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Abstract

Line drawings are frequently used to illustrate ideas and con-
cepts in digital documents and presentations. To compose a
line drawing, it is common for users to retrieve multiple line
drawings from the Internet and combine them as one im-
age. However, different line drawings may have different line
styles and are visually inconsistent when put together. In or-
der that the line drawings can have consistent looks, in this
paper, we make the first attempt to perform style transfer for
line drawings. The key of our design lies in the fact that cen-
terline plays a very important role in preserving line topology
and extracting style features. With this finding, we propose
to formulate the style transfer problem as a centerline styliza-
tion problem and solve it via a novel style-guided image-to-
image translation network. Results and statistics show that
our method significantly outperforms the existing methods
both visually and quantitatively.

Introduction
Line drawings are frequently used to illustrate ideas and con-
cepts in digital documents and presentations. Though there
exist a large number of line drawings on the Internet, it is
still quite common for users to combine multiple line draw-
ings into one image based on their needs. However, differ-
ent line drawings may have different line styles both glob-
ally and locally. The global line style includes the range of
the line-width and how the line-width changes spatially, e.g.
many line drawings use thicker lines for outlines and thin-
ner lines for inner structures. The local line style refers to
how the line-width changes within each line based on local
properties, such as curvature, distance to end points, etc. For
example, in Fig. 1(a), the wolf, the bird, and the background
have clearly different line styles. (Garces et al. 2014) pro-
posed a style similarity metric which helps to find clip arts
with similar styles. But the proposed metric only consider-
s the average line-width. The search space is also limited
and uncontrollable to users. In order that users can pick any
line drawing they like, it is desired that all user-picked line
drawings can be transferred to the same style, as shown in
Fig. 1(b).
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Figure 1: The styles of multiple line drawings may be dif-
ferent in terms of global and local line-width. (a) Without
style transfer, the styles of the line drawings are visual in-
consistent when composed together. (b) With style transfer,
the styles of the line drawings become visually consistent.

To transfer the style of an input image based on a ref-
erence image, the existing style transfer methods, either
exemplar-based (Hertzmann et al. 2001; Shih et al. 2013,
2014; Frigo et al. 2016) or learning-based (Gatys, Ecker,
and Bethge 2016; Johnson, Alahi, and Fei-Fei 2016; Li et al.
2017; Huang and Belongie 2017), require the output image
to have similar content with input and similar style with
reference by constraining on content similarity and style
similarity respectively. However, the similarity constraint is
loose, so the output image usually fails to preserve the con-
tent (topology of lines) of the input (Fig. 2(c)&(d)). Another
potential solution is to first disentangle the content from the
input and the style from the reference respectively, and then
combine the disentangled content and style to generate the
output image. While various style-content disentanglement
methods have been proposed (Huang et al. 2018; Gonzalez-
Garcia, van de Weijer, and Bengio 2018; Yang et al. 2019;
Yu et al. 2019; Lee et al. 2019), they generally require paired
data, i.e. images of the same content but different styles, for
training, which is difficult to acquire for line drawings. The
style-based image generation method (Abdal, Qin, and Won-
ka 2019) may also be adopted to synthesize the output based
on an input image and a style vector. But this method require
the output images to have similar semantics, e.g. human
faces, cats, dogs, which is not applicable in our case where
line drawings may contain arbitrary content (Fig. 2(e)).

There are three major challenges in the line style transfer
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Figure 2: Comparisons with existing methods. Given (a) as
input and (b) as style/reference, the existing style transfer
methods (c)&(d) fail to preserve the content of the input.
The style-based image generation method (e) also fails to
generate a satisfying result in both content and style. In com-
parison, our result (d) preserves content of input and mimics
the style of reference.

application. Firstly, the content of the line drawing is precise,
slightly modifying the content may demolish the smooth-
ness and/or connectivity of the lines. Secondly, the style of
the line drawing is both local and global, we need to capture
both the local style and the global style as described above.
Thirdly, the style of each line drawing is quite unique, so
supervised methods that need a large number of paired da-
ta are generally inapplicable. To preserve the topology of
the lines during style transfer, we propose to first extract the
centerline (a proximate of the line topology) of the input line
drawing, and then formulate the style transfer problem as a
centerline stylization problem. With this novel formulation,
we are able to preserve the content of the input with high
fidelity, and at the same time avoid the problem of lacking
paired data for line drawings with same content but differen-
t styles. Moreover, by identifying the centerline as content,
we are able to better disentangle the style from the content
of the style image (Fig. 2(f)).

