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Abstract
Human language is ambiguous, with intended meanings re-
covered via pragmatic reasoning in context. Such reliance on
context is essential for the efficiency of human communica-
tion. Programming languages, in stark contrast, are defined
by unambiguous grammars. In this work, we aim to make pro-
gramming languages more concise by allowing programmers
to utilize a controlled level of ambiguity. Specifically, we al-
low single-character abbreviations for common keywords and
identifiers. Our system first proposes a set of strings that can
be abbreviated by the user. Using only 100 abbreviations, we
observe that a corpus of Python code can be compressed by
15%, a number that can be improved even further by special-
izing the abbreviations to a particular code base. We then use
a contextualized sequence-to-sequence model to rank poten-
tial expansions of inputs that include abbreviations. In an of-
fline reconstruction task our model achieves accuracies rang-
ing from 93% to 99%, depending on the programming lan-
guage and user settings. The model is small enough to run
on a commodity CPU in real-time. We evaluate the usability
of our system in a user study, integrating it in Microsoft VS-
Code, a popular code text editor. We observe that our system
performs well and is complementary to traditional autocom-
plete features.

1 Introduction
Human languages have evolved over time to be highly ef-
fective and efficient. Though a reliable means of communi-
cation, our languages are strikingly ambiguous at every lin-
guistic level. Morphemes, words and even entire sentences
might have very different meanings in different contexts. Yet
this ambiguity does not hinder the communicative efficacy
of natural languages. This can be attributed to pragmatic
reasoning used by listeners to infer the meaning of speak-
ers’ utterances: context usually provides the missing infor-
mation listeners need to disambiguate meaning (Piantadosi,
Tily, and Gibson 2012).

Programming languages differ radically: To make com-
pilers and interpreters practical, a programming language’s
syntax is always unambiguous, defining a single way to
parse each program. While the absence of ambiguity facil-
itates the creation of development tools, it also forces pro-
grams to be more verbose. This drawback becomes clear
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Figure 1: Illustration of the system we propose, utilizing the
Python programming language. Users can type their code
using one-character abbreviations, as on the left. Given a
whole abbreviated line, our model expands it using context
with near-perfect accuracy.

when we look at programming languages as a communi-
cation channel between programmers and computers. Us-
ing tools from information theory, researchers have provided
several arguments for why any efficient communication sys-
tem must allow for ambiguity when context is informative
about meaning (Piantadosi, Tily, and Gibson 2012; Fortuny
and Corominas-Murtra 2013; Solé and Seoane 2015).

While programming languages eliminate ambiguity by
design, it is still true that context carries significant pre-
dictive information about source code. This fact is exten-
sively exploited by autocomplete systems, which are per-
vasive in modern programming environments. Traditionally,
these systems predict completions of the code the user in-
tends to type. Because there is often high uncertainty about
which of the plausible completions was intended, autocom-
plete functionality usually offers users a list of their top
predictions. However, HCI researchers have observed that
the cost of picking between predictions can eliminate effi-
ciency gains users would gain from a predictive typing sys-
tem (Quinn and Zhai 2016; Palin et al. 2019). This issue
seems to pose a dilemma. One the one hand, the redundancy
of programming languages motivates predictive features to
reduce users’ typing effort. But on the other hand, asking
users to decide between multiple possible predictions brings
its own cognitive and efficiency cost.

In this work, we provide a way around this apparent con-
flict. To mitigate the verbosity of programming languages,
we propose a strategy for using ambiguity in a controlled
fashion to significantly reduce users’ typing effort. First, we
observe that keywords and identifiers constitute 75% of the
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characters in Python code in a sample of 1000 repositories
from Github1. Furthermore, the distribution of uses of such
keywords and identifiers is highly skewed. We find (Sec-
tion 4) a set of 100 keywords such that 75% of all lines of
Python code from our corpus contain at least one of them.
Moreover, simply abbreviating these keywords to their first
character compresses the entire corpus by 15%. Very much
like homonyms in natural languages, these abbreviations in-
troduce ambiguity: for instance, both return and range
are abbreviated as r. However, by using the context in which
the abbreviations occur, our model finds the correct expan-
sion of an abbreviated line of code with near-perfect accu-
racy. Intuitively, return and range are used in contexts
that are different enough for a model to be accurate in de-
termining which occurrences of r should expand to each, as
well as which occurrences should not be expanded at all. Our
model’s offline performance demonstrates that this intuition
holds for a significant number of abbreviations.

