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Abstract

Electrocardiogram (ECG) is the electrical measurement of
cardiac activity, whereas Photoplethysmogram (PPG) is the
optical measurement of volumetric changes in blood circula-
tion. While both signals are used for heart rate monitoring,
from a medical perspective, ECG is more useful as it car-
ries additional cardiac information. Despite many attempts
toward incorporating ECG sensing in smartwatches or simi-
lar wearable devices for continuous and reliable cardiac mon-
itoring, PPG sensors are the main feasible sensing solution
available. In order to tackle this problem, we propose Car-
dioGAN, an adversarial model which takes PPG as input and
generates ECG as output. The proposed network utilizes an
attention-based generator to learn local salient features, as
well as dual discriminators to preserve the integrity of gen-
erated data in both time and frequency domains. Our experi-
ments show that the ECG generated by CardioGAN provides
more reliable heart rate measurements compared to the origi-
nal input PPG, reducing the error from 9.74 beats per minute
(measured from the PPG) to 2.89 (measured from the gener-
ated ECG).

1 Introduction
According to the World Health Organization (WHO) in
2017, Cardiovascular Deceases (CVDs) are reported as the
leading causes of death worldwide (WHO 2017). The re-
port indicates that CVDs cause 31% of global deaths, out
of which at least three-quarters of deaths occur in the low
or medium-income countries. One of the primary reasons
behind this is the lack of primary healthcare support and
the inaccessible on-demand health monitoring infrastruc-
ture. Electrocardiogram (ECG) is considered as one of the
most important attributes for continuous health monitoring
required for identifying those who are at serious risk of fu-
ture cardiovascular events or death. Vast amount of research
is being conducted with the goal of developing wearable de-
vices capable of continuous ECG monitoring and feasible
for daily life use, largely to no avail. Currently, very few
wearable devices provide wrist-based ECG monitoring, and
those who do, require the user to stand still and touch the
watch with both hands in order to close the circuit in order
Copyright © 2021, Association for the Advancement of Artificial
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to record an ECG segment of limited duration (usually 30
seconds), making these solutions non-continuous and spo-
radic.

Photoplethysmogram (PPG), an optical method for mea-
suring blood volume changes at the surface of the skin, is
considered as a close alternative to ECG, which contains
valuable cardiovascular information (Gil et al. 2010; Schäfer
and Vagedes 2013). For instance, studies have shown that
a number of features extracted from PPG (e.g., pulse rate
variability) are highly correlated with corresponding metrics
extracted from ECG (e.g., heart rate variability) (Gil et al.
2010), further illustrating the mutual information between
these two modalities. Yet, through recent advancements in
smartwatches, smartphones, and other similar wearable and
mobile devices, PPG has become the industry standard as a
simple, wearable-friendly, and low-cost solution for contin-
uous heart rate (HR) monitoring for everyday use. Nonethe-
less, PPG suffers from inaccurate HR estimation and several
other limitations in comparison to conventional ECG moni-
toring devices (Bent et al. 2020) due to factors like skin tone,
diverse skin types, motion artefacts, and signal crossovers
among others. Moreover, the ECG waveform carries impor-
tant information about cardiac activity. For instance, the P-
wave indicates the sinus rhythm, whereas a long PR interval
is generally indicative of a first-degree heart blockage (Ash-
ley and Niebauer 2004). As a result, ECG is consistently
being used by cardiologists for assessing the condition and
performance of the heart.

Based on the above, there is a clear discrepancy between
the need for continuous wearable ECG monitoring and the
available solutions in the market. To address this, we pro-
pose CardioGAN, a generative adversarial network (GAN)
(Goodfellow et al. 2014), which takes PPG as inputs and
generates ECG. Our model is based on the CycleGAN ar-
chitecture (Zhu et al. 2017) which enables the system to
be trained in an unpaired manner. Unlike CycleGAN, Car-
dioGAN is designed with attention-based generators and
equipped with multiple discriminators. We utilize attention
mechanisms in the generators to better learn to focus on spe-
cific local regions such as the QRS complexes of ECG. To
generate high fidelity ECG signals in terms of both time
and frequency information, we utilize a dual discriminator
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strategy where one discriminator operates on signals in the
time domain while the other uses frequency-domain spec-
trograms of the signals. We show that the generated ECG
outputs are very similar to the corresponding real ECG sig-
nals. Finally, we perform HR estimation using our generated
ECG as well as the input PPG signals. By comparing these
values to the HR measured from the ground-truth ECG sig-
nals, we observe a clear advantage in our proposed method.
While to demonstrate the efficacy of our solution we focus
on single-lead ECG, we believe our approach can be used
for multi-lead ECG through training the system on other de-
sired leads. Our contributions in this paper are summarised
below:

• We propose a novel framework called CardioGAN for
generating ECG signals from PPG inputs. We utilize
attention-based generators and dual time and frequency
domain discriminators along with a CycleGAN backbone
to obtain realistic ECG signals. To the best of our knowl-
edge, no other studies have attempted to generate ECG
from PPG (or in fact any cross-modality signal-to-signal
translation in the biosignal domain) using GANs or other
deep learning techniques.

• We perform a multi-corpus subject-independent study,
which proves the generalizability of our model to data
from unseen subjects and acquired in different conditions.

• The generated ECG obtained from the CardioGAN pro-
vides more accurate HR estimation compared to HR val-
ues calculated from the original PPG, demonstrating some
of the benefits of our model in the healthcare domain. We
make the final trained model publicly available1.

The rest of this paper is organized as follows. Section 2
briefly mentions the prior studies on ECG signal generation.
Next, our proposed method is discussed in Section 3. Section
4 discusses the details of our experiments, including datasets
and training procedures. Finally, the results and analyses are
presented in Section 5, followed by a summary of our work
in Section 6.

2 Related Work
2.1 Generating Synthetic ECG Signal
The idea of synthesizing ECG has been explored in the past,
utilizing both model-driven (e.g. signal processing or math-
ematical modelling) and data-driven (machine learning and
deep learning) techniques. As examples of earlier works,
(McSharry et al. 2003; Sayadi, Shamsollahi, and Clifford
2010) proposed solutions based on differential equations and
Gaussian models for generating ECG segments.

Despite deep learning being employed to process ECG
for a wide variety of different applications, for instance bio-
metrics (Zhang, Zhou, and Zeng 2017), arrhythmia detec-
tion (Hannun et al. 2019), emotion recognition (Sarkar and
Etemad 2020a,b), cognitive load analysis (Sarkar et al. 2019;
Ross et al. 2019), and others, very few studies have tackled
synthesis of ECG signals with deep neural networks (Zhu

1https://code.engineering.queensu.ca/17ps21/ppg2ecg-
cardiogan

et al. 2019a; Golany and Radinsky 2019; Golany et al. 2020).
Synthesizing ECG with GANs was first studied in (Zhu et al.
2019a), where a bidirectional LSTM-CNN architecture was
proposed to generate ECG from Gaussian noise. The study
performed by (Golany and Radinsky 2019), proposed PGAN
or Personalized GAN to generate patient-specific synthetic
ECG signals from input noise. A special loss function was
proposed to mimic the morphology of ECG waveforms,
which was a combination of cross-entropy loss and mean
squared error between real and fake ECG waveforms.

A few other studies have targeted this area, for example,
EmotionalGAN was proposed in (Chen et al. 2019), where
synthetic ECG was used to augment the available ECG data
in order to improve emotion classification accuracy. The pro-
posed GAN generated the new ECG based on input noise.
Lastly, in a similar study performed by (Golany et al. 2020),
ECG was generated from input noise to augment the avail-
able ECG training set, improving the performance for ar-
rhythmia detection.

2.2 ECG Synthesis from PPG
With respect to the very specific problem of PPG-to-ECG
translation, to the best of our knowledge, only (Zhu et al.
2019b) has been published. This work did not use deep
learning, instead used discrete cosine transformation (DCT)
technique to map each PPG cycle to its corresponding ECG
cycle. First, onsets of the PPG signals were aligned to the
R-peaks of the ECG signals, followed by a de-trending op-
eration in order to reduce noise. Next, each cycle of ECG
and PPG was segmented, followed by temporal scaling us-
ing linear interpolation in order to maintain a fixed seg-
ment length. Finally, a linear regression model was trained
to learn the relation between DCT coefficients of PPG seg-
ments and corresponding ECG segments. In spite of sev-
eral contributions, this study suffers from few limitations.
First, the model failed to produce reliable ECG in a subject-
independent manner, which limits its application to only
previously seen subject’s data. Second, often the relation
between PPG segments and ECG segments are not linear,
therefore in several cases, this model failed to capture the
non-linear relationships between these 2 domains. Lastly,
no experiments have been performed to indicate any perfor-
mance enhancement gained from using the generated ECG
as opposed to the available PPG (for example a comparison
of measured HR).