Our system takes an input image and a style image as in-
put, and outputs an image which has the same topology as
the input image and a similar style as the style image. We
first extract the centerline of the input image and feed it to
a centerline stylization network. The centerline stylization
network encodes the centerline image into image features
and fuses with the style code extracted from the style im-
age. Then the style-fused image features are decoded to an
output line drawing. We further employ a discriminator to
make the output line drawing look more realistic. With such
network designs, we are able to formulate this problem as
an image-to-image translation where the input is a center-
line image and the output is the original line drawing. To
train this network, we further prepare a large number of line
drawings and their corresponding centerline images as the

training dataset.
Extensive experiments are performed on line drawings of

different content and styles. Convincing results are obtained.
Our contributions can be summarized as follows:

• We identify the importance of centerline in the line style
transfer problem for the purposes of preserving line topol-
ogy and extracting style features.

• By identifying the centerline as content, we novelly for-
mulate the line style transfer problem as a centerline styl-
ization problem and solve it via a learning-based method.

Related Works
Image Style Transfer Image style transfer can be divided
into two categories, traditional style transfer and learning-
based style transfer. The traditional style transfer methods
generally synthesize the output images by constructing the
content of the input image based on the exemplars from the
style image based on paired data (Hertzmann et al. 2001)
or unpaired data (Shih et al. 2013, 2014; Frigo et al. 2016).
While the traditional exemplar-based methods may generate
good results when the local characteristics of two styles are
very different from each other, they generally fail to identify
the style difference between two line drawings since differ-
ent line styles still exhibit similar local characteristics (i.e.
white background and black lines).

Recently, the development of convolutional neural net-
works (CNNs) has significantly improved the results of style
transfer. To translate between two specific domains of styles,
supervised image-to-image translation methods have been
proposed, such as photo-to-art (Kotovenko et al. 2019) and
photo-to-sketch (Yi et al. 2019). For unspecific styles, meth-
ods have been proposed to ensure content and style similar-
ities via a content loss and a style loss (Gatys, Ecker, and
Bethge 2016; Johnson, Alahi, and Fei-Fei 2016), but these
methods usually suffer from limited styles. To be applica-
ble to more flexible styles, (Huang and Belongie 2017) pro-
posed to combine content and style via an adaptive instance
normalization layer (AdaIN), and made significant improve-
ment in style transfer. Later, methods have been proposed to
further improve the visual quality (Li et al. 2017; Sanakoyeu
et al. 2018; Zhang et al. 2019; Song et al. 2019; Wang et al.
2020) or computational efficiency (Li et al. 2018; Gao et al.
2020). However, all the above networks adopted a content
loss to ensure the similarity of content between the input
and the output, which is unable to preserve the line topol-
ogy with high fidelity. In comparison, we directly take the
centerline of the input as content formulate the style transfer
problem as a centerline stylization problem, which can well
preserve the line topology with high fidelity.

Text Style Transfer Style transfer is also widely explored
in text/fonts (Yang et al. 2017, 2019; Azadi et al. 2018).
(Yang et al. 2017) proposed a traditional statistics-based
method to transfer the style of the input text image based
on stylized patches. But this method requires patch search-
ing and is extremely time-consuming. (Yang et al. 2019)
proposed a CNN-based style transfer network, TET-GAN,
which first decomposes the input and reference text into g-
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Figure 3: System overview. Our system formulates style transfer as an image-to-image translation where the centerline of the
input is fed to a centerline stylization network and fused with the style code extracted from the style image via a style extractor.
The fused features will be decoded to an output line image which is further justified by a discriminator.

lyph feature and effect feature, and then recombines the g-
lyph and the effect to form a new font. (Azadi et al. 2018)
further proposed a multi-content generative adversarial net-
work (GAN) for few-shot style transfer. (Li et al. 2020) pro-
posed a text style transfer method that transfers the style
based on k-shot adaptive instance normalization. However,
all the above methods require paired data or domain-specific
data for training, which is difficult to acquire for line draw-
ings. Directly adopting the trained models to our line draw-
ing application is unsatisfying both qualitatively and quanti-
tatively since text (especially computer font) and line draw-
ings are still quite different in style. Interestingly, we find
that hand-written text exhibit similar style features with line
drawings, so we can directly apply our method to transfer
the styles of hand-written text.

Style-Content Disentanglement To perform style trans-
fer, the style-content disentanglement methods can also be
adopted, which propose to disentangle the style and content
for an input image by extracting the shared feature from an
image pair with the same content but different styles (Li-
u, Breuel, and Kautz 2017; Huang et al. 2018; Gonzalez-
Garcia, van de Weijer, and Bengio 2018; Lee et al. 2018).
(Yu et al. 2019) extended the above methods in manipulating
different parts of the latent representations for multi-modal
and multi-domain translations. However, in order to success-
fully disentangle style and content, a large number of paired
or domain-specific data are needed, which is generally not
available for line drawings. Although that we may manage
to create some paired data for training, the result is still un-
satisfying due to the incapability to fully disentangle content
and style (will be presented in the result section).

