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Abstract

Autoregressive models using Transformers have emerged as
the dominant approach for music generation with the goal
of synthesizing minute-long compositions that exhibit large-
scale musical structure. These models are commonly trained
by minimizing the negative log-likelihood (NLL) of the ob-
served sequence in an autoregressive manner. Unfortunately,
the quality of samples from these models tends to degrade
significantly for long sequences, a phenomenon attributed to
exposure bias. Fortunately, we are able to detect these fail-
ures with classifiers trained to distinguish between real and
sampled sequences, an observation that motivates our explo-
ration of adversarial losses to complement the NLL objective.
We use a pre-trained Span-BERT model for the discriminator
of the GAN, which in our experiments helped with training
stability. We use the Gumbel-Softmax trick to obtain a differ-
entiable approximation of the sampling process. This makes
discrete sequences amenable to optimization in GANs. In ad-
dition, we break the sequences into smaller chunks to ensure
that we stay within a given memory budget. We demonstrate
via human evaluations and a new discriminative metric that
the music generated by our approach outperforms a baseline
trained with likelihood maximization, the state-of-the-art Mu-
sic Transformer, and other GANs used for sequence genera-
tion. 57% of people prefer music generated via our approach
while 43% prefer Music Transformer.

Introduction
At present, neural sequence models are generally trained to
maximize the likelihood of the observed sequences. This en-
sures statistical consistency but it can lead to undesirable
artifacts when generating long sequences. While these ar-
tifacts are difficult to suppress with maximum likelihood
training alone, they are easily detected by most sequence
classifiers. We take advantage of this fact, incorporating an
adversarial loss derived from GANs. To illustrate its bene-
fits, we demonstrate improvements in the context of sym-
bolic music generation.

Generative modeling as a field has progressed signifi-
cantly in recent years, particularly with respect to creative
applications such as art and music (Briot, Hadjeres, and Pa-
chet 2017; Carnovalini and Rodà 2020; Anantrasirichai and
∗Equal contribution, corresponding authors.
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Bull 2020). A popular application is the generation of sym-
bolic music, a task that presents unique challenges not found
in text generation due to polyphony and rhythm. At the same
time, generating symbolic music can be simpler than audio
generation due to the higher level of abstraction. Many lan-
guage models from the NLP literature have been applied and
extended to music generation. Since we build on this line of
work, we use the terms sequence models and language mod-
els interchangeably throughout, depending on the context in
which a model is mentioned.

Neural models for music sequences convert a digital rep-
resentation of a musical score into a time-ordered sequence
of discrete tokens. Language models are then trained on the
event sequences with the objective of maximizing the likeli-
hood of the data. Music can then be generated by sampling
or beam-decoding from this model. Recent advancements in
Natural Language Processing (NLP), especially the atten-
tion mechanism and the Transformer architecture (Vaswani
et al. 2017), have helped advance state of the art in symbolic
music generation (Huang et al. 2018; Payne 2019; Donahue
et al. 2019). Music Transformer (Huang et al. 2018) and
MuseNet (Payne 2019) use relative attention and sparse ker-
nels (Child et al. 2019) respectively to remember long-term
structure in the composition. More recent works in music
generation (Donahue et al. 2019; Huang and Yang 2020;
Wu, Wang, and Lei 2020) adopt the TransformerXL archi-
tecture (Dai et al. 2019) which uses recurrent memory to
attend beyond a fixed context.

Despite recent improvements, these approaches exhibit
crucial failure modes which we argue arise from the training
objective; Music Transformer (Huang et al. 2018) occasion-
ally forgets to switch off notes and loses coherence beyond a
few target lengths as stated by the authors. Sometimes it pro-
duces highly repetitive songs, sections that are almost empty,
and discordant jumps between contrasting phrases and mo-
tifs. Consequently, music generated by such models can be
distinguished from real music by a simple classifier. This
suggests that a distribution distance, such as the discrimi-
native objective of a GAN (Goodfellow et al. 2014) should
improve the fidelity of the generative model.

Unfortunately, incorporating GAN losses for discrete se-
quences can be difficult. Computing the derivative of the
samples through the discrete sampling process is challeng-
ing. As such, many models (de Masson d’Autume et al.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

408



2019; Nie, Narodytska, and Patel 2019) are limited to 20-
40 token-length sentences, in contrast to the more than 1000
tokens required for minutes-long musical compositions.
We leverage the Gumbel-Softmax (Kusner and Hernández-
Lobato 2016) trick to obtain a differentiable approxima-
tion of the sampling process. Moreover, we use the Trun-
cated Backpropagation Through Time (TBPTT) (Sutskever,
Vinyals, and Le 2014) for gradient propagation on long se-
quences. The latter keeps memory requirements at bay.

Recent works on evaluation metrics in text genera-
tion (Salazar et al. 2019; Zhang et al. 2019; Montahaei,
Alihosseini, and Baghshah 2019) suggest that BERT-based
scores (Devlin et al. 2018) are well correlated with human
rankings and jointly measure quality and diversity. As BERT
is trained using a self-supervised loss on bidirectional con-
texts of all attention layers, it can be an effective way of ex-
tracting representations. We use them to obtain an effective
metric for the generative aspect of the model.