3 Method
3.1 Objective and Proposed Architecture
In order to not be constrained by paired training where
both types of data are needed from the same instance in
order to train the system, we are interested in an unpaired
GAN, i.e. CycleGAN-based architectures. We propose Car-
dioGAN whose main objective is to learn to estimate the
mapping between PPG (P ) and ECG (E) domains. In order
to force the generator to focus on regions of the data with
significant importance, we incorporate an attention mech-
anism into the generator. We implement generator GE :
P → E to learn forward mapping, and GP : E → P to
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Figure 1: The architecture of the proposed CardioGAN is
presented. The original ECG (E) and PPG (P ) signals are
shown in the color ‘orange’; the generated outputs (E′ and
P ′) are represented with the color ‘green’; and the recon-
structed or cyclic outputs (E′′ and P ′′) are marked with the
color ‘black’ for better visibility. Moreover, connections to
the generators are marked with solid lines, whereas, connec-
tions to the discriminators are marked with dashed lines.

learn the inverse mapping. We denote generated ECG and
generated PPG from CardioGAN as E′ and P ′ respectively,
where E′ = GE(P ) and P ′ = GP (E). According to (Pent-
tilä et al. 2001) and a large number of other studies, cardiac
activity is manifested in both time and frequency domains.
Therefore, in order to preserve the integrity of the generated
ECG in both domains, we propose the use of a dual dis-
criminator strategy, where Dt is employed to classify time
domain and Df is used to classify the frequency domain re-
sponse of real and generated data.

Figure 1 shows our proposed architecture, where GE

takes P as an input and generates E′ as the output. Simi-
larly, E is given as an input to GP where P ′ is generated as
the output. We employ Dt

E and Dt
P to discriminate E ver-

susE′, and P versus P ′, respectively. Similarly,Df
E andDf

P
are developed to discriminate f(E) versus f(E′), as well as
f(P ) versus f(P ′), respectively, where f denotes the spec-
trogram of the input signal. Finally, E′ and P ′ are given as
inputs to GP and GE respectively, in order to complete the
cyclic training process.

In the following subsections, we expand on the dual dis-
criminator, the notion of integrating an attention mechanism
into the generator, and the loss functions used to train the
overall architecture. The details and architectures of each of
the networks used in our proposed solution are provided in
Section 4.3.

3.2 Dual Discriminators
As mentioned above, to preserve both time and frequency
information in the generated ECG, we use a dual discrimi-
nator approach. Dual discriminators have been used earlier
in (Nguyen et al. 2017), showing improvements in dealing
with mode collapse problems. To leverage the concept of
dual discriminators, we perform Short-Time Fourier Trans-
formation (STFT) on the ECG/PPG time series data. Let’s
denote x[n] as a time-series, then STFT (x[n]) can be de-
noted as X(m,ω) =

∑∞
n=−∞ x[n]w[n −m]e−jωn, where

m is the step size and w[n] denotes Hann window func-

tion. Finally, the spectrogram is obtained by f(x[n]) =
log(|X(m,ω)| + θ), where we use θ = 1e−10 to avoid in-
finite condition. As shown in Figure 1 the time-domain and
frequency-domain discriminators operate in parallel, and as
we will discuss in Section 3.4, to aggregate the outcomes of
these two networks, the loss terms of both of these networks
are incorporated into the adversarial loss.

3.3 Attention-based Generators
We adopt Attention U-Net as our generator architecture,
which has been recently proposed and used for image clas-
sification (Oktay et al. 2018; Jetley et al. 2018). We chose
attention-based generators to learn to better focus on salient
features passing through the skip connections. Let’s assume
xl are features obtained from the skip connection originating
from layer l, and g is the gating vector that determines the re-
gion of focus. First, xl and g are mapped to an intermediate-
dimensional space RFint where Fint corresponds to the di-
mensions of the intermediate-dimensional space. Our objec-
tive is to determine the scalar attention values (αl

i) for each
temporal unit xli ∈ RFl , utilizing gating vector gi ∈ RFg ,
where Fl and Fg are the number of feature maps in xl and
g respectively. Linear transformations are performed on xl
and g as θx = Wxx

