assumptions. Data-driven meth-
ods learn the estimation rule directly from observed data
using statistical or machine learning (ML) methods. How-
ever, these methods require a large quantity of high-quality
data to perform a satisfactory estimation, implying high de-
mands on the constructions of data collection infrastructure
and corresponding maintenance costs.

Human drivers exhibit highly unstable and nonlinear driv-
ing behaviors, leading to stop-and-go traffic waves and traf-
fic congestions at an aggregate level. Accordingly, neither
model-driven nor data-driven methods alone suffice to es-
timate such behavioral complexity with an allowable ac-
curacy. Therefore, hybrid methods, which combine both
model-driven and data-driven, are becoming a promising
direction for IoT-related applications, and this paper intro-
duces a hybrid framework, physics-informed deep learning
(PIDL), to the TSE problem. The PIDL framework, which
is originally proposed by Raissi for solving nonlinear par-
tial differential equations (PDEs) (Raissi 2018; Raissi and
Karniadakis 2018), consists of a model-driven component
(a physics-informed neural network for regularization) and
a data-driven component (a physics-uninformed neural net-
work for estimation), making it a natural fit to the research
goal of TSE.

Traditional methods of TSE highly rely on fixed-location
sensors such as inductive loop detectors and traffic cameras.
With the emergence of advanced sensing and communica-
tion technologies, such as connected vehicles equipped with
GPS and vehicle-to-vehicle and vehicle-to-infrastructure
connectivity modules, trajectories of probe vehicles have be-
come important sources for tempo-spatial traffic informa-
tion. This paper will not only take the advantage of loop
detector data, but also trajectory data of probe vehicles for
improved estimation accuracy.

Specifically, the main contributions of this paper are as
follows:

• We will leverage tempo-spatial traffic information col-
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lected from probe vehicles’ trajectories, as well as aggre-
gate traffic density and velocity collected from conven-
tional inductive loop detectors, to improve TSE accuracy;

• We design a PIDL architecture for TSE with the
traffic dynamics described by a second-order traffic
flow model, i.e., a Greenshields-based Aw-Rascle-Zhang
(ARZ) model. We leverage the proposed PIDL-based
method to estimate the traffic density and average veloc-
ity at the same time using limited observed data from loop
detectors or/and probe vehicles. We select the second-
order traffic flow model because of its flexibility of ac-
commodating both traffic density and velocity measure-
ments, as well as its mathematical power in capturing the
stop-and-go traffic phenomenon. Compared to first-order
models, a second-order model contains more complicated
non-linear differential equations, and whether it can suc-
cessfully fit into PIDL for TSE will be comprehensively
studied in the paper;

• We further show the ability of PIDL for conducting both
model parameter discovery and TSE at the same time, to
tackle the practical challenge, i.e., the parameters of a traf-
fic flow model are usually unknown and offline calibration
could be expensive and inaccurate;

• We demonstrate the advantages of PIDL using a real
dataset of a highway scenario, i.e., the Next Generation
SIMulation (NGSIM) dataset. Advanced baseline TSE
methods, such as pure neural networks, extended Kalman
filter, PIDL with a first-order traffic model, are com-
pared with the ARZ-based PIDL method. In addition, we
study and compare the estimation performance of differ-
ent kinds of sensor configurations, which is of great inter-
est in TSE practice.

Related Work
A critical step of model-driven TSE methods is to design and
extend a macroscopic traffic flow model that describes the
real-world dynamics as comprehensively as possible. These
models can be briefly divided into two classes: first-order
and second-order. The LWR model (Lighthill and Whitham
1955; Richards 1956) is the most classical first-order traffic
flow model, which can reproduce simple aggregate traffic
behaviors, such as the propagation and dissipation of traf-
fic jams known as shockwaves. However, LWR assumes
density-velocity equilibrium and fails to model more com-
plicated phenomena, such as stop and go traffic (Flynn et al.
2009). To mitigate this issue, second-order models were de-
veloped, including the Payne-Whitham (PW) model (Payne
1971; Whitham 1974) and the ARZ model (Aw and Ras-
cle 2000; Zhang 2002). The ARZ model has more accurate
description of the information flow in the traffic dynamics
compared to the PW model. This paper thus considers the
ARZ model for the TSE research.

Given a traffic flow model, model-driven TSE methods
apply data assimilation to conduct estimation by solving
model equations while allowing observed data to correct the
estimation. Examples include the Kalman filter and its vari-
ants (Wang, Papageorgiou, and Messmer 2008; Wang et al.

