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Abstract
The objective of most Reinforcement Learning painting
agents is to minimize the loss between a target image and
the paint canvas. Human painter artistry emphasizes impor-
tant features of the target image rather than simply repro-
ducing it. Using adversarial or L2 losses in the RL paint-
ing models, although its final output is generally a work of
finesse, produces a stroke sequence that is vastly different
from that which a human would produce since the model
does not have knowledge about the abstract features in the
target image. In order to increase the human-like planning of
the model without the use of expensive human data, we in-
troduce a new loss function for use with the model’s reward
function: Content Masked Loss. In the context of robot paint-
ing, Content Masked Loss employs an object detection model
to extract features which are used to assign higher weight to
regions of the canvas that a human would find important for
recognizing content. The results, based on 332 human evalua-
tors, show that the digital paintings produced by our Content
Masked model show detectable subject matter earlier in the
stroke sequence than existing methods without compromis-
ing on the quality of the final painting. Our code is available
at https://github.com/pschaldenbrand/ContentMaskedLoss.

Introduction
While there are numerous differences between the methods
used by a skilled human painter and a machine printer, the
end products may look similar. As is the case with photo-
realistic portraits, a human painter hopes to recreate a target
image as closely as possible with paint. A printer, though not
using paint and a brush, would have a similar objective, how-
ever, would go about it in a completely different fashion. A
printer may use a simple heuristic to render the image such
as starting from the top left and working left-to-right and
top-top-bottom, but a human painter would likely take an
abstract approach. As a painter paints using the commonly
used “blocking in” (Scott 2017) technique, you can recog-
nize the subject of the painting early in the painting process,
and the fidelity of the rendering improves with time. In this
way, painting can be considered an anytime algorithm: If
the painting process is interrupted at any point, a valid solu-
tion should be available, but the solution becomes better the
longer the process executes for.
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The goal of Stroke Based Rendering (SBR) is to find
methods to reproduce a target image using visual elements,
such as paint brush strokes. Many SBR methods (Hertzmann
2003) were deterministic algorithms which placed strokes
onto a canvas that would minimize the loss between the
next canvas and the target image. Modern SBR methods
(Ganin et al. 2018; Huang, Heng, and Zhou 2019; Nakano
2019; Xie, Hachiya, and Sugiyama 2012) use Reinforce-
ment Learning models to generate the stroke sequences. All
of these RL methods use an adversarial or L2 loss in their
reward functions which are designed to minimize the differ-
ence between the canvas and the target image. These loss
functions are oblivious to abstract content of the image and
the stroke sequence can follow any method that the model
finds on its way to minimizing the loss.

With existing SBR RL, it is often not clear what the mod-
els are painting until the last set of brush strokes are per-
formed as seen in Figure 3. In this way, the SBR RL models
are similar to printers and deterministic SBR models. In gen-
erative art such as GANs (Elgammal et al. 2017), only the
final output image is used for evaluating models. In machine
painting, however, the whole performance needs to be eval-
uated in addition to the final canvas. In this paper, we view
painting as a plan that is a sequence of actions (or brush
strokes) towards an end output. In this context, the proposed
idea is to improve the quality of a painting plan according
to human-like painting techniques where a subject of the
painting becomes incrementally more recognizable as brush
strokes are added.

One approach for guiding a RL painting model to paint

Figure 1: Our model was trained using a clippedL1 loss with
Content Masking in its reward function, while the baseline
used adversarial loss.
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Figure 2: The Reinforcement Learning Painter generated
brush strokes to paint the target image. The strokes can be
renderered into an image by feeding them to the Neural Ren-
derer or the robot painting agent as seen above. The robot
painter is a TinkerKit Braccio robotic arm. 10 paint colors,
that are chosen by running k-means clustering on the target
image, are mixed by a human and provided to the robot. The
arm has a single paint brush and can clean it using water and
a towel. The robot is fully autonomous while painting.

more like a human would be to collect brush stroke level
data from real human painters. This method would require
collecting a large number of samples, each of which would
take a long time to produce. The samples would need to be
diverse so that the model generalizes on multiple different
types of paintings such as portraits or landscapes. All-in-all
it would be an expensive, time-consuming process.