l
i + bx and θg = Wggi + bg respec-

tively, where Wx ∈ RFl×Fint , Wg ∈ RFg×Fint , and bx, bg
refer to the bias terms. Next, non-linear activation function
ReLu (denoted by σ1) is applied to obtain the sum feature
activation f = σ1(θx + θg), where σ1(y) is formulated as
max(0, y). Next we perform a linear mapping of f onto the
RFint dimensional space by performing channel-wise 1× 1
convolutions, followed by passing through a sigmoid activa-
tion function (σ2) in order to obtain the attention weights in
the range of [0, 1]. The attention map corresponding to xl is
obtained by αl

i = σ2(ψ ∗ f) where σ2(y) can be formulated
as 1

1+exp−y , ψ ∈ RFint and ∗ denotes convolution. Next, we
perform element-wise multiplication between xli and αl

i to
obtain the final output from the attention layer.

3.4 Loss
Our final objective function is a combination of an adversar-
ial loss and a cyclic consistency loss as presented below.

Adversarial Loss We apply adversarial loss in both for-
ward and inverse mappings. Let’s denote individual PPG
segments as p and the corresponding ground-truth ECG seg-
ments as e. For the mapping functionGE : P → E, and dis-
criminators Dt

E and Df
E , the adversarial losses are defined

as:

Ladv(GE , D
t
E) = Ee∼E [log (D

t
E(e))]

+ Ep∼P [log (1−Dt
E(GE(p)))]

(1)

Ladv(GE , D
f
E) = Ee∼E [log (D

f
E(f(e)))]

+ Ep∼P [log (1−Df
E(f(GE(p))))]

(2)

Similarly, for the inverse mapping functionGP : E → P ,
and discriminators Dt

P and Df
P , the adversarial losses are
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defined as:
Ladv(GP , D

t
P ) = Ep∼P [log (D

t
P (p))]

+ Ee∼E [log (1−Dt
P (GP (e)))]

(3)

Ladv(GP , D
f
P ) = Ep∼P [log (D

f
P (f(p)))]

+ Ee∼E [log (1−Df
P (f(GP (e))))]

(4)

Finally, the adversarial objective function for the mapping
GE : P → E is obtained as minGE

maxDt
E
Ladv(GE , D

t
E)

and minGE
maxDf

E
Ladv(GE , D

f
E). Similarly,

for the mapping GP : E → P , can be cal-
culated as minGP

maxDt
P
Ladv(GP , D

t
P ) and

minGP
maxDf

P
Ladv(GP , D

f
P ).

Cyclic Consistency Loss The other component of our ob-
jective function is the cyclic consistency loss or reconstruc-
tion loss as proposed by (Zhu et al. 2017). In order to en-
sure that forward mappings and inverse mappings are con-
sistent, i.e., p → GE(p) → GP (GE(p)) ≈ p, as well as
e → GP (e) → GE(GP (e)) ≈ e, we minimize the cycle
consistency loss calculated as:

Lcyclic(GE , GP ) = Ee∼E [||GE(GP (e))− e||1]
+ Ep∼P [||GP (GE(p))− p||1]

(5)

Final Loss The final objective function of CardioGAN is
computed as:

LCardioGAN = αLadv(GE , D
t
E) + αLadv(GP , D

t
P )

+ βLadv(GE , D
f
E) + βLadv(GP , D

f
P )

+ λLcyclic(GE , GP ),

(6)

where α and β are adversarial loss coefficients correspond-
ing to Dt and Df respectively, and λ is the cyclic consis-
tency loss coefficient.

4 Experiments
In this section, we first introduce the datasets used in this
study, followed by the description of the data preparation
steps. Next, we present our implementation and architecture
details.

4.1 Datasets
We use 4 very popular ECG-PPG datasets, namely BIDMC
(Pimentel et al. 2016), CAPNO (Karlen et al. 2013), DALIA
(Reiss et al. 2019), and WESAD (Schmidt et al. 2018). We
combine these 4 datasets in order to enable a multi-corpus
approach leveraging large and diverse distributions of data
for different factors such as activity (e.g. working, driving,
walking, resting), age (e.g. 29 children, 96 adults), and oth-
ers. The aggregate dataset contains a total of 125 participants
with a balanced male-female ratio.