These results motivate a system in which users type a
whole line of code using these ambiguous short-hands, and
have the system then expand it back to valid code. Figure 1
illustrates how this feature, which we call pragmatic auto-
complete, works during user interaction. Users type code us-
ing abbreviations, like on the left. After typing an entire line
of code, the user presses a button that triggers our model’s
expansion prediction. This produces the line of code shown
on the right side, moving the cursor to the next line. Impor-
tantly, because of the model’s high accuracy, no user confir-
mation is necessary: occasional errors can be manually fixed
by the user, an event that becomes rarer the more the user
adapts to the system. We validate that this proposed feature
is usable and reliable in a user study, integrated with Mi-
crosoft VSCode’s text editor. In summary, this paper makes
the following contributions:

• We formulate the problem of Pragmatic Code Inference.
This simple formulation generalizes the problem that tra-
ditional autocomplete systems solve, while accommodat-
ing other solutions that simplify the process of writing
code.

• We describe an algorithm that proposes an optimal set
of one-character identifier abbreviations for a corpus of
code, and a model that can expand these abbreviations
with near-perfect accuracy.

• We evaluate the proposed system both in offline tasks in 3
programming languages, and also in a user study. While
the offline experiments demonstrate that the proposed sys-
tem is reliable and that context is an important feature, the
user study shows that it is easy to use and complementary
to the autocomplete feature present in popular text editors.

2 Related Work
Since typing on digital devices became a widespread activ-
ity, autocomplete is now a ubiquitous feature of text input
systems (Palin et al. 2019). These systems usually predict
the next characters or words that the user is about to type,
allowing users to confirm the prediction instead of typing

1https://github.com

it. Having high prediction accuracy is necessary in order to
effectively improve users’ typing rate (Trnka et al. 2009).
However, even with highly accurate systems, the cognitive
effort of verifying and choosing between suggestions often-
times overwhelms users and ends up reducing their effec-
tive speed. This effect has been repeatedly observed in the
Human-Computer Interaction (HCI) community (Koester
and Levine 1996; Trnka et al. 2009; Quinn and Zhai 2016;
Palin et al. 2019). To avoid this problem, our system finds
abbreviation that it is able to invert with close to 100% ac-
curacy, avoiding the need to consult the user on every pre-
diction. Our interaction flow is most similar in spirit to the
keyword-based autocomplete approach in (Lee, Hashimoto,
and Liang 2019). In the system they propose, users can type
out only the most informative words from the intended sen-
tence. Then, their model inserts at once all predictable words
that were left out. For example, the user might type “10 late”
expecting the system to complete the message “I will be 10
minutes late”.

For programming languages, models for code comple-
tion have been widely studied in the recent past (Raychev,
Vechev, and Yahav 2014; Asaduzzaman et al. 2014; Bielik,
Raychev, and Vechev 2016; Hashimoto et al. 2018; Svy-
atkovskiy et al. 2019; Svyatkovskoy et al. 2020). However,
despite the lessons from previous work in HCI, these code
completion systems are typically not evaluated with users.
To the best of our knowledge, only Pythia (Svyatkovskiy
et al. 2019) was integrated into a real code editor (Microsoft
Visual Studio). The authors describe several practical tech-
niques that they needed to make the feature fast enough to
be used during user interaction. However, they do not re-
port any experiments related to user efficiency. Because the
interaction model is known to be crucial to improve user’s
efficiency, we chose to not adapt these offline models our-
selves to attempt a comparison in our user study. Instead, we
compare it with the autocomplete feature from the popular
Microsoft VSCode editor.

3 Problem
While reducing typing effort for users is a common goal for
a large body of work, the specific formulation of the problem
that proposed systems attack varies widely. In this section,
we propose a simple formulation that unifies different ap-
proaches to the more general problem of helping users type
more efficiently, and then instantiate it to our particular so-
lution.