Our research goal in this paper is to make the brush stroke
planning of a reinforcement learning painter model more
human-like. We focus on the common painting technique of
“blocking-in” where the subject of a painting is recognizable
early in the painting process. We introduce Content Masked
Loss which gives more reward to painting regions of the can-
vas that are important for recognizing the subject matter of
the painting. An object recognition model is used to extract
which regions of the image are important for recognition.
Amazon Mechanical Turk workers found that the subject
matter of the paintings produced from our models that used
Content Masked Loss was apparent far earlier in the brush
stroke planning than baseline models using adversarial orL2

loss.

Figure 3: Row (a) is the (Huang, Heng, and Zhou 2019)
model and row (b) is our baseline model trained using a
constrained Neural Renderer. The constraints assume that
the brush strokes are fixed width, opaque, and do not ex-
ceed a maximum length. Our baseline model also assumes
a white starting canvas whereas (Huang, Heng, and Zhou
2019) starts with a black canvas.

Related Work
Stroke-based Rendering (SBR) is the process of layering in-
dividual elements, such as shapes or brush strokes, onto a
digital canvas in order to reproduce a given image. The goal
of SBR may be to perfectly recreate an image with a given
set of tools, or it may be to add creative abstractions while
rendering.

Recent methods attempt to tackle SBR using deep learn-
ing (Ganin et al. 2018; Huang, Heng, and Zhou 2019;
Nakano 2019; Xie, Hachiya, and Sugiyama 2012), though
the field has existed long before these tools became pop-
ular (Hertzmann 2003). “Artist Agent” (Xie, Hachiya, and
Sugiyama 2012) was an approach to modelling brush strokes
on paper using a reinforcement learning agent. The agent
designed brush strokes and received feedback as to whether
the strokes were believably made by a human or not. The
individual brush strokes produced by Artist Agent were be-
lievably human but in order to render a whole painting, the
stroke planning was manually produced by humans.

Other SBR work attempts to create an agent that can pro-
duce whole paintings rather than single brush strokes. SPI-
RAL (Ganin et al. 2018) used reinforcement learning to gen-
erate brush strokes that would render into a painting that
minimized the difference between the canvas and the given
image. Work that builds off of SPIRAL, such as (Nakano
2019; Zheng, Jiang, and Huang 2019; Huang, Heng, and
Zhou 2019), often use the world model concept (Ha and
Schmidhuber 2018) in order to speed up training. In the
case of painting, the world model is called a Neural Ren-
derer. The Neural Renderer is implemented with a differen-
tiable neural network so that the loss can be back-propagated
through it. (Huang, Heng, and Zhou 2019) achieves the best
results at decomposing an image into a series of strokes.
The objective of their reinforcement learning algorithm is
to minimize the difference between the generated painting
and the given painting. The authors find that using WGAN
loss known as Wasserstein-l distance, or Earth-Mover dis-
tance, generates better results than the L2 distance. The re-
sults from this paper are very successful, for with enough
strokes, the model is able to almost completely recreate the
input image, but the planning process shows no indication
of what the subject matter of the painting is.

Existing datasets that have paired images with strokes
lack quality for painting portraits. For instance, the
QuickDraw (Ha and Eck 2017) dataset, which contains
cartoon sketches that users create while trying to render a
given image or noun, contain both the brush strokes and im-
age data, however, these sketches are too simple for learn-
ing real painting. SketchRNN (Ha and Eck 2017) does use
paired data, but it can only draw objects that have been la-
belled in its training data. This dataset encodes the planning
method for how humans sketch, but we need the method of
how humans paint.

Reinforcement Learning models such as (Huang, Heng,
and Zhou 2019) and SPIRAL (Ganin et al. 2018) learn
through trial and error how to paint images. The reward
functions are designed to make the model learn which
strokes will decrease the loss between the painting and the
target image. Because these models learn without human
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data guidance, they do not encode how a human painter
would paint. In this paper, we introduce Content Masked
Loss which increases the human-like brush stroke planning
abilities of the RL model without the use of human painter
data.

The brush strokes used in the planning of (Huang, Heng,
and Zhou 2019) are not capable of being reproduced by a
standard paint brush, as seen in Figure 3. Because these
brush strokes are not reproducible by a real paint brush, we
cannot evaluate if the brush stroke planning is human-like
or not. Constraining the model to use only realistic brush
strokes will make it possible to evaluate whether the plan-
ning if human-like or not. In this paper, we constrain our
Reinforcement Learning method of Stroke-Based Render-
ing to produce brush stroke instructions that are realistic and
can easily be fed to a painting agent to be painted accurately.
An example of feeding these paint brush instructions can be
seen in Figure 2.