2009; Di, Liu, and Davis 2010). Most of them assume fixed-
location sensors and may not apply to mobile sensors, such
as probe vehicles. Data-driven TSE methods, in contrast,
make an estimation from data directly using ML and statisti-
cal approaches, such as neural networks (Zheng et al. 2019).
Most of them do not assume data types, but have high de-
mands on data volumes (i.e., low data efficiency). The re-
search on hybrid TSE methods is lacking, and this paper ex-
plores a hybrid TSE using the PIDL framework, which is
originally proposed to leverage the deep learning paradigm
for solving nonlinear PDEs (Raissi 2018; Raissi and Karni-
adakis 2018).

PIDL Framework for TSE Using
Second-Order Traffic Flow Models

This paper focuses on solving the following TSE problem:
to estimate the spatio-temporal traffic density ρ and average
velocity u of a highway segment over a period of time us-
ing observations from a limited number of loop detectors or
probe vehicles. To better describe the traffic dynamics, this
paper considers second-order models using density and ve-
locity as traffic state variables. This section defines the PIDL
TSE framework at a high-level. We will introduce how to use
PIDL and limited observed traffic sensor data to (1) estimate
traffic dynamics which are described by traffic flow models
and (2) discover unknown model parameters.

General PIDL Framework for TSE
LetN1[·] andN2[·] be two general nonlinear differential op-
erators and Ω be a subset of Rd. For one-dimentional TSE,
d is one by default in this paper, i.e., Ω = [0, L], L ∈ R+.
Then, the problem is to find the traffic density ρ(t, x) and
average velocity u(t, x) at each point (t, x) in a continuous
domain, such that the following PDEs of a traffic flow model
can be satisfied:

ρt(t, x) +N1[ρ(t, x), u(t, x)] = 0
ut(t, x) +N2[ρ(t, x), u(t, x)] = 0

, (1)

where x ∈ Ω, t ∈ [0, T ] and T ∈ R+. This setting implies
that the spatio-temporal domain D of interest is a continu-
ous set of points: D = {(t, x)|t ∈ [0, T ], x ∈ [0, L]}. We
use discrete grid points G evenly deployed over D to repre-
sent the domain: G = {(t(r), x(r))|r = 1, .., Ng}. The total
number Ng of grid points controls the fine-grained level of
G as a representation of D.

PIDL approximates both ρ(t, x) and u(t, x) using a neu-
ral network with time t and location x as its inputs. This
neural network is called physics-uninformed neural network
(PUNN) (or estimation network in the TSE setting), which
is parameterized by θ. We denote the approximation from
PUNN as ρ̂(t, x; θ) and û(t, x; θ). To use physics to guide
the training of PUNN, the following residuals are used:

f̂1(t, x; θ) := ρ̂t(t, x; θ) +N1[ρ̂(t, x; θ), û(t, x; θ)]

f̂2(t, x; θ) := ût(t, x; θ) +N2[ρ̂(t, x; θ), û(t, x; θ)]
,

(2)
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which is defined according to the traffic flow model in
Eqs.(1). The calculation of both residuals f̂1(t, x; θ) and
f̂2(t, x; θ) is done by a physics-informed neural network
(PINN), directly using ρ̂(t, x; θ) and û(t, x; θ), the output
of PUNN, as its inputs. When estimations are closer to the
true ρ(t, x) and u(t, x), both residuals will be closer to zero.
PINN introduces no new parameters, and thus, the mapping
from (t, x) to f̂1 and f̂2 is parameterized by θ.

In implementation, PINN calculates the residuals using
the function packages, such as tf.gradient, in Tensor-
flow. We can customize the activation functions and connect-
ing structure of neurons in PINN to conduct the differential
operation in Eqs.(2). It needs to be noted that once the traffic
model is known, the connecting weights in PINN are fixed
and no new learning parameters are introduced.

The training data for PIDL consist of (1) observation
points O = {(t(i)o , x

(i)
o )|i = 1, ..., No}, (2) target val-

ues P = {(ρ(i), u(i))|i = 1, ..., No} (i.e., the true traffic
states at the observation points), and (3) auxiliary points
A = {(t(j)a , x

(j)
a )|j = 1, ..., Na}. We use i and j to index

observation points and auxiliary points, respectively. One
target value is associated with one observation point, and
thus, O and P have the same indexing system i. This paper
uses the term, observed data, to denote {O,P}. Both O and
A are subsets of grid points G (i.e., O ∈ G and A ∈ G). It
is allowed to have some overlaps between O and A.