Suppose the user wants to type an intended line of code
l, from a universe L (e.g. lines of code in Python), in a con-
text c ∈ C (e.g. the previous lines of code in the file). In a
common typing environment, one option is always to type l
using |l| keystrokes, without any assistance. However, pre-
dictive features can be used to require less input. We formal-
ize this process as follows. A predictive typing system can be
broken down into 3 components: (i) a set of signals S, which
are strings that the user might type, (ii) a predictive function
pθ(l|s, c), that takes a user-provided signal s and its context
c, and outputs a probability distribution over L, and (iii) a
user interaction mechanism used to resolve ambiguity, when
the prediction generated by p is uncertain.
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Within this formulation, two common desiderata become
clear: we want a system to allow users to provide short sig-
nals S, while still having high predictive accuracy. Precisely,
suppose the user input is generated by a probability distribu-
tion with density P over triples (s, c, l), where s ∈ S is the
user-provided signal, c ∈ C is the context in which the sig-
nal was provided, and l ∈ L is the intended line of code.
Then, a predictive typing system will optimize the trade-off
between two goals. First, we want to maximize the compres-
sion the user gains when providing short signals instead of
directly providing the intended lines of code. We can define
the system’s compression CP as:

CP = 1− E(s,c,l)∼P

[
|s|
|l|

]
.

For example, a compression CP = 0.10 would mean that,
on average, users save typing 10% of the characters by using
the system’s predictive feature. Moreover, we want the pre-
dictions to have high accuracy. If the user provides signal s
under context c, the system’s best guess about the intended
line is the line l that maximizes pθ. Formally, we can de-
note this best-guess prediction by a prediction function l̂θ,
defined as:

l̂θ(s, c) = argmax
l

pθ(l|s, c) .

Then, the system’s accuracy Aθ is the probability of the
prediction l̂(s, c) being correct. Precisely,

Aθ = P
(
l = l̂θ(s, c)

)
.

Therefore, we define the problem of Pragmatic Code In-
ference as (i) designing the set of possible user signals S,
which determines CP, and then (ii) optimizing the system’s
predictive accuracy Aθ. From this formulation, we can ob-
tain traditional autocomplete systems by only allowing sig-
nals S to be well-formed prefixes of lines of code inL. Then,
pθ assigns probabilities to possible continuations of the pro-
vided prefix. However, predicting the full completion of a
line of code given a small prefix is in general not feasible.
Therefore, to be practical, such systems typically make pre-
dictions one or a few tokens at a time, with repeated inter-
actions with the user for each line of code. Consulting the
user every time the system performs a prediction seems in-
evitable, since the high uncertainty in determining what con-
tinuation the user wants is inherent to the problem. However,
this problem formulation makes evident that this uncertainty
stems from the choice of S. By choosing a different set of
signals S, one might hope to still achieve significant com-
pression while making prediction easier. This is the goal of
the approach we lay out next.

4 Approach
In this section, we provide our approach to building a pre-
dictive typing system in light of the formulation from Sec-
tion 3, including a solution to the Pragmatic Code Inference
problem. This involves designing a set of short user signals
S that are amenable to accurate inference given context. We

start by discussing higher-level design goals, and then de-
scribe the algorithms in each component of the system.

Design Goal: Avoid Disambiguation Interactions
As we observed before, the typical choice of autocomplete
systems of taking signals S that are prefixes of L limits them
to having low accuracy. This happens because there often are
multiple plausible completions of a prefix of a line of code,
depending on the user’s intent. Under this constraint, a final
user prompt to confirm every prediction is required for the
system to be usable. However, it is known from experimen-
tal observations in HCI that these interactions with predic-
tive systems might outweigh benefits in input compression.
Therefore, we instead aim at obtaining a model with enough
accuracy such that we can avoid as much as possible to in-
teract with users for resolving ambiguities. To that end, we
need to carefully design the set of signals S that our system
accepts. Our goal is to constrain S in a way that allows a
simple model to have high accuracy while still obtaining a
significant compression.