BIDMC (Pimentel et al. 2016) was obtained from 53 adult
ICU patients (32 females, 21 males, mean age of 64.81)
where each recording was 8 minutes long. PPG and ECG
were both sampled at a frequency of 125 Hz. It should be
noted this dataset consists of three leads of ECG (II, V,
AVR). However, we only use lead II in this study.

CAPNO (Karlen et al. 2013) consists of data from 42 par-
ticipants, out of which 29 were children (median age of 8.7)
and 13 were adults (median age of 52.4). The recordings
were collected while the participants were under medical ob-
servation. Single-lead ECG and PPG recordings were sam-
pled at a frequency of 300 Hz and were 8 minutes in length.

DALIA (Reiss et al. 2019) was recorded from 15 partici-
pants (8 females, 7 males, mean age of 30.60), where each
recording was approximately 2 hours long. ECG and PPG
signals were recorded while participants went through dif-
ferent daily life activities, for instance sitting, walking, driv-
ing, cycling, working and so on. Single-lead ECG signals
were recorded at a sampling frequency of 700 Hz while the
PPG signals were recorded at a sampling rate of 64 Hz.

WESAD (Schmidt et al. 2018) was created using data
from 15 participants (12 male, 3 female, mean age of 27.5),
while performing activities such as solving arithmetic tasks,
watching video clips, and others. Each recording was over
1 hour in duration. Single-lead ECG was recorded at a sam-
pling rate of 700 Hz while PPG was recorded at a sampling
rate of 64 Hz.

4.2 Data Preparation
Since the above-mentioned datasets have been collected at
different sampling frequencies, as a first step we re-sampled
(using interpolation) both the ECG and PPG signals with a
sampling rate of 128 Hz. As the raw physiological signals
contain a varying amounts and types of noise (e.g. power
line interference, baseline wandering, motion artefacts), we
perform very common filtering techniques on both the ECG
and PPG signals. We apply a band-pass FIR filter with a
pass-band frequency of 3 Hz and stop-band frequency of
45 Hz on the ECG signals. Similarly, a band-pass Butter-
worth filter with a pass-band frequency of 1 Hz and a stop-
band frequency of 8 Hz is applied on the PPG signals. Next,
person-specific z-score normalization is performed on both
ECG and PPG. Then, the normalized ECG and PPG signals
are segmented into 4-second windows (128 Hz ×4 seconds
= 512 samples), with a 10% overlap to avoid missing any
peaks. Finally, we perform min-max [−1, 1] normalization
on both ECG and PPG segments to ensure all the input data
are in a specific range.

4.3 Architecture
Generator As mentioned earlier an Attention U-Net ar-
chitecture is used as our generator, where self-gated soft-
attention units are used to filter the features passing through
the skip connections.GE andGP take 1×512 data points as
input. The encoder consists of 6 blocks, where the number
of filters is gradually increased (64, 128, 256, 512, 512, 512)
with a fixed kernel size of 1 × 16 and a stride of 2. We
apply layer normalization and leaky-ReLu activation after
each convolution layers except the first layer, where no nor-
malization is used. A similar architecture is used in the de-
coder, except de-convolutional layers with ReLu activation
functions are used and the number of filters is gradually de-
creased in the same manner. The final output is then obtained
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from a de-convolutional layer with a single-channel output
followed by tanh activation.

Discriminator Dual discriminators are used to classify
real and fake data in time and frequency domains. Dt

E
and Dt

P take time-series signals of size 1 × 512 as inputs,
whereas, spectrograms of size 128 × 128 are given as in-
puts to Df

E and Df
P . Both Dt and Df use 4 convolution

layers, where the number of filters are gradually increased
(64, 128, 256, 512) with a fixed kernel of 1× 16 for Dt and
7×7 forDf . Both networks use a stride of 2. Each convolu-
tion layer is followed by layer normalization and leaky ReLu
activation, except the first layer where no normalization is
used. Finally, the output is obtained from a single-channel
convolutional layer.

4.4 Training
Our proposed CardioGAN network is trained from scratch
on an Nvidia Titan RTX GPU, using TensorFlow 2.2. We
divide the aggregated dataset into a training set and test set.
We randomly select 80% of the users from each dataset (a
total of 101 participants, equivalent to 58K segments) for
training, and the remaining 20% of users from each dataset
(a total of 24 participants, equivalent to 15K segments) for
testing. The training time was approximately 50 hours. To
enable CardioGAN to be trained in an unpaired fashion, we
shuffle the ECG and PPG segments from each dataset sepa-
rately eliminating the couplings between ECG and PPG fol-
lowed by a shuffling of the order of datasets themselves for
ECG and PPG separately. We use a batch size of 128, un-
like the original CycleGAN where a batch size of 1 is used.
We notice performance gain with a larger batch size. Adam
optimizer is used to train both the generators and discrimi-
nators. We train our model for 15 epochs, where the learning
rate (1e−4) is kept constant for the initial 10 epochs and then
linearly decayed to 0. The values of α, β, and λ are empiri-
cally set to 3, 1 and 30 respectively.