Observation pointsO are limited to the time and locations
that traffic sensors can visit and record. In contrast, auxiliary
points A have neither measurement requirements nor loca-
tion limitations, and the number of A is controllable. A are
used for regularization purposes, and this is why they are
called ”auxiliary”. To train a PUNN for TSE, the following
loss is used:

Lossθ=MSEo+MSEa

= 1
No

No∑
i=1

α1|ρ̂(t(i)o ,x(i)
o ;θ)−ρ(i)|2+α2|û(t(i)o ,x(i)

o ;θ)−u(i)|2︸ ︷︷ ︸
data discrepancy

+ 1
Na

Na∑
j=1

β1|f̂1(t(j)a ,x(j)
a ;θ)|2+β2|f̂2(t(j)a ,x(j)

a ;θ)|2︸ ︷︷ ︸
physical discrepancy

,

(3)

where α1, α2, β1 and β2 are hyperparameters for balanc-
ing how each component in data discrepancy and physical
discrepancy influences the loss. The data discrepancy in-
volves the mean square errors (MSEs) between approxima-
tions (ρ̂, û) on O and target values P . The physical discrep-
ancy involves the MSEs between residual values (f̂1, f̂2)
and zero, which quantify how much an approximation is in-
consistent to the traffic model, i.e., the loss is regularized by
PINN via physical discrepancy. Given the training data, we
apply neural network training algorithms, e.g., a backprop-
agation method, to solve θ∗ = argminθ Lossθ. The PUNN
parameterized by θ∗ can then be used to estimate the density
and average velocity at any point of G, as well as the whole
domain D, with good physical consistency.

PIDL for TSE and Model Parameter Discovery
Sometimes, there exist unknown parameters in a given PDE
traffic flow model, and model parameter discovery needs to
be addressed in addition to estimation. The proposed PIDL
is able to handle this case as well. LetN1[·;λ1] andN2[·;λ2]
be two general nonlinear differential operators parameter-
ized by unknown parameters λ1 and λ2, respectively. We
merge both λ1 and λ2 into one vector λλλ = (λ1, λ2) for sim-
plification. Then, the traffic flow model becomes:

ρt(t, x) +N1[ρ(t, x), u(t, x);λλλ] = 0
ut(t, x) +N2[ρ(t, x), u(t, x);λλλ] = 0

, (4)

and the goal is to find the parameters λλλ that best describe the
observed data, and at the same time, approximate the traffic
states ρ and u consistent to Eqs.(4). For this problem, the
residuals are redefined as

f̂1(t, x; θ,λλλ) := ρ̂t(t, x; θ) +N1[ρ̂(t, x; θ), û(t, x; θ);λλλ]

f̂2(t, x; θ,λλλ) := ût(t, x; θ) +N2[ρ̂(t, x; θ), û(t, x; θ);λλλ]
.

(5)

The PINN, by which the residuals in Eqs.(5) are calculated,
is related to both θ and λλλ. Accordingly, the loss for both
parameter discovering and TSE is defined as follows:

Lossθ,λλλ=MSEo+MSEa

= 1
No

No∑
i=1

α1|ρ̂(t(i)o ,x(i)
o ;θ)−ρ(i)|2+α2|û(t(i)o ,x(i)

o ;θ)−u(i)|2

+ 1
Na

Na∑
j=1

β1|f̂1(t(j)a ,x(j)
a ;θ,λλλ)|2+β2|f̂2(t(j)a ,x(j)

a ;θ,λλλ)|2.

(6)

Given the training data, we apply the backpropagation
algorithm to solve (θ∗,λλλ∗) = argminθ,λλλ Lossθ,λλλ, and
the λλλ∗-parameterized traffic flow model of Eqs.(4) is the
most likely physics that generates the observed data and θ∗-
parameterized PUNN can then be used to find physically
consistent traffic states over the domain.

Numerical Example on PIDL for ARZ
We present a numerical example to show the ability of PIDL
to estimate the traffic dynamics governed by a Greenshields-
based ARZ model. Define flow rate Q to be the number of
vehicles passing a specific position on the road per unit time,
traffic density ρ to be the average number of vehicles per unit
length, and u to be the average velocity of a specific position
on the road, we can deduce Q = ρu. Both ρ and u are the
basic traffic state variables to estimate.