Abbreviations
Our approach takes inspiration from the efficiency of hu-
man communication. Over time, long words tend to be short-
ened, often collapsing into homonyms. But while most En-
glish words have multiple senses, context usually contains
enough information to disambiguate each word (Piantadosi,
Tily, and Gibson 2012). Since relevant context might come
after the word itself in a sentence, humans use the entire ut-
terance to make their final interpretation of individual words
(Lieberman 1963). These observations lead us to choose for
signals S, whole lines of code in which some short tokens
have multiple interpretations, analogous to words with mul-
tiple senses in natural languages. Specifically, we simply al-
low tokens belonging to a defined set to be shortened to their
initial character.

To choose the tokens that can be abbreviated in a prin-
cipled fashion, we directly maximize compression as de-
fined in Section 3. For such, assume we have a representa-
tive dataset D of code in the target programming language.
Given the number of desired abbreviations n, Algorithm 1
finds the set of n tokens that yield optimal compression
under the abbreviation scheme we described. First, the al-
gorithm splits all lines of code from D into tokens, build-
ing a token frequency table F . For each distinct token t
that occurs F [t] times in D, the number of characters we
would erase from D if occurrences of t were replaced by t1
(the first character of t) is exactly (|t| − 1) × F [t]. Since
we’re only considering whole tokens, deciding to abbrevi-
ate one token t (e.g. the keyword return) does not influ-
ence other tokens that have t as a substring (e.g. a variable
called returnValue). Therefore, the decision for each
token is independent, and the optimal choice for n tokens
is to greedily take those that maximize (|t| − 1) × F [t].
FindAbbreviatableSet returns a list of such n tokens, or-
dered by their contributions to compression.

While this set optimizes compression, in practice we
would also like to have a method for tuning the sys-
tem’s accuracy. Algorithm 2 provides such a mechanism.
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Given an ordered list obtained by FindAbbreviatableSet,
CapCollisions modifies it so that for each character, there
are at most c possible expansions for it. Naturally, in case
the number of expansions surpasses the limit, it keeps the
c alternatives that contribute the most to compression. This
parameter c of CapCollisions provides a knob for trading
compression for better performance. A smaller c increases
potential accuracy, since there are less options to choose
from. In addition, it also bounds the number of options that
need to be evaluated at runtime, giving users a simple way
to calibrate the system’s responsiveness depending on the
available hardware.

Function FindAbbreviatableSet(D, n)
F [·]← 0
foreach l ∈ D do

foreach t ∈ tokenize(l) do
F [t]← F [t] + 1

end
end
T ← F .keys().sort(λt . (|t| − 1)×−F [t])
return T [1...n]

Algorithm 1: Finds a list of n tokens that maximize
compression on a dataset D of lines of code, when those
tokens are abbreviated to a single character.

Function CapCollisions(T , c)
T ′ ← [ ]
for i← 1 to |T | do

if T ′.count(λt . t1 = T [i]1) < c then
T ′.append(T [i])

end
return T ′

Algorithm 2: Removes elements from a list of tokens
T so that the number of potential expansions for any ab-
breviation is limited by c. This allows users to smoothly
trade-off compression for higher accuracy.

Expanding Abbreviations
With a fixed abbreviatable set S obtained by combining Al-
gorithms 1 and 2, we can now train a neural network to in-
vert these abbreviations. During training, we assume a max-
imally terse user, that uses all abbreviations whenever pos-
sible. This process is illustrated in Figure 2. We start with a
dataset D of code (a), containing lines of code paired with a
fixed number of K lines that preceded it in its original file2.
We also have the set S , depicted in (b). After sampling one
line from D (e.g. return self.request.size()),
we abbreviate all tokens in it that belong to S , obtaining an
abbreviated line (e.g. r s.r.size(), shown in (c)). We
then feed this shortened line into a standard character-based
sequence-to-sequence model with attention (d), trained with
teacher forcing to recover the original line (e). Context is

2The context will contain less than K previous lines for samples
taken from the top K − 1 lines of a file.