Experiments show that the resulting Transformer-GAN
improves over its vanilla counterpart. We evaluate the per-
formance using the music quality metric of (Briot, Hadjeres,
and Pachet 2017) and a number of more conventional met-
rics. In summary, our main contributions include:

• A novel Transformer-GAN approach for generating long
music sequences of over 1000 tokens, using a pretrained
SpanBERT as the discriminator.

• A detailed investigation of the influence of pretraining,
loss functions, regularization, and number of frozen layers
in the discriminator on music quality;

• A number of critical tricks for adversarial training;
• A classifier-based metric to evaluate generative models.

Related Work
Generative models for sequences have a long history, from
n-gram Markov-models to HMMs, to the more recent surge
of neural sequence modeling research with the rise in popu-
larity of LSTMs in the early 2010s (Hochreiter and Schmid-
huber 1997; Sutskever, Vinyals, and Le 2014; Briot, Had-
jeres, and Pachet 2017). To apply sequential models to poly-
phonic music, the musical score (or performance data) is
typically serialized into a single sequence by interleaving
different instruments or voices (Oore et al. 2018).

Owing to their ability to model correlations at multiple
timescales over long sequences, self-attention -based archi-
tectures are increasingly popular for generative music. Mod-
els such as the Transformer (Vaswani et al. 2017) can ac-
cess any part of its previously generated output, at every
step of generation. Two popular models, the Music Trans-
former (Huang et al. 2018) and MuseNet (Payne 2019) use
Transformer decoders to generate music. Music Transformer
uses the relative attention mechanism (Shaw, Uszkoreit, and
Vaswani 2018) to generate long-term music structure at the
scale of 2000 tokens. MuseNet adds several learned embed-
dings to guide the model to learn structural context. These
embeddings were handcrafted to capture information related
to chords and passage of time. Choi et al. (2019) uses Trans-
former encoders and decoders to harmonize or generate ac-
companiments to a given melody.

These autoregressive models all follow the standard
teacher forcing strategy where one trains always to pre-
dict the next token, given a real sequence of the previ-
ous tokens as context. While models of the form p(x) =∏
i p(xi+1|x[1:i]) are statistically consistent, they suffer

from an amplification of prediction errors: when generating
a sequence, we end up conditioning on previously generated
sequences (here, synthetic music) to produce the next note.
The problem emerges because we condition on data that is
distributionally unlike that seen at training time. This is a
well known problem in sequence modeling (Bengio et al.
2015; Ranzato et al. 2015).

GANs (Goodfellow et al. 2014) have been applied to sev-
eral domains as an alternative to maximum likelihood train-
ing, but directly applying GANs to sequence generation is
known to be difficult (Lu et al. 2018). This is due to a number
of reasons—training tends to be unstable, and these models
tend to exhibit a phenomenon called mode collapse, where
part of the input distribution’s support is not covered by the
generative model.

Language models are inherently discrete, since they in-
volve sampling from a multinomial distribution of to-
kens. One option is to use an empirical average of
Ex∼p(x)[∂θ log pθ(x)], i.e. of the gradient of the log-
likelihood of the data. This leads to the well-known REIN-
FORCE algorithm (Williams 1992) and the application of
Reinforcement Learning machinery (Wu, Li, and Yu 2020;
Yu et al. 2017; Guo et al. 2018). It’s best to view the result-
ing problem as one of a sequential decision-making process
where the generator is the agent, the state comprises the gen-
erated tokens up to that time and the action is the next token
to select. The generator is then trained via policy gradient
with several designed reward functions (Lu et al. 2018).

An alternative is to obtain a continuously differentiable
approximation of the sampling process via the Gumbel-
Softmax (Kusner and Hernández-Lobato 2016). This yields
a distribution over the token probability simplex. Nie, Naro-
dytska, and Patel (2019) combine this with a relational mem-
ory based generator (akin to memory networks) and multi-
ple embedded representations in the CNN discriminator. Wu
et al. (2020) propose a new variational GAN training frame-
work for text generation using a connection between GANs
and reinforcement learning under a variational perspective.

Lastly, Zhang (2020) proposes an adversarial framework
that uses Transformers for both the generator and discrimi-
nator. The author trained the GAN with a local and global
reward function, noting that ”a specific note should be in
harmony with in its local pattern and the whole sequence
should be in harmony with its global pattern”.

Our proposed model combines GANs with Transformers
to generate long, high-quality music sequences. It differs
from previous works in the following ways:
• We use the Transformer-XL as our generator and pre-

trained BERT as the discriminator;
• We pretrain the BERT discriminator in the SpanBERT

style (Joshi et al. 2020);
• We design an algorithm using the Gumbel-Softmax trick

and a variant of the Truncated Backpropagation Through
Time (TBPTT) algorithm (Sutskever, Vinyals, and Le
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2014) to train on long sequences.
We are unaware of prior work studying self-supervised pre-
training of the discriminator and its influence on generation.