The ARZ model (Aw and Rascle 2000; Zhang 2002) in-
volves both a conservation law of vehicles and a momen-
tum equation on velocity. The former can be written as
ρt + (ρu)x = 0, which defines that the vehicle volume
change of a specific position on the road equates the differ-
ence between inflow and outflow vehicles. The latter analo-
gizes the fluid dynamics by introducing a traffic “pressure”
h(ρ). Then, (u + h(ρ)) can be interpreted as the “desired”
speed reached by vehicles on an empty road, which is ad-
vected with the velocity field. This advected property is for-
malized as (u + h(ρ))t + u(u + h(ρ))x = 0. To properly
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Figure 1: a) is the bell-shaped initial ρ and u over x ∈ [0, 1];
b) and c) are numerical solutions for ρ and u, respectively.

constrain the desired speed, a relaxation term of the form
(Ueq(ρ) − u)/τ is added to the right-hand side, implying
that drivers tend to adjust their actual velocity to the desired
velocityUeq(ρ) with a relaxation time scale τ .Ueq(ρ) can be
defined separately, and Greenshields function (Greenshields,
Channing, and Miller 1935) is a basic and popular choice,
which is defined as Ueq(ρ) = umax(1 − ρ/ρmax), where
umax and ρmax are maximum velocity and maximum (jam)
density, respectively. This function has a linear form with
two coefficients umax and ρmax, which are usually fitted
with data.

In this section, we study the Greenshields-based ARZ
traffic flow model of a “ring road” in t ∈ [0, 3], x ∈ [0, 1]:

ρt + (ρu)x = 0,

(u+ h(ρ))t + u(u+ h(ρ))x = (Ueq(ρ)− u)/τ,

h(ρ) = Ueq(0)− Ueq(ρ) (traffic pressure),

Ueq(ρ) = umax(1− ρ/ρmax) (desired speed),

ρ(t, 0) = ρ(t, 1), u(t, 0) = u(t, 1) (bdry. cond.),

(7)

where we set the parameters irregularly as ρmax = 1.13,
umax = 1.02, and τ = 0.02. ρmax and umax are usually
determined by physical restrictions of the road and vehicles.
We select irregular parameters in this experiment to better
justify the PIDL’s capacity in model discovery.

Given the bell-shaped initial of ρ and u as shown in
Fig.1.a, we apply the Lax–Friedrichs (LF) scheme (LeV-
eque 2002) to solve Eqs.(7) on grid G with 960
(time)×240(space) points evenly deployed over the [0, 3] ×
[0, 1] domain. Thus, the total number of points in G is
Ng=960×240. The LF numerical solutions of both ρ and u
over the domain are shown in Fig.1 as well.

From the figure, we can observe the phenomenon of traf-
fic shockwave, i.e., the peak of density propagates along the
direction of x. Because this is a ring road, a boundary con-
dition (bdry. cond.) must impose that the dynamics reaching
x=1 continues at x=0. We treat this numerical solution as the
ground-truth to test our PIDL-based approach.

PIDL Architecture Design for ARZ
Following the concept of Eqs.(2), we define the residuals:

f̂1(t, x; θ) := ρ̂t + (ρ̂û)x
f̂2(t, x; θ) := (û+ h(ρ̂))t + û(û+ h(ρ̂))x

−(Ueq(ρ̂)− û)/τ

, (8)
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Figure 2: PIDL architecture for Greenshields-based ARZ in
Eqs.(7). Model parameters are held by variable nodes (blue
rectangular nodes).

where ρ̂ and û are shorthands for ρ̂(t, x; θ) and û(t, x; θ),
respectively outputted from a PUNN.

Given the definition of (f̂1, f̂2), the PINN that encodes the
Greenshields-based ARZ model is shown in Fig.2. This ar-
chitecture contains a PUNN for traffic state estimation, fol-
lowed by a PINN for calculating the residuals in Eqs.(8). The
PUNN parameterized by θ is designed as a fully-connected
feedforward neural network with 8 layers and the hidden
nodes of each layer range between 20 and 60. The tanh is
used as the activation function of each hidden neuron in
PUNN. In contrast, the connecting weights in PINN are one
by default and specific operations for intermediate values
of Eqs.(8) are calculated by PINN nodes via customized
activation functions. For experiments of estimation with-
out parameter discovery, constant values (ρmax = 1.13,
umax = 1.02, and τ = 0.02) are fixed in variable nodes.