Figure 2: Architecture and training of the conditional lan-
guage model that expands abbreviations. We start with a
dataset (a) and a set S of abbreviatable tokens (b). During
training, we get a sample line of code, apply all possible
abbreviations (c), and feed it into a contextual sequence-to-
sequence model (d) that is trained using teacher forcing to
recover the original line (e).

embedded using an one-dimensional convolutional layer fol-
lowed by max-pooling, and fed into the network using Con-
catCell (Jaech and Ostendorf 2018). The same character em-
beddings are used for the signal and the context, and are
learned end-to-end during training. With this procedure, we
obtain a model for pθ(l|s, c).

During test time, the set of possible expansions for any
signal s can be directly enumerated by using the set S .
Because of the abbreviation scheme we use, only single-
character tokens in the input are candidates for expansion.
Each of those can either remain as they are or be expanded
to one of the strings in S that start with that character. Instead
of having the neural network output l, which sometimes
produces errors unrelated to the abbreviations, we instead
enumerate the potential expansions with beam search, using
pθ(l|s, c) to rank them. We normalize the log-probability of
each candidate by its length, otherwise expansions would be
naturally discouraged for making the output longer. If the set
S was post-processed by CapCollisions, the branching
factor during beam search is bounded by c. As we show in
Section 5, this system is already useful when c is set to num-
bers ranging from 2 to 4, which guarantees good responsive-
ness during use.

Personalization
The described training procedure assumes a dataset of rep-
resentative source code in a given programming language.
However, one specific user or project might use libraries,
names or coding patterns that are not globally common. The
generic aspect of the set S is apparent when we inspect
the abbreviatable tokens we obtain for our Python, Java and
JavaScript datasets. Besides the basic keywords of each lan-
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guage, we find class and function names mostly belonging
to standard libraries. Thus, in order to maximize the com-
pression our system yields to one particular user, we want to
be able to personalize it.

Assuming the user has a small corpus of existing code,
this personalization of the model can be done by starting
with a pre-trained model, and then simply (i) using Algo-
rithm 1 to find the list of tokens Tuser that maximizes com-
pression for the user’s code base, and then (ii) fine-tuning
the neural model using the user’s code, exactly as done in
training. As we report in Section 5, applying this straightfor-
ward adaptation step to a single code repository significantly
boosts the compression the system yields, while maintaining
high accuracy. Moreover, this procedure is efficient enough
to run on a commodity CPU for a medium-sized repository.
To give a concrete idea, fine-tuning to a repository with 10k
lines of Python takes less than 5 hours on a modern laptop.
This is important since individual users may not have GPUs,
and sending code to an external server brings potential pri-
vacy concerns.

User Interaction
Initially, the user does not know which keywords can be ab-
breviated. To allow for a smooth learning curve, our pro-
totype highlights tokens in the set S when the user types
them in their full form. This communicates, without inter-
ruption, that the user might choose to abbreviate that token
the next time it is needed. Despite this cuing, there may be
a substantial learning curve while users internalized which
tokens can be shortened. To expand abbreviations, the user
presses a shortcut once after an entire line is typed – that line
is expanded and the cursor moved to the next.

5 Experimental Results
In this section, we assess how well the pragmatic autocom-
plete system we described meets the goals of allowing con-
cise inputs, having high accuracy and being usable to hu-
mans. We implemented3 our algorithms and models using
the PyTorch 1.6.0 library (Paszke et al. 2019). To train and
evaluate our models, we collected a dataset of code from
open source repositories in Python, Java and JavaScript, the
3 programming languages that were ranked as the most pop-
ular in the Stack Overflow Developer Survey 20204. We ran
all experiments on a server with an NVIDIA™ TITAN™ Xp
GPU with 12GB of memory. Architecture details and param-
eters can be found in the Appendix. We use this prototype to
answer the following research questions:

1. How accurate is the model in expanding abbreviated lines
from a maximally terse user? Is context, both in the form
of previous lines and words surrounding an abbreviation
within-line, important to obtaining high accuracy?