5 Performance
CardioGAN produces two main signal outputs, generated
ECG (E′) and generated PPG (P ′). As our goal is to gener-
ate the more important and elusive ECG, we utilize E′ and
ignore P ′ in the following experiments. In this section, we
present the quantitative and qualitative results of our pro-
posed CardioGAN network. Next, we perform an ablation
study in order to understand the effects of the different com-
ponents of the model. Further, we perform several analyses,
followed by a discussion of potential applications using our
proposed solution.

5.1 Quantitative Results
Heart rate is measured as number of beats per minutes
(BPM) by dividing the length of ECG or PPG segments in
seconds by the average of the peak intervals multiplied by
60 (seconds). Let’s define the mean absolute error (MAE)
metric for the heart rate (in BPM) obtained from a given
ECG or PPG signal (HRQ) with respect to a ground-truth
HR (HRGT ) asMAEHR(Q) = 1

N

∑N
i=1 |HRGT

i −HR
Q
i |,

Dataset Method Window (sec.) MAEHR

BIDMC

(Nilsson et al. 2005)

64

4.6
(Shelley et al. 2006) 2.3
(Fleming et al. 2007) 5.5
(Karlen et al. 2013) 5.7

(Pimentel et al. 2016) 2.7
CardioGAN 0.7

CAPNO

(Nilsson et al. 2005)

64

10.2
(Shelley et al. 2006) 2.2
(Fleming et al. 2007) 1.4
(Karlen et al. 2013) 1.2
(Pimentel et al. 2016) 1.9

CardioGAN 2.0

Dalia

(Schäck et al. 2017)

8

20.5
(Reiss et al. 2019) 15.6
(Reiss et al. 2019) 11.1

CardioGAN 8.3

WESAD

(Schäck et al. 2017)

8

19.9
(Reiss et al. 2019) 11.5
(Reiss et al. 2019) 9.5

CardioGAN 8.6

Table 1: We compare the MAEHR calculated from the gen-
erated ECG with MAEHR calculated from the real input
PPG.

where N is the number of segments for which the HR mea-
surements have been obtained. In order to investigate the
merits of CardioGAN, we measure MAEHR(E

′), where
E′ is the ECG generated by CardioGAN. We compare these
MAE values toMAEHR(P ) (whereP denotes the available
input PPG) as reported by other studies on the 4 datasets.
The results are presented in Table 1 where we observe that
for 3 of the 4 datasets, the HR measured from the ECG gen-
erated by CardioGAN is more accurate than the HR mea-
sured from the input PPG signals. For CAPNO dataset in
which our ECG shows higher error compared to other works
based on PPG, the difference is quite marginal, especially
in comparison to the performance gains achieved across the
other datasets.

Different studies in this area have used different win-
dow sizes for HR measurement which we report in Table
1. To evaluate the impact of our solution based on differ-
ent window sizes, we measure MAEHR(E

′) over different
4, 8, 16, 32, and 64 second windows and present the results
in comparison to MAEHR(P ) across all the subjects avail-
able in the 4 datasets in Table 2. In these experiments, we
utilize two popular algorithms for detecting peaks from ECG
(Hamilton 2002) and PPG (Elgendi et al. 2013) signals. We
observe a clear advantage in measuring HR from E′ as op-
posed to P . We notice a very consistent performance gain
across different window sizes, which further demonstrates
the stability of the results produce by CardioGAN.

5.2 Qualitative Results
In Figure 2 we present a number of samples of ECG signals
generated by CardioGAN, clearly showing that our proposed
network is able to learn to reconstruct the shape of the orig-
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Figure 2: We present ECG samples generated by our proposed CardioGAN. We show 2 different samples from each dataset to
better demonstrate the qualitative performance of our method.