To customize the training of PIDL to Eqs. (7), in addi-
tion to the training data O, P and A defined in the previ-
ous section, we introduce boundary auxiliary points B =

{(t(k)b , 0)|k = 1, ..., Nb} ∪ {(t(k)b , 1)|k = 1, ..., Nb}, for
learning the boundary condition in Eqs. (7). The time in-
stances t(k) are randomly sampled from [0, 3]. For this ex-
periment, we use the following learning loss:

Lossθ=MSEo+MSEa+MSEb

= 1
No

No∑
i=1

α1|ρ̂(t(i)o ,x(i)
o ;θ)−ρ(i)|2+α2|û(t(i)o ,x(i)

o ;θ)−u(i)|2

+ 1
Na

Na∑
j=1

β1|f̂1(t(j)a ,x(j)
a ;θ)|2+β2|f̂2(t(j)a ,x(j)

a ;θ)|2

+ 1
Nb

Nb∑
k=1

(γ1|ρ̂(t(k)b ,0;θ)−ρ̂(t(k)b ,1;θ)|2

+γ2|û(t(k)b ,0;θ)−û(t(k)b ,1;θ)|2)

, (9)

whereMSEb consists of two error components weighted by
hyperparameters (γ1, γ2), quantifying the discrepancy of ρ̂
and û from the boundary condition.

TSE Using Data from Loop Detectors and Probe Vehicles
We apply PIDL to the TSE problem using observations from
two kinds of traffic sensors: loop detectors and probe vehi-
cles. A loop detector on a road is able to count the vehicles
passing a location, and a pair of loop detectors at a regular
interval can be used to measure traffic density. However, this
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sensor is not good at measuring average speed because only
point speed measurements are given. A probe vehicle fre-
quently records the velocity on its trajectory along the flow,
providing a better velocity measurement. However, this sen-
sor cannot provide density due to vehicles’ limitations to
comprehend surroundings. Because our PIDL requires ob-
servations on both ρ and u, this section considers two types
of sensing configurations: 1) a loop detector-only configu-
ration and each detector can record both ρ and u, and 2)
a mixed sensing configuration, where ρ and u are separately
measured by loop detectors and probe vehicles, respectively.

As shown in Fig.3, observation points O are supported by
sensors. Loop detectors are equipped evenly on the road and
traffic states at these certain locations can be observed at all
time (the figure illustrates an example where two detectors
are used). Probe vehicles collect traffic velocities along their
trajectories, and they are assumed to initialize evenly on the
road at t = 0 (the figure illustrates two probe vehicles). Each
observation point is associated with target values ρ or u, con-
stituting the target set P . Over theNg=960×240 grid points,
we randomly sampled Na=150,000 auxiliary points for A
and Nb=750 out of the 960 grid time instances for boundary
auxiliary points B.

We train the proposed PIDL on an NVIDIA Titan RTX
GPU with 24 GB memory in Ubuntu 18.04.3. By default,
we use the L2 relative error to quantify the estimation error:

Err(ρ̂,ρ)=

√∑Ng
r=1

∣∣ρ̂(t(r),x(r);θ)−ρ(t(r),x(r))∣∣2√∑Ng
r=1

∣∣ρ(t(r),x(r))∣∣2 . (10)

The same error applies to velocity as Err(û, u). The reason
for using the relative error is to normalize the estimation in-
accuracy while mitigating the influence from value scales of
different data types.

We use the Xavier uniform initializer to initialize θ of
PUNN, and train the PUNN through the PIDL architecture
using Adam optimizer for 5,000 steps as a rough training.
A followup fine-grained training is done by L-BFGS opti-
mizer. The process terminates until the loss change of two
consecutive steps is no larger than 10−6, and θ∗ is obtained.
L-BFGS is used here because it is beneficial for a stable
learning when the training dataset is relatively small. Our
TSE settings use small observed data (up to a few thousand
points) and meet the small-data situation.