Methodology
The key challenge is to make long sequence generation in
GANs practical. We begin with an overview of data repre-
sentation and training objectives, followed by a discussion
of the network architecture, for generation and discrimina-
tion. We conclude with a list of useful tricks and techniques.

Data Representation
We take a language-modeling approach to train genera-
tive models for tokens. Picking a representation matching
(Huang et al. 2018) allows us to compare directly to the Mu-
sic Transformer in terms of its log-likelihood. More specif-
ically, we use the encoding proposed by Oore et al. (2018),
which consists of a vocabulary of 88 NOTE ON events, 88
NOTE OFFs, 100 TIME SHIFTs, and 32 VELOCITY bins.
This allows for expressive timing at 10ms and expressive
dynamics.

Maximum Likelihood
Given a music sequence x = [x1, x2, ..., xn], we model the
unknown data distribution pr(x) autoregressively as

pθ(x) =

n∏
t=1

pθ(xt|x1, ..., xt−1).

Language models are typically trained using Maximum
Likelihood. We seek a weight vector θ to minimize

Lmle = −Exr∼pr [log pθ (x
r)] . (1)

Despite its attractive theoretical properties, maximum
likelihood training suffers from many limitations, e.g. when-
ever the model is misspecified. This is illustrated by (Isola
et al. 2017) in image-to-image translation, where no ex-
plicit loss function is available. Furthermore, teacher forc-
ing introduces exposure bias (Bengio et al. 2015; Holtz-
man et al. 2019)—a distributional shift between training se-
quences used for learning and model data required for gen-
eration. This amplifies any errors in the estimate, sometimes
creating strange, repetitive outputs.

Adversarial Losses
We address this problem by incorporating an adversarial loss
into our objective. That is, we cast our model as generator
Gθ and ensure that the sequences obtained from it match
those on the training set as assessed by an appropriate dis-
criminator Dφ. For our discriminator, we select a BERT
model pretrained on music. We also regularize Dφ to pre-
vent overfitting. During training, we alternate updates be-
tween the generator and discriminator objectives:

LG = Lmle[Gθ] + λLgen[Gθ] (2)
LD = Ldisc[Dφ] + γLreg[Dφ] (3)

Here λ, γ > 0 are hyperparameters. We investigate sev-
eral choices for Lgen, Ldisc and Lreg: the gradient penalty of
WGANs (Gulrajani et al. 2017), RSGAN losses (Jolicoeur-
Martineau 2018), and PPO-GAN’s loss (Wu et al. 2020).

WGAN With Gradient Penalty Loss

Lgen = −Exf∼pθ [Dφ(x
f )] (4)

Ldisc = −Exr∼pr [Dφ(x
r)] + Exf∼pθ [Dφ(x

f )] (5)

Lreg = Ex̂∼px̂ [(‖∇x̂Dφ(x̂)‖2 − 1)2] (6)

Dφ is assumed to be a 1-Lipschitz continuous function. The
smoothness is enforced with the gradient penalty loss. x̂ is
drawn uniformly along straight lines (in embedding space)
between pairs of points sampled from pr and pθ.

RSGAN Loss The effective discriminator, C(xr,xf ) de-
fined in terms of Dφ estimates the probability that the given
real data is more realistic than randomly sampled fake data
(σ is the sigmoid function).

C(xr,xf ) = σ(Dφ(x
f )−Dφ(x

r)) (7)

Lgen = −E(xr,xf )∼(pr,pθ)[log(C(x
r,xf ))] (8)

Ldisc = −E(xr,xf )∼(pr,pθ)[log(1− C(x
r,xf ))] (9)

PPO-GAN Loss Gθ is treated as a policy and Dφ as a re-
ward function. It transforms the conventional GAN objective
as L(θ, q) = Eq[Dφ(x)]−KL(q(x)||pθ(x)) by introducing
an auxiliary non-parametric function q(x). Using the EM al-
gorithm to alternatively optimize for q and θ leads to

Lgen = −Exf∼pθ [Dφ(x
f )] + KL(pθ(x) || pθ(t)(x)) (10)

Ldisc = Exr∼pr [Dφ(x
r)]− log(

∫
x

pθ(t)(x)exp{Dφ(x)}dx)

(11)

Lreg = Ex̂∼px̂ [(‖∇x̂Dφ(x̂)‖2 − 1)2], (12)

where pθ(t) is the generator distribution at the previous iter-
ation. The KL penalty term is enforced using a clipped sur-
rogate objective as in Proximal Policy Optimization (PPO)
(Schulman et al. 2017). This loss also enforces 1-Lipschitz
continuity in Dφ using a gradient penalty regularizer.

Transformer-GAN Architecture
Generator We use Transformer-XL (Dai et al. 2019)
which introduces the notion of recurrence into the deep self-
attention network. Instead of computing the hidden states
from scratch for each new segment, it reuses the ones ob-
tained in previous segments. These states serve as memory
for the current segment, which builds up a recurrent con-
nection between the segments. This makes it possible to
model very long range dependencies, since information can
be propagated through the recurrent connections. Note that
our approach applies equally to other SOTA Transformers.