Window (sec.) MAEHR(E
′) MAEHR(P )

4 4.86 10.67
8 3.54 10.23

16 3.27 10.00
32 3.08 9.77
64 2.89 9.74

Table 2: A comparison ofMAEHR between generated ECG
and real PPG is presented for different window sizes.

inal ECG signals from corresponding PPG inputs. Careful
observation shows that in some cases, the generated ECG
signals exhibit a small time lag with respect to the original
ECG signals. The root cause of this time delay is the Pulse
Arrival Time (PAT), which is defined as the time taken by
the PPG pulse to travel from the heart to a distal site (from
where PPG is collected, for example, wrist, fingertip, ear, or
others) (Elgendi et al. 2019). Nonetheless, this time-lag is
consistent for all the beats across a single generated ECG
signal as a simple offset, and therefore does not impact HR
measurements or other cardiovascular-related metrics. This
is further evidenced by the accurate HR measurements pre-
sented earlier in Tables 1 and 2.

5.3 Ablation Study
The proposed CardioGAN consists of attention-based gen-
erators and dual discriminators, as discussed earlier. In or-
der to investigate the usefulness of the attention mechanisms
and dual discriminators, we perform an ablation study of 2
variations of the network by removing each of these com-
ponents individually. To evaluate these components, we per-
form the same MAEHR along with a number of other met-
rics to quantify the quality of ECG waveforms. We use met-
rics similar to those used in (Zhu et al. 2019a), which are
Root Mean Squared Error (RMSE), Percentage Root Mean
Squared Difference (PRD), and Fréchet Distance (FD). We
briefly defined these metrics as follows:

RMSE: In order to understand the stability between E

and E′, we calculate RMSE =
√

1
N

∑N
i=1(Ei − E′i)2

where Ei and E′i refer to the ith point of E and E′ respec-
tively.

Method RMSE PRD FD MAEHR

CardioGAN w/o DD 0.396 8.742 0.717 9.57
CardioGAN w/o Attn 0.386 8.393 0.773 9.67
CardioGAN (proposed) 0.364 8.356 0.694 4.77

Table 3: Performance comparison of CardioGAN and it’s
ablation variations across all the subjects of the 4 datasets
are presented.

PRD: To quantify the distortion between E and E′, we

calculate PRD =

√∑N
i=1(Ei−E′i)2∑N

i=1(Ei)2
× 100.

FD: Fréchet distance (Alt and Godau 1995) is calculated
to measure the similarity between the E and E′. While cal-
culating the distance between two curves, this distance con-
siders the location and order of the data points, hence, giving
a more accurate measure of similarity between two time-
series signals. Let’s assume E, a discrete signal, can be ex-
pressed as a sequence of {e1, e2, e3, . . . , eN}, and similarly
E′ can be expressed as {e′1, e′2, e′3, . . . , e′N}. We can create
a 2-D matrix M of corresponding data points by preserving
the order of sequence E and E′, where M ⊆ {(e, e′)|e ∈
E, e′ ∈ E′}. The discrete Fréchet distance of E and E′

is calculated as FD = minM max(e,e′)∈M d(e, e′), where
d(e, e′) denotes the Euclidean distance between correspond-
ing samples of e and e′.

The results of our ablation study are presented in Table 3.
We present the performance of different variants of Cardio-
GAN for all the subjects across all 4 datasets. CardioGAN
w/o DD is the variant with only the time domain discrimina-
tor and no change in the generator architecture. CardioGAN
w/o attn is the variant where the generator does not con-
tain an attention mechanism. The results presented in the
table evidently show the benefit of using the proposed Car-
dioGAN over it’s ablation variants.

5.4 Analysis
Attention Map In order to better understand what has
been learned through the attention mechanism in the gen-
erators, we visualize the attention maps applied to the very
last skip connection of the generator (GE). We choose the
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Figure 3: Visualization of attention maps are presented
where the brighter parts indicate regions to which the gener-
ator pays more attention compared to the darker regions. We
present 4 samples of generated ECG segments correspond-
ing to different subjects.

attention applied to the last skip connection since this layer
is the closest to the final output and there more interpretable.
For better visualization, we superimpose the attention map
on top of the output of the generator as shown in Figure
3. This shows that our model learns to generally focus on
the PQRST complexes, which in turn helps the generator to
learn the shapes of ECG waveform better as evident from
qualitative and quantitative results presented earlier.