The results of applying PIDL TSE for Greenshields-based
ARZ dynamics using four loop detectors are presented in
Fig.4, where PUNN is parameterized by the optimal θ∗. The
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Figure 4: a) Estimation of the density and comparisons of
estimated and true values at certain time points. (b) Results
for average velocity.

lp Err(ρ̂, ρ) Err(û, u) (lp,tj) Err(ρ̂, ρ) Err(û, u)

3 0.0682 0.0284 (1,1) 0.0829 0.0256
4 0.0437 0.0201 (2,1) 0.0595 0.0282
5 0.0382 0.0110 (1,2) 0.0542 0.0217

Table 1: Results for detector-only and mixed configs. “ lp”
and “tj” are the number of loops and trajectories, respec-
tively.

estimation ρ̂ and û is visually the same as the true dynamics
in Fig.1, and the performance is justified by the snapshots,
comparing the estimation curves over x at a certain time with
the true curves. The L2 relative errors of estimated density
and average velocity are 4.3745 ×10−2 and 2.0075 ×10−2,
respectively. Empirically, the difference between true and
estimated values is visually indistinguishable when the er-
rors are smaller than 6.70 ×10−2 and 2.90 ×10−2 for den-
sity and velocity, respectively. Performances with accuracy
below these values are considered as “acceptable”.

We conduct experiments on various numbers of traffic
sensors of both sensing configurations. For each configu-
ration, we conduct grid search of each hyperparameter be-
tween 0 and 150 with step 5, and the minimal-achievable
estimation errors are presented in Tab.1. From the tables,
we observe that more observed data lead to improved TSE
performance and PIDL can efficiently achieve acceptable
estimation accuracy in both sensing configurations. For
detector-only setting, satisfactory performance is achieved
when more than 3 loops are used (below the dashed line).
For mixed setting, the performance can achieve satisfactory
level when more than 1 loop or probe vehicle are used, im-
plying the benefit of using trajectory information as it con-
tains more frequent and diverse samples.

TSE and Parameter Discovery This subsection shows
the ability of the PIDL for addressing both TSE and model
parameter discovery. For this experiment, three model pa-
rameters λλλ =(ρmax, umax, τ ) are encoded as learning vari-
ables in PINN in Fig.2, and the residuals in Eq.(9) become
f̂1(t

(j)
a , x

(j)
a ; θ,λλλ) and f̂2(t

(j)
a , x

(j)
a ; θ,λλλ), leading to a new

objective function Lossθ,λλλ. We use the same learning strat-
egy to obtain (θ∗,λλλ∗) = argminθ,λλλ Lossθ,λλλ, and compare
the estimation and λλλ∗ to the true values. The evaluations of
model parameters are based on the L2 relative errors in per-
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lp Err(ρ̂, ρ) Err(û, u) ρ∗max(%) u∗max(%) τ∗(%)

2 0.668 0.192 14.59 2.42 100.57
3 0.183 0.0488 0.43 0.11 3.32
4 0.0481 0.0153 1.24 0.23 7.79
5 0.0424 0.0103 0.56 0.07 7.11

(lp,tj) Err(ρ̂, ρ) Err(û, u) ρ∗max(%) u∗max(%) τ∗(%)

(1,1) 0.150 0.0424 0.34 0.02 11.05
(1,2) 0.0667 0.0249 0.98 0.23 4.23
(2,1) 0.0651 0.0244 0.94 0.10 0.86

Table 2: Results for TSE and parameter discovery. λλλ∗ =
(ρ∗max, u

∗
max, τ

∗) are estimated parameters, compared to the
true ρmax = 1.13, umax = 1.02, and τ = 0.02.

centage. The results are shown in Tab.2.

In Tab.2, the errors below the dashed line are ac-
ceptable. In addition to accurate traffic state estimation,
the PIDL is able to converge to the true parameters λλλ.
Specifically, for the case of (loops, trajs)=(1,2), accept-
able TSE errors for both density and velocity are obtained,
and the model parameters converge to ρ∗max=1.14113,
u∗max=1.0177, τ∗=0.019155, which are very close to the true
ones, demonstrating the advantages of the proposed PIDL.

ARZ-based PIDL for TSE on NGSIM Data
We evaluate the ARZ-based PIDL on the TSE problem using
real traffic data, the Next Generation SIMulation (NGSIM)
dataset, and compare the performance to baselines.

NGSIM Dataset
The public NGSIM dataset1 provided by the US Federal
Highway Administration records detailed information about
vehicle trajectories on several road segments. We focus on a
segment of the US Highway 101 (US 101), monitored by a
camera mounted on top of a high building on June 15, 2005.