2. Does the model allow for a smooth trade-off between
compression and accuracy, as we change parameters?

3. What is the impact of fine-tuning the model on a particular
repository in terms of accuracy and compression?
3Code is available at https://github.com/gpoesia/magicomplete
4https://insights.stackoverflow.com/survey/2020

4. Can human users benefit from using our pragmatic auto-
complete feature to type code?

Dataset
We used the Github API to collect a list of 7 million public
repositories. From these repositories, we sampled 105 files
of source code written in each of our target programming
languages. We split these files into training/validation/test
sets using a standard 80%/10%/10% split. From each file,
we extract 20 examples of lines of code along with the 10
previous lines as its context. These limits are not reached
in small files or in the first lines of a file. This gives us a
dataset of roughly 1.3 million lines of code with context in
each language.

Accuracy and Context
First, we evaluate how accurate our model is in expand-
ing abbreviations produced by a maximally terse user. In
this experiment, for each programming language, we use
FindAbbreviatableSet on the training set to compute
a set of 100 abbreviatable strings. Here, we use the entire
obtained set, without capping the number of collisions (i.e.
without CapCollisions). We then abbreviate all exam-
ples in the test set, and evaluate the model’s accuracy in re-
constructing the original line. We vary the number of pre-
vious lines given as context to our model. As a fully non-
contextual baseline, we use an LSTM-based language model
for each language to rank potential expansions. The results
we obtained are in Table 1. We observe that the two forms
of context that we consider are both important to obtain high
accuracy results. This observation is consistent across pro-
gramming languages. For all of them, a Conditional Lan-
guage Model (CLM) that takes no previous lines performs
significantly better than a Language Model (LM) that does
not consider the user signal, but instead ranks alternatives in
an isolated manner (i.e. asking how likely a given expansion
is regardless of the user signal).

Adding previous lines as context improves further. The
best context size depends on the programming language. Af-
ter a certain point, adding more context will have minimal or
even negative impact in accuracy. Indeed, given our architec-
ture, providing distant context could dilute the useful infor-
mation in nearby context: since context is embedded using
convolutions and max-pooling, each dimension of its repre-
sentation intuitively tells whether a given pattern (matched
by a convolution kernel) occurs at least once in the context.
That signal is informative when it refers to lines of code that
are nearby, but less so when the occurrence of the pattern
is distant from the current line. Overall, given the gains we
observed when using small contexts, we can give a positive
answer to our first research question: using context to inter-
pret user signals is useful, and it is possible to obtain high
top-1 accuracy with a simple contextual model.

Ambiguity and Compression
We now evaluate the trade-off between compression and
accuracy that CapCollisions provides, again considering a
maximally terse user. A degenerate model that allows no
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Model Python Java JavaScript
LM 0.746 0.817 0.736

CLM, ctx size 0 0.908 0.942 0.880
CLM, ctx size 1 0.924 0.957 0.907
CLM, ctx size 3 0.938 0.963 0.925
CLM, ctx size 5 0.942 0.963 0.931
CLM, ctx size 7 0.945 0.963 0.926

Table 1: Top-1 accuracy of our Conditional Language Model
(CLM) given a context of varying size, and a non-contextual
Language Model (LM), in a reconstruction task that consid-
ers a maximally terse user.

Figure 3: Accuracy/compression trade-off for our Condi-
tional Language Model, varying the maximum number of
elements we allow in the abbreviatable set that start with the
same character (parameter c of CapCollisions).

collision in any of the characters, obtained by setting c = 0
(i.e. no abbreviations), necessarily obtains 100% accuracy,
since there is no abbreviation to expand. For the same rea-
son, it also yields 0% compression. When we increase c, we
would like to see only small losses in accuracy with signifi-
cant improvements in compression. This is indeed what we
find (Figure 3). The gains in using even small values of c are
significant: with c = 3, we get roughly 15% compression in
Python and JavaScript, and above 20% compression in Java.
Meanwhile, accuracy remains high – ranging from 93% to
99% depending on c and the programming language. These
observations allow a positive answer to our second research
question: the contextual model provides a smooth trade-off
between compression and accuracy.

Figure 4: Compression obtained in 30 repositories before
and after fine-tuning the system.