Discriminator Transformer-GANs differ from other ef-
forts to incorporate GAN losses into sequence modeling (Lu
et al. 2018) in the choice of discriminator. Training GANs
using the Transformer as generator is a difficult problem
(Chen et al. 2020b; Zhang 2020) since training dynamics,
memory overhead and the generator and discriminator losses
need to be carefully balanced. In prior work, CNNs have
proven to be useful discriminators for text generation (Kim
2014). The CNN-based discriminator in (Nie, Narodytska,
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and Patel 2019) uses multiple embedded representations to
provide more informative signals to the generator.

In this work, we propose using BERT as the discrimina-
tor to extract sequence embeddings followed by a pooling
and linear layer. The bidirectional transformer is compara-
ble in capacity to the transformer-based generator and uses
the self-attention mechanism that captures meaningful as-
pects of the input music sequence. We speculate that this
would help the discriminator provide informative gradients
to the generator and stabilize the training process. Inspired
by the observation by Mo, Cho, and Shin (2020) for im-
ages, we conjecture that freezing earlier layers of the pre-
trained discriminator in language GANs is a GAN transfer
learning technique that is not prone to overfitting. Freezing
layers in a pretrained discriminator, according to Mo, Cho,
and Shin (2020) can be viewed as transfer learning, where
we transfer knowledge useful for generation from a differ-
ent dataset in the form of music representations. The lower
layers of the discriminator—closest to the generator learn
generic features of text—while the upper layers learn to clas-
sify whether the text is real or fake based on the extracted
features.

Unlike Mo, Cho, and Shin (2020), where the discrim-
inator is transferred between trained GANs on different
datasets, we reshape this idea into a form that resembles rep-
resentation learning in NLP. We pretrain our discriminator
on the same dataset we train on using a self-supervised loss
and test the hypothesis that the resulting learnt bidirectional
representations are useful for the discriminator to classify
real and fake data. In our setup, we simply freeze the lower
layers of the discriminator and only fine-tune the upper lay-
ers. As we will show in Table 2, this achieved good perfor-
mance on various proposed metrics.

SpanBERT style self-supervised pretraining, where we
predict spans of masked tokens, enables the model to
learn span representations. We hypothesize that span rep-
resentations are better inductive biases for modeling co-
herence in music, as music is composed in spans of notes
or chords. Given a masked span xmask comprising tokens
(xs, ..., xe) ∈ x, the Masked Language Model (MLM) ob-
jective from SpanBERT for each token xi ∈ xmask is

LMLM (xi) = − log(P (xi|x\mask)), (13)

where x\mask = {y | y ∈ x and y /∈ xmask}. Freezing the
discriminator also reduces the number of trainable parame-
ters and training memory requirements, that are usually bot-
tlenecks when training on long sequences.

Tricks Of Adversarial Training
The adversarial training in (3) involves generating discrete
samples xf ∼ pθ(x) autoregressively from the generator
to feed into the discriminator. However, several issues ex-
ist in generating and training on these discrete samples, e.g.,
the non-differentiable sampling step, the repetition and high
variance in generated samples, the high memory and com-
pute complexity during backpropagation, and the instability
during GAN training. In this section, we highlight a few crit-
ical tricks to address these issues.

Gumbel Softmax The discrete samples are generated se-
quentially. To generate the next token xft+1, we sample from
the multinomial distribution softmax(ot) on the vocabulary
set V which can be formulated as xft+1 ∼ softmax(ot).

Here ot ∈ IRV denotes the output logits from the genera-
tor obtained by attending over the past tokens {xf1 , .., x

f
t }.

However, this sampling process is not differentiable, as the
derivative of a step function is 0 or undefined everywhere.

To deal with this, we reparameterize the sampling opera-
tion using the Gumbel-Max trick as

xft+1 = arg max
1≤i≤V

(o
(i)
t + g

(i)
t ), (14)

where o(i)t denotes the i-th entry of ot, g
(i)
t is the i-th entry

of gt, which follows the element-wise i.i.d. standard Gum-
bel distribution. As this argmax is still not differentiable,
we approximate argmax in the backward pass using the
Gumbel-softmax trick, where the Gumbel-softmax is both
continuous and differentiable as shown in Jang, Gu, and
Poole (2016). Therefore, in the backward pass, (14) becomes

softmax(β(ot + gt)), (15)

where β > 0 is a tunable parameter called inverse temper-
ature. At last, {xf1 , .., xfn} forms the sequence as xf , which
will be fed into the discriminator.

Exponential Inverse Temperature When using a fixed
inverse temperature β in (15) to train the GAN, we noticed
that the generator has a tendency to suffer from mode col-
lapse, generating many repeated tokens. We found that this
can be mitigated by using a large βmax and applying the
exponential policy βn = β

n/N
max to increase β over itera-

tions, where N is the maximum number of training itera-
tions and n denotes the current iteration. Nie, Narodytska,
and Patel (2019) suggests that the exponential inverse tem-
perature decay policy can help balance exploration and ex-
ploitation during generator sampling. A larger β encourages
more exploration for better sample diversity, while a smaller
β encourages more exploitation for better samples quality.