Method
The key of our method is to identify the centerline of the
input line drawing as the content of the image so that we can
formulate the style transfer problem as an image-to-image

translation problem with style guidance.

Network Design
Our system consists of a centerline stylization network, a
style extractor, and a discriminator, as illustrated in Fig. 3.
The input of our system are two images, an input image
(Fig. 3(a)) and a style image (Fig. 3(b)). The centerline styl-
ization network takes the centerline of the input line drawing
(Fig. 3(c)) as input and stylizes this centerline image based
on a style code. Here, the centerline of the input image is
obtained using the built-in skeleton extraction algorithm in
Matlab (Haralick and Shapiro 1992)). The style extractor
takes the style image (Fig. 3(b)) and its centerline counter-
part (Fig. 3(d)) as input and outputs a style code, which is
further used in the centerline stylization network. The dis-
criminator is adopted to make the output image look more
realistic.

Centerline Stylization Network The centerline styliza-
tion network takes a centerline image as input and stylizes
this centerline image based on a style code. Our centerline
stylization network is designed based on U-net (Ronneberg-
er, Fischer, and Brox 2015), which has an encoding sub-
network, a style-content fusion subnetwork, and a decoding
subnetwork. The encoding subnetwork extracts high-level
image features from the input centerline image using five
downscaling blocks. The style-content fusion subnetwork
combines the extracted image features with the style code
via two residual AdaIN blocks (Huang and Belongie 2017).
Finally, the decoding subnetwork decodes the style-fused
image features into a stylized line drawing using five up-
scaling blocks. Note that the network is fully convolutional,
so it can be used for input of any resolution. Here, we adop-
t U-net for the encoding and decoding subnetworks instead
of VGG (Simonyan and Zisserman 2015), as in (Huang and
Belongie 2017), mainly for two reasons. Firstly, U-net en-
ables a larger receptive field, which can better capture the
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global style of the input drawing. Secondly, U-net employs
the skipping layers which allow better gradient propagation
for higher-resolution layers so as to generate accurate and
robust output image for high-frequency components.

Style Extractor The style extractor takes a 512×512 style
image and its centerline counterpart as input and outputs a
1×512 style code. It consists of five downscaling blocks and
one fully-connected layer. Note that instance normalization
is not employed in the downscaling blocks because mean
and variance of the style code need to be used in the AdaIN
layers. While the network is simple, we emphasize two key
designs of our style extractor. Firstly, to extract the style fea-
tures, we propose to feed not only the style image, but al-
so its centerline counterpart to the network so that the style
extractor can better disentangle the style from the content
knowing what the content is. Secondly, the resolution of the
input style image is fixed in order to acquire a fixed-length
style code. Given a style image of any resolution, we need
to first resample a 512 × 512 image to feed to the network.
To do so, there are two commonly adopted operators, re-
sizing and cropping. However, neither resizing nor cropping
can well capture the style of the style image. The cropping
operator can only capture the local style, while the resizing
operator can only capture the global style. To capture both
global and local styles, we propose to adopt both the resiz-
ing and cropping operators, and feed both the resized image
and the cropped patch to the network.

Discriminator We further employ a patch-based discrim-
inator (Isola et al. 2017) to make the output image look
more realistic. Our discriminator consists of five downscal-
ing residual blocks. During training, real-world line draw-
ings are fed to the discriminator as positive cases, while the
output images are fed to the discriminator as negative cases.

Loss Function The loss function L of our network con-
sists of two loss terms, the reconstruction loss Lrec and the
adversarial loss Ladv:

L = Lrec + Ladv (1)

The reconstruction loss ensures that the output image is sim-
ilar with the ground-truth image. To measure the dissimilar-
ity between two line drawings, we adopt both the perceptual
loss and pixel-wise MSE loss as

Lrec =
∑
‖ϕ(ŷ)− ϕ(y)‖22 + λ1 ‖ŷ − y‖22 (2)

Here, ŷ is the output line drawing, y is the ground-truth, ‖·‖2
is the L2 norm operator, and ϕ(·) is the perceptual feature
extraction as defined in (Johnson, Alahi, and Fei-Fei 2016).
λ1 is the weighting factor and set to 5 in all our experiments.