Adaptation and Fine-tuning
Particular repositories may have very different statistics than
the language as a whole (for instance, due to heavy use of
libraries and repository-specific helper functions). This sug-
gests that adapting our system to a given repository may be
useful. To evaluate this idea we uniformly sampled 10000
Python repositories from our corpus. Most repositories on
Github are rather small, with a median of only 4 files. Fine-
tuning the system for a project is more reliable when we
have enough data to both train and evaluate the updated
model. Therefore, we took 30 random repositories among
the 100 largest in our sample. We did not attempt to find op-
timal configurations for any particular repository; this exper-
iment was only run once, splitting the files in each repository
into 80% for training and 20% for evaluation. We start with
our generic Python model with 100 abbreviations. Then, for
each repository, we recompute the optimal abbreviatable set,
and then fine-tune the model for 10 epochs on the specific
repository data.

When applying all abbreviations in each repository be-
fore and after the abbreviatable set is adapted, the benefits
of fine-tuning become clear. The distribution shifts towards
higher compressions, as shown in Figure 4. Indeed, the me-
dian compression rises from 13.8% without adaptation to
17.7% with.

This gain is only useful if accuracy is maintained. Accu-
racies of the generic model gets in each repository are fairly
high, with a median of 93.5%. After we adapt the abbrevia-
tions, but before the model is fine-tuned, these accuracies
drop significantly, to a median accuracy of 75.7%. Thus,
the model does not adapt to new abbreviations in a zero-
shot manner. After fine-tuning with the new abbreviations,
however, we again observe high accuracies in all repos-
itories, with a similar distribution as before. The median
accuracy drops slightly, to 91%, which could potentially
be improved by using CapCollisions and tuning hyper-
parameters. These results allow us to give a positive answer
to our third research question: fine-tuning to a specific repos-
itory further improves performance.

User Study
We integrated our prototype of pragmatic autocomplete in
Microsoft VSCode, the most popular code text editor in the
Stack Overflow Developer Survey 20195. VSCode’s editor
component can be executed in a Web environment. It has all
editing features available in the offline version, including it’s
default autocomplete that predicts the next token while the
user types. We recruited 10 participants, who were students
at redacted. Participants were shown 5 Java code snip-
pets, on the left side of the screen, one at a time, and had to
type it on the right side as fast as possible using four different
autocomplete conditions: “No autocomplete”, “Pragmatic”,
“VSCode default”, or “VSCode+Pragmatic“. The snippets
were up to 10 lines of code, randomly sampled from our
dataset before the experiment. Each participant saw each
snippet in each condition, with order of snippets and con-
ditions randomized. Before each condition, they watched a

5The 2020 survey did not ask about development environments.
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short video that showed how the editor works with the auto-
complete feature that they were about to use. In total, the ex-
periment took from 25 to 50 minutes. Participants accessed
the experiment interface from their own computers. (Our
model was running on a shared server with no GPU, and
a Intel™Xeon™2.40GHz CPU.) We measured users’ effec-
tive typing speeds and number of keystrokes needed to type
each snippet in each setting. After the experiment, partici-
pants filled a survey asking about the frequency with which
they use VSCode, which of the 4 settings they would most
like to use, and an optional free-form comment about their
experience during the task.

Typing speeds in the three autocomplete settings are
shown in Figure 5; here we used the “No autocomplete” set-
ting to normalize our measures in other settings, since typ-
ing speeds varied widely between participants (ranging from
127 to 421 characters per minute in a snippet). We notice
that there is a learning curve for our pragmatic autocom-
plete, with users increasing typing speed over the course of
usage. By the last snippet, using both autocomplete features
users were on average 9.3% faster than not using any auto-
complete (7.4% with just Pragmatic Autocomplete). This is
still lower than what users obtained by using VSCode’s auto-
complete alone: in that setting, in the last snippet, users were
13% faster than not using any autocomplete. Typing speed
doesn’t improve across trials using only VSCode’s features.
This is expected since VSCode’s autocomplete is very simi-
lar to other editors, furthermore most users were already fa-
miliar with VSCode: in a survey, only 3 users reported never
or rarely using VSCode, while the other 7 use it occasionally
or as their primary editor.