Conditional Generation Another issue we notice is that
learning xf in (15) can lead to a large variance in gradi-
ent estimation due to the randomness in sampling. In order
to reduce this variance, we reduce the distance between the
real xr ∼ pr(x) and fake xf ∼ pθ(x) samples by applying
conditional sampling where the real and fake samples share
a common priming sequence. To generate the fake samples,
we condition the generator on the shared priming sequence
[xr1, ..., x

r
c ] and sample the remaining [xfc+1, ..., x

f
n] autore-

gressively.

Truncated Backpropagation Through Time (TBPTT)
The generator sampling step in (15) is sequential and there-
fore the backward pass in the generator resembles the back-
propagation through time (BPTT) algorithm (Tallec and Ol-
livier 2017). However, the generated sequences that are se-
quentially sampled can be very long, potentially ≥ 2000
tokens. Standard BPTT on those long sequences is both
compute-intensive and memory-intensive.
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Figure 1: TBPTT during adversarial training of the Transformer-GAN. Blue arrows are in the direction of the forward pass;
Yellow arrows denote the direction gradients are backpropagated in training.

To resolve this, we truncate our generated sequences into
segments and feed the segments into the discriminator as il-
lustrated in Figure 1. Then, we do backpropagation on each
segment and accumulate the gradients. The truncation im-
proves memory efficiency as it avoids holding all forward
computation graphs during sampling. The length of the sub-
sequence is also well suited to our BERT since it is trained to
accept a smaller fixed length sequence. TBPTT can be for-
mally expressed in terms of parameters k1 and k2. k1 is the
number of forward-pass timesteps between updates and k2 is
the number of timesteps to which to apply BPTT. In this pa-
per, we use k1 = k2. Breaking the generated sequence into
subsequences for gradient propagation resembles the subse-
quence reward training (Yu et al. 2017; Zhang 2020; Chen
et al. 2019) in RL based GANs.

Gradient Penalty During training, we notice that the dis-
criminator can be easily trained to optimality before the gen-
erator parameter update. In addition, exploding or vanishing
gradients was a recurrent problem.

We discovered that in order to stabilize the GAN training,
it was necessary to add the gradient penalty regularizer (Gul-
rajani et al. 2017). Each token of sequence x̂ in (5) can be
obtained by interpolating the discrete tokens in embedding
space as x̂t = α embed[xrt ] + (1 − α) embed[xft ], where
embed denotes the embedding layer of the discriminator,
and α is drawn from a uniform distribution on the interval
(0, 1).

Our hypothesis and findings on the importance of discrim-
inator regularization align with prior work (Gulrajani et al.
2017) on image GANs. We find that discriminator regular-
ization in the form of layer normalization, dropout and L2
weight decay offered a less significant performance boost
than the gradient penalty regularizer.

Metrics
The assessment and evaluation of generative models in mu-
sic using objective metrics is challenging. In this section, we
provide two metrics (used in text generation) for music qual-
ity evaluation, i.e. Classifier Accuracy (CA) and pseudo-log-
likelihood (PLL) as well as objective metrics and human
evaluation metrics.

Classifier Accuracy Inspired by the relative metrics used
in (Yang and Lerch 2020), we propose using a classifier ac-
curacy score as a measure of music realism that could detect
exposure bias. We train a separate model to distinguish be-
tween real (our validation set) and generated data and use its
accuracy on a held-out set as this classifier accuracy (CA)
score. This metric is an implementation of the more general
Classifier Two-Sample Tests (C2ST) (Lopez-Paz and Oquab
2016). The predictive uncertainty of the classifier can also be
used to inspect where the real and generated data differ. The
classifier accuracy can be used to score generative models as
we show in Table 1. The lower the accuracy, the closer are
the generated samples to the real data distribution. Our clas-
sifier is built with our pretrained frozen BERT model trained
using SpanBERT, and a Support Vector Machine (SVM) on
top. While we could pick an arbitrary classifier, we imple-
ment C2ST with the SVM, a margin classifier with finite
norm known for its fast convergence. The SVM is retrained
for every model we evaluate.

Pseudo-log-likelihood As BERT is trained with the
Masked Language Model (MLM) objective, it learns bidi-
rectional representations. The pseudo-log-likelihood score
(PLLs) is derived from MLMs and is given by summing the
conditional log probabilities logP (xt|x\t) of each sentence
token. The PLL score is better when it is closer to the PLL
of the training set. The pseudo-log-likelihood score of a sen-
tence x can be defined as

PLL(x) = −
|x|∑
t=1

log(P (xt|x\t)), (16)
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where x\t := (x1, ...xt−1, xt+1, ..., x|x|).
PLL is an intrinsic value that one can assign to sentences

and corpora, allowing one to use MLMs to evaluate a se-
quence of tokens in applications previously restricted to con-
ventional language model scoring. PLL scores as proposed
in (Salazar et al. 2019) to measure linguistic acceptability.
We therefore propose to use this as a metric to evaluate mu-
sic samples. PLL scores are closely related to log-likelihood
scores and their roles overlap as the models get stronger. Re-
cent work in text evaluation (Basu et al. 2020) suggest that
sample likelihood and quality are only correlated within a
certain likelihood range.