Approach
A robot painting problem is informally defined as follows.
Given an input image and a blank canvas, the goal is to gen-
erate a sequence of brush strokes that will turn the canvas
into a recreation of the input image, following a human-like
painting style. This section describes an RL formulation of
the task, focusing on how the proposed reward functions in-
duce human-like plans.

Reinforcement Learning Painter Model
The proposed work builds on the deep reinforcement learn-
ing framework from (Huang, Heng, and Zhou 2019). The
original framework is based on several unrealistic assump-
tions; We modify the framework to address realistic con-
straints. First, the brush strokes are allowed to be unreal-
istically large, e.g., more than half the width of the canvas as
seen in Figure 3. We constrain what is possible for the brush
strokes based on what our robot painting agent is able to do
with a single paint brush. In this way, we can easily feed
the brush stroke instructions to a robot such as the one used
in our experiments shown in Figure 2. Specifically, we con-
strained them to be fixed width and only 5% of the width of
the canvas which is consistent with the robot’s brush width.
Second, it was assumed that the blank starting canvas is
black which is not consistent with the white paper or can-
vas that a painter would generally use; we changed this as-
sumption to be white in our model. Third, a paint brush can
only hold so much paint, so we add the maximum length
of one half of the canvas width to the brush strokes based
on the robots attempts at painting on a 20cm piece of paper.
Additionally, since the acrylic paint that the robot utilizes is
opaque, we add this as a constraint for the purpose of our
study.

We formulate painting as a reinforcement learning task,
following the problem formulation in (Huang, Heng, and
Zhou 2019). Here, states represent the canvas from blank to
completion. The action space describes the brush strokes in
the form of Bézier curves with values for three position co-
ordinates, thickness of the brush stroke at both ends, opacity

Reward = mean [L(ct, y)− L(ct+1, y)] (1)

Baseline

LGAN (c, y) = 1−Discriminator(c, y) (2)

LL2(c, y) = (c− y)2 (3)

Ours

LCL(c, y) = (V GGl(c)− V GGl(y))
2 (4)

LCM+L2(c, y) = (c− y)2 ∗ norm(V GGl(y)) (5)
LL1∗(c, y) = min(|c− y|, λ) (6)

LCM+L1∗(c, y) = min(|c− y|, λ) ∗ norm(V GGl(y))
(7)

Figure 4: The reward function is the per-pixel average of the
loss between the canvas at time t and the canvas with an ad-
ditional stroke at time t+1. The various loss functions used
in this paper follow, where c is the canvas and y is the target
image. The Discriminator is a model used to differentiate
paintings of an image and the actual image, and norm() is
a 0-1 normalizing function.

of the paint at both ends, and color. The Neural Renderer
is the transition function which paints a brush stroke in this
action space onto a given canvas.

As the action space is continuous, our model adopts the
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.
2016). The reward function is calculated by computing the
difference between the losses at time t and t + 1 as seen in
Equation 1. Huang et al. uses an adversarial model to com-
pute the loss function (Equation 2). The model based DDPG
critic predicts an expected reward function:

V (ct) = r(ct, at) + γV (ct+1)

where r(ct, at) is the reward of performing action at on can-
vas ct, and γ is a penalty parameter which controls how in-
fluencial future value is. ct+1 can be renderered using the
Neural Renderer to apply the brush stroke at to the canvas
ct+1, seen below as trans(ct, at). The actor in the DDPG,
π(ct), is trained to maximize the expected reward:

r(ct, π(ct)) + γV (trans(ct, π(ct)))

Reward Functions
The (Huang, Heng, and Zhou 2019) model used the adver-
sarial loss as seen in Equation 2 and is used in the baseline
model in this paper. The Discriminator model outputs 1 if
the canvas and target image are the same and 0 if they are
completely different. The Discriminator is only trained to
determine visual differences between the paintings and the
target image so it does not factor in content and abstract de-
tail from the images.

Painters take an abstract approach when painting and con-
sider the subject of the target image. Human painters use
techniques such as “blocking-in” (Scott 2017) which ensure
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that the subject of the image is recognizable early in the
painting process. We took two different approaches to in-
creasing the recognizability of the painting strokes: Content
Loss Reward and Content Masked Reward.