The locations/actions of vehicles in the monitored region
for a total of around 680 meters and 2,770 seconds were con-
verted from camera videos. This dataset has gained a great
attention in recent traffic studies (Laval and Leclercq 2010;
Montanino and Punzo 2013; Fan and Seibold 2013). We use
the data averaged from all the involved five lanes to calculate
the density and average velocity for every 30 meters over a
1.5-second period. After preprocessing (to remove the non-
monitored vehicles at the beginning and end of the video),
the density and velocity are visualized in Fig.5, where we
end up with 21 and 1770 cells on the spatial and temporal
dimensions, respectively. The center of each cell is treated
as a grid point. The shockwave phenomenon can be clearly
observed in the figure.

We assume the above-mentioned sensing configurations,
where loop detectors are able to record the density and/or
average velocity of cells on certain locations, and probe ve-
hicles can only record the average velocity of cells on the tra-
jectories. By default, detectors are evenly installed along the

1www.fhwa.dot.gov/publications/research/operations/07030
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Figure 5: Visualization of NGSIM dataset.

road. Out of all the vehicles in the dataset (around 4750), we
randomly select a certain number (per a given penetration
rate) as the probe vehicles to collect trajectory observations.

TSE Methods and Baselines for NGSIM
We compare the proposed TSE method with selected base-
lines that are suitable for both sensing configurations.

Pure Neural Network (NN) The first baseline is a pure
feedforward neural network, which directly uses the PUNN
component in Fig.2 for learning the estimation rule from ob-
served data. The loss function contains Lossθ = MSEo
only, i.e., the physical discrepancy term is ignored. Of all
the TSE methods in this section, the PUNN part has the same
structure.

Extended Kalman Filter (EKF) The second baseline is
a representative model-based TSE method, the ARZ-based
extended Kalman filter (EKF) (Seo and Bayen 2017). This
method applies the nonlinear version of the Kalman filter
that linearizes the Greenshields-based ARZ model in a dis-
crete manner to make state estimations.

LWR (First-Order)-based PIDL (LWR-PIDL) The
third baseline assumes that we know a first-order traffic
flow model, i.e., the LWR model with a three-parameter
flux function, introduced by (Fan and Seibold 2013). Their
model combines a three-parameter fluxQ(ρ) and the conser-
vative law, ρt+(Q(ρ))x = 0 to describe the density dynam-
ics. The average velocity is calculated using u = Q(ρ)/ρ.

In implementation, we set model parameters in PINN as
learning variables, and the initial values are determined from
the observed data using least-squares fitting (Fan and Sei-
bold 2013). Making model parameters as variables instead
of fixed values may give more flexibility to PIDL to achieve
better estimation. However, because no ground-truth model
parameters are available for the real data, we skip the param-
eter discovery experiments and only present the TSE results.

We select 80% of grid points G as auxiliary points A (for
regularization purpose, to have A dominate the domain is
beneficial). The loss function has the same structure with
Eq.(6), except for that the contents of (f̂1, f̂2) and model
parameters λλλ are different (see supplementary2 for details).
The parameter tuning uses grid search and the minimal-
achievable errors are presented and compared. We use this
first-order model baseline to form a PIDL and show how the
choice of traffic model affects the estimation performance.

2https://rongyeshi.github.io/suppl3617.pdf
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Figure 6: Results for loop detector-only config.

ARZ (Second-Order)-based PIDL (ARZ-PIDL) As
mentioned in previous sections, this method encodes the
Greenshields-based ARZ into the PINN, and the Eq.(6) is
applied as the loss function. Other experimental setups are
the same with those of the LWR-based PIDL baseline.

For fair comparison, NN, LWR-PIDL and ARZ-PIDL all
use the Adam plus L-BFGS learning strategy.

Evaluations
We first conduct experiments using the loop detector-only
configuration. The ARZ-based PIDL and baseline methods
are applied to TSE on the NGSIM dataset with different
numbers of loop detectors ranging between 3 and 18. In
this sensing configuration, detectors are able to measure both
density and velocity. The results are presented in Fig.6.

From Fig.6, we observe that the performances of the four
TSE methods tend to improve to low estimation errors when
the number of loop detectors increases, i.e., more observed
data are collected and used for learning. The NN method
makes an ample use of data to learn the dynamics. However,
it cannot perform well when the number of loop detectors is
small, and the data efficiency is low. By taking advantage of
a first-order LWR traffic flow model, the LWR-PIDL method
presents improvements in data efficiency. The EKF method
performs better than the NN and LWR-PIDL when the num-
ber of loop detectors are small. And both NN and LWR-
PIDL are better when sufficient data are available from more
sensors. This is because EKF is a model-driven method,
which makes sufficient use of the second-order ARZ traffic
flow model to make proper estimations. However, the model
cannot fully capture the complicated traffic dynamics in the
real world, and the EKF’s performance tends to flatten out.
NN/LWR-PIDL can make ample use of data to estimate the
dynamics and catch up with the EKF’s performance when
more data are collected. The ARZ-PIDL can make a full use
of both the second-order model’s advantages and the data to
achieve the best estimation accuracy and data efficiency.