Quantitative Metrics To evaluate the music generated,
we use several conventional objective metrics used in mu-
sic evaluation research (Dong et al. 2018; Yang and Lerch
2020). These metrics are computed for both real (training
set) data and generated data, and their values are compared.
The closer the values are to the dataset, the better the score.
We also report the validation NLL by calculating the NLL
for each token and averaging over all tokens in the validation
set. We generate 200 unconditional samples—each 4096 to-
kens in length—for each model we want to evaluate.

Human Evaluation For each model, we generated 84
samples from a set of 7 priming sequences. The samples
were 1 minute in duration and the primes were 10 seconds in
duration. Each survey contained 7 questions corresponding
to each priming sequence. Participants were given a random
survey from a set of 5 surveys. For each question in the sur-
vey, participants were presented with a random set of musi-
cal samples, where each sample is from a different model,
but from the same priming sequence. They were asked to (a)
rate the score of the sample in a range of 0 to 5 and (b) rank
the samples based on their coherence and consistency.

Implementation Details
We benchmark our models on the MAESTRO MIDI V1
dataset (Hawthorne et al. 2019), which contains over 200
hours of paired audio and MIDI recordings from ten years
of the International Piano-e-Competition. The dataset is split
into 80/10/10 for training/validation/evaluation. We used the
same data augmentation as in Music Transformer, where we
augmented the data by uniform pitch transposition from {-3,
-2, ..., 2, 3} and stretched time with ratios of {0.95, 0.975,
1.0, 1.025, 1.05}.

Hyperparameter Configuration The hyperparameters
we used for the Transformer-XL architecture are shown in
Table 3. For training, we used a 0.004 initial learning rate,
the inverse square root scheduler and Adam optimizer. We
used a target length of 128 for both training and evalua-
tion, since we found this value offers a reasonable trade-off
between training time and performance on metrics. Since
TBPTT addresses the memory bottleneck, our framework
can train on sequence lengths longer than 128. We set mem-
ory length for the Transformer-XL as 1024 during training
and 2048 during evaluation. During sample generation, we
set memory length equal to the number of tokens to gener-
ate. We observed, as in (Dai et al. 2019), that NLL and gen-

erated music quality were sensitive to memory length. We
introduced a reset memory feature into the Transformer-XL
training process as clearing the Transformer-XL memory at
the beginning of each new MIDI file. We report the baseline
models with the lowest validation NLL.

All our GANs and baselines use the same Transformer-
XL configuration. We set the sequence length of generated
samples during adversarial training as 128 (equal to target
length). Our GAN generator is initialized using our best
NLL-trained baseline model. We follow an alternating train-
ing procedure to update the generator and discriminator us-
ing the NLL and GAN losses. The NLL loss frequency is
five times the GAN loss frequency. We used βmax = 100 in
all our experiments as in Nie, Narodytska, and Patel (2019).
For Music Transformer, we use the implementation in Ten-
sor2Tensor (Vaswani et al. 2018). We run the baseline ex-
periments with three different seeds and run the GAN ex-
periments with one seed.

Sampling Methods At each step t of generation, Random
sampling samples from ot while TopK sampling samples
from the tokens corresponding to the K highest probabili-
ties in ot. All sampling methods use a fixed temperature of
0.95.

Experiments And Results
Transformer-XL And Music Transformer Transformer-
XL achieves comparable overall performance to Music
Transformer, the current state-of-the-art model. We see from
Table 1 that Transformer-XL achieves lower NLL and is
comparable to Music Transformer on several objective met-
rics. This is also reflected in the human evaluation scores
in Fig. 2. Transformer-XL uses the relative attention mecha-
nism akin to Music Transformer which explains their similar
performance on metrics. These architectures act as our base-
lines trained with MLE.

Transformer-GAN Versus MLE Baselines We compare
the Transformer-GAN framework trained with different loss
types and discriminator choices in Table 1. We see that the
Transformer-GAN with the BERT discriminator scores bet-
ter on the CA metric than our baselines. This can be at-
tributed to GAN training, that reduces the distributional dis-
crepancy between real and generated data. Fig. 2 shows that
the Transformer-GAN with WGAN with gradient penalty
(WGAN-GPen) outperforms our baselines in human evalu-
ation, proving the validity of our proposed GAN model. A
Kruskal-Wallis H test of ratings shows a statistically signif-
icant difference between Transformer-GAN with WGAN-
GPen (Random) and Transformer-XL (Random): X 2(2) =
3.272, p = 0.031. Fig. 2 also shows that the Transformer-
GAN trained with the PPO-GAN with gradient penalty
(PPO-GPen) outperforms the baselines.