Unpaired Training vs. Paired Training We further in-
vestigate the performance of CardioGAN while training
with paired ECG-PPG inputs as opposed to our original ap-
proach which is based on unpaired training. To train Cardio-
GAN in a paired manner, we follow the same training pro-
cess mentioned in Section 4.4, except we keep the coupling
between the ECG and PPG pairs intact in the input data. The
results are presented in Table 4, and a few samples of gen-
erated ECG are shown in Figure 4. By comparing these re-
sults to those presented in Table 4, we observe that unpaired
training of CardioGAN shows superior performance com-
pared to paired training. In particular, we notice that while
CardioGAN-Paired does learns well to generate ECG beats
from PPG inputs, it fails to learn the exact shape of the orig-
inal ECG waveforms. This might be because an unpaired
training scheme forces the network to learn stronger user-
independent mappings between PPG and ECG, compared to
user-dependant paired training. While it can be argued that
utilizing paired data using other GAN architectures might
perform well, it should be noted that the goal of this experi-
ment is to evaluate the performance when paired training is
performed without any fundamental changes to the architec-
ture. We design CardioGAN with the aim of being able to
leverage datasets that do not necessarily contain both ECG
and PPG, hence, unpaired training, even though we resort to
datasets that do contain both (ECG and PPG) so that ground-
truth measurements can be used for evaluation purposes.

Method RMSE PRD FD MAEHR

CardioGAN-Paired 0.437 9.315 0.748 5.04

Table 4: The results obtained from CardioGAN-Paired are
presented.
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Figure 4: Samples obtained from paired training of Cardio-
GAN are presented.
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Figure 5: Few failed ECG examples generated by Cardio-
GAN are presented.

Failed Cases We notice there are instances where Cardio-
Gan fails to generate ECG samples that resemble the origi-
nal ECG data very closely. Such cases arise only when the
PPG input signals are of very poor quality. We show a few
examples in Figure 5 where for highly noisy PPG inputs, the
generated ECG samples also exhibit very low quality.

5.5 Potential Applications and Demonstration
Apart from the interest to the AI community, we believe our
proposed solution has the potential to make a larger impact
in the healthcare and wearable domains, notably for contin-
uous health monitoring. Monitoring cardiac activity is an es-
sential part of continuous health monitoring systems, which
could enable early diagnosis of cardiovascular diseases, and
in turn, early preventative measures that can lead to over-
coming severe cardiac problems. Nonetheless, as discussed
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earlier, there are no suitable solutions for every-day contin-
uous ECG monitoring. In this study we bridge this gap by
utilizing PPG signals (which can be easily collected from
almost every wearable devices available in the market) in
our proposed CardioGAN to capture the cardiac information
of users and generate accurate ECG signals. We perform a
multi-corpus subject-independent study, where the subjects
have gone through a wide range of activities including daily-
life tasks, which assures us of the usability of our proposed
solution in practical settings. Most importantly, our pro-
posed solution can be integrated into an existing PPG-based
wearable device to extract ECG data without any required
additional hardware. To demonstrate this concept, we have
implemented our model to perform in real-time and used a
wrist-based wearable device to feed it with PPG data. The
video2 presented as supplementary material demonstrates
CardioGAN producing realistic ECG from wearable PPG in
real-time.

6 Summary and Future Work
In this paper, we propose CardioGAN, a solution for gener-
ating ECG signals from input PPG signals to aid with contin-
uous and reliable cardiac monitoring. Our proposed method
takes 4-second PPG segments and generates corresponding
ECG segments of equal length. Self-gated soft-attention is
used in the generator to learn important regions, for example
the QRS complexes of ECG waveforms. Moreover, a dual
discriminator strategy is used to learn the mapping in both
time and frequency domains. Further, we evaluate the mer-
its of the generated ECG by calculating HR and comparing
the results to HR obtained from the real PPG. The analysis
shows a clear advantage of using CardioGAN as more accu-
rate HR values are obtained as a result of using the model.

For future work, the advantages of using the generated
ECG data in other areas where the use of PPG is limited
may be evaluated. These areas include identification of car-
diovascular diseases, detection of abnormal heart rhythms,
and others. Furthermore, generating multi-lead ECG can
also be studied in order to extract more useful cardiac in-
formation often missing in single-channel ECG recordings.
Finally, we hope our research can open a new path towards
cross-modality signal-to-signal translation in the biosignal
domain, allowing for less available physiological recording
to be generated from more affordable and readily available
signals.
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