We conduct another experiment using the mixed sens-
ing configuration, where loop detectors collect traffic den-
sity and probe vehicles record velocity along the trajecto-
ries. Probe vehicles are usually volunteer and constrained
to a small scale. Thus, low penetration rates around or be-
low 10% is considered in this paper. Some research in cities
like Tokyo also reports the penetration rates around this
level (Seo and Kusakabe 2015). Tab.3 shows the experimen-

Err(ρ̂, ρ) Err(û, u)

loops NN EKF LWR-
PIDL

ARZ-
PIDL

NN EKF LWR-
PIDL

ARZ-
PIDL

8 0.272 0.189 0.192 0.179 0.527 0.465 0.161 0.148
10 0.238 0.177 0.180 0.164 0.505 0.260 0.143 0.125
14 0.227 0.168 0.159 0.155 0.484 0.253 0.129 0.122
8 0.169 0.166 0.165 0.156 0.098 0.275 0.0740 0.0541
10 0.162 0.156 0.157 0.150 0.060 0.301 0.0628 0.0537
14 0.156 0.143 0.153 0.132 0.058 0.269 0.0568 0.0520

Table 3: Results for mixed sensing config. The penetration
rates of probe vehicles in the traffic flow are 1% and 8%
for the upper half and lower half of the table, respectively.
Probe vehicles are randomly selected from all the vehicles
in the NGSIM data.
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Figure 7: Comparison between the loop detector-only and
mixed configurations with different penetration rates.

tal results, where the penetration rate of 1% and 8% are used.

With a larger penetration rate, all the methods improve
significantly in terms of velocity errors, because the amount
of velocity observations increases. Similar to the previous
experimental results, both the PIDL-based methods outper-
form the NN method because the integration of the physics-
informed component leads to a more efficient use of the
data. The ARZ-PIDL achieves the best overall performance.
However, the NN method presents a faster improvement
compared to the PIDL-based methods when a larger data
amount is available. This is because the information gain
provided by traffic flow models becomes limited when the
data are sufficient, implying that the PIDL framework is a
reasonable choice when the availability of data is low.

We further study the properties of the two sensing con-
figurations when using the ARZ-PIDL. The comparison be-
tween the two sensing configurations are shown in Fig.7.

When a penetration rate is fixed, the total number of
velocity observations is fixed when using the mixed sens-
ing configuration, and we can observe a significantly bet-
ter estimation on the velocity with small detector num-
bers compared to that of the detector-only configuration
in Fig.7(right). As the number of loop detectors increases,
though the velocity errors of ARZ-PIDL decrease consis-
tently on both configurations, the performances of the mixed
ones tend to flatten out. In terms of density estimation, the
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curves of the mixed configuration are below the detector-
only curve, implying that the ARZ-PIDL is able to “transfer”
the information gain obtained from the velocity data to help
improve the density estimation. This transferring property is
made possible by the PINN component in the PIDL frame-
work: the data of a physical quantity can affect the learning
of another physical quantity via the physics-informed regu-
larization term in the loss, where both quantities are involved
and coupled.

Conclusion
This paper presents a physics-informed deep learning
(PIDL) framework for the traffic state estimation (TSE)
problem using second-order traffic flow model and detector-
trajectory data. The PIDL consists of a data-driven com-
ponent (PUNN) and a model-driven component (PINN).
A second-order traffic flow model, the Greenshields-based
ARZ model, has been encoded into the framework in the
form of PINN to regularize the learning of the PUNN
for TSE. Numerical examples and experiments on the real
NGSIM traffic flow dataset demonstrate the advantages of
the PIDL TSE method in terms of estimation accuracy and
data efficiency.

There are two limitations of this paper. First, for the same
traffic model, there could be various designs of PINN struc-
tures, and this paper only proposes one version of the design.
It is worthy of researching how the changes in PINN struc-
ture affect the TSE performance and learning stability. Sec-
ond, it is possible that the model parameters λλλ converge to
different values with different initialization. Thus, the iden-
tifiability issue is worthy of investigating in the future work.
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