Discriminator Architecture We experiment with two
discriminator architectures—the CNN-based discriminator
used in Nie, Narodytska, and Patel (2019) and our BERT
discriminator. We see in Table 1 that WGAN-GPen using
the CNN (i) performs worse than WGAN-GPen using BERT
on several objective metrics and (ii) performs worse than
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Discriminator NLL ↓ Sampling CA ↓ PLL ∼ PCU ∼ ISR ∼ PRS ∼ TUP ∼ PR ∼ APS ∼ IOI ∼
Training Set – – – – 2.020 7.81 0.59 0.40 65.28 67.34 11.53 0.133
Music Transformer – 1.79 Random 0.844 2.567 7.21 0.60 0.47 54.95 62.04 11.62 0.113
Transformer-XL – 1.74 Top32 0.838 2.153 7.05 0.57 0.28 52.95 60.39 11.12 0.107
WGAN-GPen CNN 1.75 Random 0.840 2.309 6.95 0.61 0.33 52.28 59.37 10.83 0.119
WGAN-GPen Pretrained BERT 1.75 Random 0.818 2.102 7.19 0.59 0.28 55.56 63.23 11.94 0.145
PPO-GPen Pretrained BERT 1.75 Random 0.821 2.355 6.93 0.60 0.30 52.31 59.26 10.81 0.163
RSGAN-GPen Pretrained BERT 1.75 Random 0.831 2.277 7.29 0.59 0.30 54.11 62.83 11.46 0.136
RSGAN Pretrained BERT 1.75 Random 0.862 2.108 6.56 0.61 0.19 48.17 55.62 11.26 0.082

Table 1: Quantitative music metrics: NLL (Negative likelihood); CA (SpanBERT classifier accuracy); PLL (Pseudo-log-
likelihood score); PCU (Unique pitch classes); ISR (Nonzero entries in C major scale / Total nonzero entries); PRS (Time
steps where the no. of pitches ≥ 4 / Total time steps); TUP (Different pitches within a sample); PR (Avg. difference of the
highest and lowest pitch in semitones); APS (Avg. semitone interval between two consecutive pitches); IOI (Time between
two consecutive notes). Bolded values are better when rounded to four decimal places. Metrics marked with ∼ are better when
closer to the Training Set.

Frozen layers NLL ↓ CA ↓ PLL ∼ PCU ∼ ISR ∼ PRS ∼ TUP ∼ PR ∼ APS ∼ IOI ∼
Training Set – – – 2.020 7.81 0.59 0.40 65.28 67.34 11.53 0.133
WGAN-Gpen random-init 1.75 0.836 2.288 7.11 0.60 0.26 53.44 61.35 11.25 0.125
WGAN-Gpen [’emb’] 1.75 0.843 2.350 7.25 0.59 0.36 54.94 62.56 11.54 0.132
WGAN-Gpen [’emb’, ’0’] 1.75 0.885 2.349 7.13 0.59 0.35 53.79 61.56 11.16 0.135
WGAN-Gpen [’emb’, ’0’, ’1’, ’2’] 1.75 0.859 2.497 7.34 0.58 0.40 55.06 63.90 11.98 0.136
WGAN-Gpen [’emb’, ’0’, ’1’, ’2’, ’3’] 1.75 0.839 2.450 6.92 0.58 0.36 50.96 59.46 10.53 0.161
WGAN-Gpen [’emb’, ’0’, ’1’, ’2’, ’3’, ’4’] 1.75 0.818 2.102 7.02 0.61 0.28 55.56 63.23 11.93 0.145

Table 2: Quantitative music metrics: Ablation studies of frozen layers and random weight initialization. Note BERT has 6
layers: ‘embedding’, ‘attention 0’, ‘attention 1’, ‘attention 2’, ‘attention 3’, ‘attention 4’, which is denoted as emb, 0, 1, 2, 3,
4. All samples were generated with Random Sampling. Bolded values are better when rounded to four decimal places. Metrics
marked with ∼ are better when closer to the Training Set.

Figure 2: Human Evaluations. Left: Average ratings for each model with error bars for standard error of mean. Right: Pairwise
comparison between models. When pairwise samples are compared, ‘Win’ denotes which model humans preferred.

Transformer-XL on CA and PLL scores. A possible expla-
nation to why a CNN discriminator performs worse could
be the sensitivity to parameter initialization, model capac-
ity and hyperparameters that are well documented (Seme-
niuta, Severyn, and Gelly 2018). Using a pretrained BERT
discriminator, to an extent, helps address this sensitivity.

GAN Loss Type We train our Transformer-GAN using
four different GAN losses: RSGAN, RSGAN with gra-

dient penalty (RSGAN-GPen), WGAN-GPen, and PPO-
GPen. In Table 1, we compare their performances on sev-
eral quantitative metrics. We see that (i) RSGAN performs
worse than RSGAN-GPen, indicating the importance of the
gradient penalty regularizer. RSGAN performs worse than
Transformer-XL on the CA metric, suggesting that GPen
was essential to make the GAN loss work; (ii) WGAN-
GPen achieves the highest scores on CA and PLL, and beats
other models on our objective metrics. We also observed that
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Hyperparameters Music Transformer Transformer-XL
Layers 8 6
Dropout 0.2 0.1
Hidden size 384 500
Target length 2048 128
Memory length - 2048
Number heads 8 10
Number of parameters 16253189 13677310

Table 3: Hyperparameters of baseline models

it was hard for subjects to distinguish among the different
Transformer-GAN models trained with GPen, signalling the
need for fine-grained metrics in the music generation com-
munity.