Content Loss Reward In Content Loss (Equation 4), we
used the L2 loss on the features extracted from the canvas
and target images instead of the images themselves. We used
the VGG-16 (Simonyan and Zisserman 2015) model to ex-
tract the features. The VGG-16 parameters were fixed. The
intuition behind Content Loss is that if a painting and the
target image have similar features extracted from an object
detection model, then they should recognizably be paintings
of the same object.

The VGG-16 (Simonyan and Zisserman 2015) object de-
tection model was trained on photographs, so it is not ex-
pected to generalize to paintings. We attempt to use Content
Loss but recognize that a feature extractor that is robust to
both photographs and paintings may be necessary to make
this loss function work properly.

Content Masked Loss Reward Content Masked Loss
was designed to increase the weight of the per-pixel loss in
“important” regions of the canvas. The “importance” of a re-
gion is determined by extracting features using the VGG-16
(Simonyan and Zisserman 2015) model. As seen in Figure
5, the Content Masking can be added to the L2 distance to
weight the difference between a canvas and the target im-
age. The features are computed by feeding the target image
into the VGG-16 model, taking the output of an intermedi-
ate layer, averaging the image across the channels, and then
0-1 normalizing it. We experimented using the output from
different layers in the VGG-16 model in Figures 8 and 9.

L1 with Loss Clipping Certain biases of the painting
model may cover up the effects of Content Masking. All of
the loss functions except Content Loss rely on measures of
distance between pixels in the canvas and the target image.
Since the images are in RGB format, the largest distance
would be between a white and black pixel. The canvas is ini-
tially white, so the model will have a bias towards painting
darker colors, since it can get more reward with them. We
reduced this bias by experimenting with L1 instead of L2

losses. We also set a constant maximum value for the per-
pixel loss. Loss Clipping used in a loss function can be seen
in Figure 4 with L1 (L1∗) and in conjunction with Content
Masked Loss (CM + L1∗).

Figure 5: Content Masking added to the L2 loss is defined
as the difference between a canvas and the target image
weighted by the features extracted from the target image.

Figure 6: On the left is the target image. The paintings were
created by the model generating 125 strokes looking at the
whole canvas and then 125 strokes in each of 25 evenly dis-
tributed subsections of the canvas. (a) was created using the
(Huang, Heng, and Zhou 2019) model as is while (b) used
constraints on the brush’s abilities.

Results
The effects of the brush stroke constraints (fixed brush
width, maximum brush stroke length, fully opaque strokes,
and starting with white canvas) can be seen in Figure 3. Our
baseline model is able to reproduce the target image but not
with as high fidelity as the (Huang, Heng, and Zhou 2019)
model. The strokes are now fixed width and smaller than
what the (Huang, Heng, and Zhou 2019) model allows, so
it takes more strokes to reproduce the target image in our
baseline model. The fixed width strokes are too big to make
out details such as mouth and eyes. In order to paint with
a smaller brush size, the canvas is divided up into subsec-
tions, then the model is run over each subsection. So if we
divide an image into quadrants and run our baseline model
over each, this is equivalent to painting with a brush half the
width of fixed width constraint.

The last canvases in Figure 3 show a significant differ-
ence in fidelity between our baseline model and the (Huang,
Heng, and Zhou 2019) model. One of the most impressive
aspects of the (Huang, Heng, and Zhou 2019) model was
that it could nearly replicate an image given enough strokes.
We tested whether our baseline model could also achieve
this accuracy. In Figure 6, the models generated 125 strokes
using the entire image as input, then 125 strokes for each
non-overlapping 1/25th of the image. Our baseline model
produces a painting with a similar loss to the (Huang, Heng,
and Zhou 2019) model’s painting.