The picture is different when we look at the number of
keystrokes participants needed. A visualization of this result
is shown in Figure 6. We find Pragmatic Autocomplete re-
duces the number of keystrokes when added to either the
“No autocomplete” or to the “VSCode default” setting. In
the last two snippets in the setting “VSCode+Pragmatic”
participants used only 83.8% of the keystrokes they needed
without autocomplete, compared to 88.3% with just VS-
Code’s autocomplete. These systems are thus complemen-
tary. (Indeed, our feature focuses on reducing the effort to
type very frequent tokens. Users typically ignore traditional
autocomplete for those, as they would need to shift attention
to the prompt. On the other hand, our autocomplete does
not yet expand local identifiers, which VSCode does.) The
observed keystroke savings indicate that, with enough famil-
iarity with our system and a lesser need to stop and confirm
that it did what was expected, typing speeds should improve.
To observe significant typing speed gains over traditional
autocomplete, we would likely need to observe users for a
longer period. Furthermore, we would ideally observe pro-
grammers in a more natural setting, since the task used here–
copying code–is significantly different than programming.

When asked to rank which setting they would most likely
use, all 10 participants reported they would enable both au-
tocomplete systems. If they had to choose just one, 9 par-
ticipants would prefer the more familiar default autocom-
plete, and no participant would prefer having no autocom-
plete. Overall, these results provide positive evidence for our

Figure 5: Average user typing speed using each autocom-
plete setting in each snippet that each participant typed (nor-
malized by speed not using autocomplete for the same snip-
pet). Error bars are bootstrapped 95% confidence intervals,
and we show the best regression line. Typing speed started
below 1 for Pragmatic and VSCode+Pragmatic, but im-
proved significantly during the experiment (R2 = 0.53 and
0.74, respectively). Typing speed in VSCode was higher, but
improved less throughout the task (R2 = 0.15).

Figure 6: Average keystrokes users needed to type two con-
secutive snippets, as the experiment progresses. Counts are
normalized by “No autocomplete”, and shown with 95%
bootstrapped confidence intervals. Pragmatic Autocomplete
increasingly adds savings on top of No autocomplete and
VSCode.

fourth research question: Pragmatic Autocomplete is usable
and complements traditional systems.

6 Conclusion

The goal of autocomplete systems in programming is to pro-
vide users with a more efficient interface for typing code.
This has traditionally been accomplished by predicting con-
tinuations of prefixes of the input, but that does not need to
be the case. We thus proposed a Pragmatic Autocomplete
system, that allows for ambiguity at the level of keywords
and identifiers. Our approach was inspired by the way nat-
ural language embraces ambiguity, which can then be re-
solved in context. Our model achieved high accuracy dis-
ambiguating abbreviations in context, in a way that comple-
ments traditional autocomplete systems. We hope that this
new formulation of predictive typing systems can open up
other avenues of research in designing intuitive and compact
user signals that a model can interpret, yielding more effi-
cient forms of communication between users and machines.
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A Architecture Details
The neural model we described in Section 4 uses an LSTM
with 512 hidden units for both the bidirectional and the de-
coder, and 50-dimensional character embeddings. We em-
bed context into a 128-dimensional vector. All models were
trained for 10 epochs, using the Adam optimizer with a
learning rate of 0.0005 and β = (0.9, 0.999), and a batch
size of 512. The learning rate was set by doing simple search
over 10−i and 5 × 10−i for i ∈ {1, 2, 3, 4, 5}, using valida-
tion accuracy to pick the value we used in later experiments.
The size of our character and context embeddings were not
tuned, and batch size was set to the maximum power of two
that fit in our GPUs. One epoch on roughly 1 million training
examples takes about one hour. On our CPU, processing one
example typically takes between 80 and 150 milliseconds,
depending on how many expansions have to be evaluated.
The model can potentially be made smaller with similar per-
formance by tuning all parameters altogether, but we did not
attempt to do so.

Similarly, the Language Model baseline is a vanilla
LSTM with a hidden layer size of 512. We tested the same
set of learning rates, and found the same value of 0.0005 to
work best.
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