Effect Of Frozen Layers And Initialization We perform
ablation studies on our BERT discriminator to understand
the effect of freezing layers of our pretrained discriminator
during GAN training. In Table 2, the first row corresponds
to the randomly initialized BERT without any pretraining.
We observe that (i) A randomly initialized BERT discrim-
inator scores poorly on our objective metrics compared to
the pretrained discriminator (ii) Freezing more layers in the
pretrained discriminator tends to improve objective metric
scores, in particular CA. These results suggest that discrim-
inator priors can play an important role in GAN training.

Sampling Methods We also experiment with Random
and TopK sampling and how it influenced music evaluation
scores. We find that (i) Transformer-XL samples sampled
with TopK score better than those sampled with Random on
our objective metrics. This is also reflected in the human
evaluation scores in Fig. 2. (ii) Transformer-GAN samples
sampled with TopK score lower than those sampled with
Random on several objective metrics and human evaluation.
(iii) Music generated using top-k sampling scores higher on
the pseudo-likelihood metric, suggesting that this metric is
sensitive to a distributional bias towards higher likelihood. A
possible explanation for the apparent contradictory behavior
observed in (i) and (ii) can be attributed to sampling during
adversarial training. We speculate that these results might be
due to the Transformer GAN being trained using Random
sampling when decoding sequences as input to the discrim-
inator.

Qualitative Study We gave a small set of clips from the
baseline Transformer-XL and Transformer-GAN to a few
musicians and composers and simply asked for any initial
reactions/comments. Here is a small, representative subset
of the comments we received. Samples can be found at
https://tinyurl.com/y6awtlv7.

• ”The Transformer-XL compositions sound somewhat vir-
tuosic, there seems to often be one hand that’s moving
quite quickly. They are quite pleasant to listen to but end
up at quite different places compared to the beginning.
PPO-GAN’s music is significantly more polyphonic, and
also develops more slowly and consistently. It does inter-
esting transitions as well, and maintains the new style for
quite some time.”

• ”Overall, the quality of the performance (of Transformer-
GAN samples) is excellent, showcasing varied dynamics
and proper phrasing. The tempo is not rigid but expres-
sive. The (sustaining) pedaling seems to be a little mud-
dled at times, but not to a point where it hampers the de-
livery. ”

• ”For the most part, harmonic choices (in the Transformer-
GAN samples) are sensible locally, and chord progres-
sions are constructed on the appropriate scale. Aside from
a few exceptions, the composition style remains consis-
tent throughout, without abrupt or unreasonable shifts. In
half of the samples, a recurring motif can be recognized,
at least for about 10 measures initially, and in some cases,
developing in an interesting fashion. However, none of the
samples demonstrate a global structure (exposition, de-
velopment, recapitulation), which is prevalent in classical
compositions. Occasionally a sequence of notes or trills
are repeated for an excessively long time, but as a whole
the melodic line feels natural and pleasing to the ear.”

Sequence Length And Exposure Bias In the experiments
we report in Table 1, the generated sequence length fed to the
discriminator during training is of length 128 which is still
longer than the 20-40 token length sentences that GANs for
text are frequently trained on (de Masson d’Autume et al.
2019). As TBPTT allows us to train on sequences longer
than 128, we also experiment with sequences of length 256,
512 and 1024. Our objective metrics do not show a statis-
tically significant difference between the different sequence
lengths, signalling the need for improved metrics with lower
variance to measure music quality. The marginal improve-
ment with increasing sequence length can also be attributed
to the fact that in the Transformer-XL, historical information
of the past is already encoded in the cached memory.

We also perform a preliminary investigation into under-
standing how effective the Transformer-GAN is in alleviat-
ing exposure bias. It is well documented that GANs for text
do not suffer from the exposure bias problem (Tevet et al.
2018; Chen et al. 2020a) although measuring improvement
is often difficult (Wang and Sennrich 2020; He et al. 2019).
We use the MIREX-like continuation prediction task (Wu
et al. 2020) to measure improvement. The metric however
displayed high variance and our results were not statistically
significant. We leave this investigation as future work.

Conclusion And Discussion
We proposed a new framework for generating long-term co-
herent music based on adversarial training of Transform-
ers. The results obtained from various experiments demon-
strate that our Transformer-GAN achieves better perfor-
mance compared to other transformers trained by maximiz-
ing likelihood alone. By sampling during training, the adver-
sarial loss helps bridge the discrepancy between the train-
ing objective and generation. We have demonstrated that us-
ing a bidirectional transformer can indeed provide a useful
signal to the generator, contrary to the findings in de Mas-
son d’Autume et al. (2019). In future work, we plan to ex-
tend our work by pretraining on larger datasets where our
idea can be beneficial.
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