Content Loss Reward
We tried to use this content loss (Equation 4) reward func-
tion, but the model would only go to a local minimum and
produce blank canvases no matter what parameters we used.
The main reason why the Content Loss Reward function
was unsuccessful was the feature extraction process does
not translate well to the paintings. The VGG-16 model (Si-
monyan and Zisserman 2015) was trained on photographs.
The canvases (especially with only a few strokes) are so
vastly different from photographs that the extracted features
appear random. As seen in Figure 7, even when the paint-
ing is extremely similar to the target image, the features ex-
tracted are very different from those extracted from the pho-
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Figure 7: The top left three images are output from the model
painting the target image in the top right. The second row are
the features extracted from their corresponding image above
them using the first 17 layers of the VGG-16 model.

tograph. The features extracted from the photographic target
image make semantic, abstract sense while the features from
the paintings are unintelligible. In future work we will at-
tempt to use feature extraction models that are robust to tex-
ture variance, such as (Geirhos et al. 2019) who minimized
the texture bias in an ImageNet (Deng et al. 2009) classifier
model.

Content Masked Reward
The VGG-16 model has has 13 convolutional layers each
with an activation function and 5 pooling layers. These 31
layers can be used in the feature extraction portion of the
architecture. To compute the feature mask, the output of a
layer is averaged across channels and 0-1 normalized. The
output of each of the first 29 layers of the pretrained VGG-
16 model are shown in Figure 8. The initial layers extract
features such as edges and texture, while the later layers ex-
tract higher level information such as eyes and mouths.

We trained the model using the Content Masked Loss
(Equation 5) in the reward function using various layers
from the VGG-16 model. After the models were trained,
the painting process for each model was tested in Figure 9.
The lower level layers produced models that focused more
broadly on the subjects face while higher layers were fo-
cused on abstract features such as eyes. All models per-
formed very similar in their final results, however, the in-
termediate strokes varied. The models that used latter layers
performed more human-like since they focused on the high
level features of the image.

Layer 17 was chosen for future experiments since it was
a good balance between using high and low level features.

Final Painting Quality
We wanted to test whether there was a difference in qual-
ity of paintings amongst the models trained with different
reward functions. We used both the Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017) and Inception Score (Sali-
mans et al. 2016). These measures have known issues (Bar-
ratt and Sharma 2018), e.g., Inception Score, which uses a
network pre-trained on ImageNet (Deng et al. 2009), can

Figure 8: Features extracted from a given image at various
layers within the VGG-16 (Simonyan and Zisserman 2015)
model.

Figure 9: Models were trained using Content Masked Re-
ward where the features were generated using various layers
in the VGG-16 model.
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Loss Function FID ↓ IS ↑
GAN 240.05 ± 0.43 3.05 ± .08

L2 241.02 ± 0.24 3.05 ± .14
CM + L2 242.67 ± 0.24 3.01 ± .04

L1* 241.58 ± 0.14 3.45 ± .09
CM + L1* 243.13 ± 0.20 3.47 ± .05

Table 1: A small Fréchet Inception Distance (FID shown in
column 2) indicates that the generated paintings are visually
similar to the photographs. The larger the Inception Score
(IS shown in column 3), the more similar the distributions
of the paintings and target images are.

Figure 10: The painting process for models trained using dif-
ferent loss functions in their reward functions.

be misleading when used on the models trained on non-
ImageNet datasets. Since we are merely comparing reward
functions and the models have otherwise been trained in the
exact same fashion, we can use these scores for comparison.

We computed the FID and Inception Scores for 2000 held
out images from the CelebA dataset. The FID and Incep-
tion Scores are shown in Table 1. They were computed us-
ing 5 fold cross validation on 2000 held out images from
the CelebA dataset. We note that both FID and IS scores
from our experiments seem far outside the normal range of
those scores found in GANs literature (Ostrovski, Dabney,
and Munos 2018); the reason for this is that the generated
output in our case are paintings that are visually very dif-
ferent from photorealistic input images as in other works.
There are significant differences in the FID and IS values
between certain models, however, there is no model that is
significantly superior to the others in terms of both FID and
IS. The lack of a significantly superior model indicates that
the final painting quality of each model is roughly the same,
and therefore, the intervention of loss functions does not sig-
nificantly affect the final painting quality.

Human-Like Planning
As a human painter paints, the subject of the painting should
be apparent per the common “blocking-in” (Scott 2017)
technique. As seen in Figure 10, the loss function used to
train the painter model affects the intermediate outputs of
the model. For instance, the GAN, L1∗, and L2 Loss mod-
els show that the painting model is not influenced by the
content in the target image. The CM + L2 and CM + L1*
models add incentive to paint regions of the image that are
important for understanding the content of the image, and so
observers can recognize what the model is painting early in
the stroke sequence.

We hypothesize that our model, aiming at a human-like
planning, produces stroke sequences that can be recognized
from early strokes. To verify this hypothesis, we conduct two
experiments: first, we use a facial detection AI model on the
canvas as the model painted; and second, we ran a study on
Amazon Mechanical Turk for human evaluation.

We note on the difference between AI and human percep-
tion. In general, humans tend to focus on shape-based fea-
tures in recognizing objects, whereas Convolutional Neural
Networks including FaceNet (Schroff, Kalenichenko, and
Philbin 2015) used in our experiment exhibit strong texture
biases (Geirhos et al. 2019). Due to the nature of binary
classification used in the experiment, the two experiments
are not designed in the identical format, i.e., binary classifi-
cation vs. ranking; however, the results agree that at early
stage of under 200 strokes the proposed approach gener-
ates paintings where the subject is more easily recognizable
when compared to the baseline approaches.

We tested the following five models, each varying with
only the loss function used to compute the reward:

• GAN - Adversarial Loss. Equivalent to (Huang, Heng,
and Zhou 2019) but with brush stroke constraints (Equa-
tion 2).

• L2 - L2 Loss (Equation 3).

• L1* - L1 with Clipping Loss (Equation 6).

• CM + L2 - Content Masked L2 Loss (Equation 5).

• CM + L1* - Content Masked, L1 with Clipping Loss
(Equation 7).

AI evaluation. In our AI test, each model painted 2000
portraits from a subset of data held out from training. After
each brush stroke, the painting was tested by the FaceNet
facial detection model. The proportion of paintings with de-
tected faces within a certain number of strokes is plotted in
Figure 11. Adding content masking generally improved fa-
cial detection in early strokes (50-200), although Content
Masking’s effect on L2 was not strong, likely due to the
color bias concealing it. The proposed CM + L1* model pro-
duced the most face detected paintings.

Human evaluation. Each model painted the images
stroke by stroke. We showed the workers the canvases pro-
duced from each of the five models at various points in the
painting process: 10, 30, 100, 200, and 750 strokes. An ex-
ample of what the Mechanical Turk workers saw in the study
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Figure 11: The proportion of paintings produced by each
model that had faces detected by a model (Schroff,
Kalenichenko, and Philbin 2015) within the specified num-
ber of brush strokes.

Figure 12: Example of questions in a HIT in our study car-
ried out on Amazon MTurk. Workers viewed paintings by
each of the models trained with different loss functions and
selected the painting that looked most like a face.

is shown in Figure 12. The order of algorithms was random-
ized, as was the order of the number of strokes in each im-
age. 332 unique MTurk workers evaluated images. 400 im-
ages were used for the paintings, and each question (sample
questions are shown in Figure 12) was evaluated by 4 differ-
ent workers.

The results of the study are shown in Figure 13. Adding
Content Masking to L1* loss improved the face-like quali-
ties of the paintings that contained between 30 and 200 brush
strokes. Adding Content Masking to L2 did not significantly
improve the face-like qualities of the paintings, and we sus-
pect that this is because of the dark color bias since L1,
which is less affected by a color bias, with Content Mask-
ing was successful. Overall, Content Masking with L1 loss

Figure 13: Results from the MTurk study. Workers chose
which painting (performed using 10, 30, 100, 200, or 750
brush strokes) looks most like a face given five paintings
from each model.

proves to create the painter model that produces the most
face-like paintings through the painting process.

Conclusion and Future Work
This paper presents a reinforcement learning approach to-
wards a human-like brush stroke planning, focusing on the
procedure of the painting in addition to the final quality.
Experimental results from both AI and human evaluations
show that adding Content Masking to the loss functions
greatly improves the facial detection abilities of the model’s
stroke sequence, without sacrificing the quality of the fi-
nal painting results. Content Masked Loss provides a data-
efficient way to increase the human-like abilities of the
model’s brush stroke sequence without needing additional,
expensive human labeling.

We found that the features generated by the VGG-16 ob-
ject detection model correlate with facial features as seen in
Figure 8 which allowed us to use these features to weight the
loss in Content Masking. In future work, in order to address
the texture bias issue prevalent in CNN-based perception
models, we plan to explore using more robust object clas-
sifiers as tools for producing the weight matrix in Content
Masking that may correlate better with human evaluation.
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