The adversarial loss ensures that the output line drawing
looks like a real line drawing. We adopt the adversarial loss
proposed by (Miyato et al. 2018) with gradient penalty reg-
ularization (Mescheder, Geiger, and Nowozin 2018) to im-
prove stability, and is defined as

Ladv =Ey[min(0,−D(y)− 1)] + Eŷ[min(0, D(ŷ)− 1)]

+ λ2Ey[‖∇D(y)‖2] (3)

where D is the discriminator, min(·) is the minimum oper-
ator, and E[·] is the expectation operator. λ2 is a weighting
factor and set to 10 in all our experiments.

Training
To train our networks, we collect 4500 line drawings of var-
ious content and styles from the Internet. We randomly s-
elect 4,300 from them as the training dataset, and the rest
200 are used as the test set. During network training, we use
the same image for both input and style. Note that, unlike
the existing methods which cannot be trained with the same
input and style, we are able to use the same image for in-
put and style because the centerline is extracted as content.
We use Adam optimizer (Kingma and Ba 2015) to train our
networks. All networks are jointly trained. The learning rate
is initially set to 1e−4 and gradually decreases to 2e−6. The
optimization converges in about 80 epochs.

Results and Discussions
We compare our method with the state-of-the-art style
transfer, image generation, and style-content disentangle-
ment methods. For style transfer methods, we compare
with one traditional method, Frigo (Frigo et al. 2016), and
three CNN-based methods, Gatys (Gatys, Ecker, and Bethge
2016), WCT (Li et al. 2017), and AdaIN (Huang and Be-
longie 2017). For image generation, we compare with Im-
age2StyleGAN (abbreviated as I2SGAN in Fig. 4 and Ta-
ble 1) (Abdal, Qin, and Wonka 2019) trained on our line
drawing dataset. For style-content disentanglement method-
s, we compare with CCD (Gonzalez-Garcia, van de Weijer,
and Bengio 2018), TET (Yang et al. 2019), and DMIT (Yu
et al. 2019). Since the style-content disentanglement meth-
ods require paired data for training, we train these networks
by adopting line drawings and their centerline counterparts
as the paired data, similar with our method.

Visual Comparisons
We first visually compare our results and the results gener-
ated by the existing methods. Fig. 4 shows five examples
where the input and style images are of different content
and line styles. The traditional style transfer method Frigo
fails to generate smooth lines since line topology is not en-
forced with the exemplar-based approach (Fig. 4(c)). The
CNN-based style transfer methods performs better than the
traditional method in synthesizing smoother lines, but they
still generate noisy output since the content loss cannot en-
sure the output to have the same line topology with input
(Fig. 4(d)-(f)). The image generation method fails to synthe-
size visually pleasant line drawings since the content of line
drawings is arbitrary and hard to summarize (Fig. 4(g)). The
style-content disentanglement methods have the best perfor-
mance where the content of the input are mostly well pre-
served. But they fail to well disentangle the styles and con-
tent from the style images with the implicit style-content
disentanglement approach (Fig. 4(h)-(j)). In sharp compar-
ison, our method not only preserves the content of the input
image, but successfully transfers the line styles of the style
images to the output images (Fig. 4(k)).
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Figure 4: Comparisons of results generated by our method and all competitors.

Method Self-reconstruction Half-reconstruction
IoU PSNR SSIM IoU PSNR SSIM

Gatys 0.41 12.41 0.65 0.39 11.97 0.64
WCT 0.28 10.20 0.65 0.45 12.14 0.75
AdaIN 0.47 12.33 0.76 0.26 10.29 0.66

I2SGAN 0.65 16.29 0.78 0.23 9.37 0.50
CDD 0.57 13.76 0.79 0.58 18.09 0.79
TET 0.66 15.33 0.84 0.66 15.29 0.84

DMIT 0.55 13.70 0.80 0.55 13.37 0.79
Ours 0.77 16.96 0.87 0.77 16.07 0.85

Table 1: Statistics of quantitative evaluation.

Quantitative Evaluation
We further compare our method with the existing methods
via two quantitative experiments. The first experiment is a
self-reconstruction experiment. For each testing line draw-
ing, we take itself as style and its centerline counterpart
as input, with the objective to reconstruct the original line
drawing. We measure the similarity between the reconstruct-
ed line drawing and the input line drawing via three com-
monly used metrics: Intersection over Union (IOU), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity In-
dex (SSIM) (Wang et al. 2004). Here, the IoU metric is ex-
tremely useful in our case since line drawings are naturally
black-and-white images where the overlapping of black pix-
els indicates the similarity of two line drawings. The statis-
tics are shown under “Self-reconstruction” in Table 1. Our
method outperforms all competitors in all metrics.

The second experiment is a half-image reconstruction ex-

periment. For each testing line drawing, we first divide it in-
to two halves (either top-and-bottom or left-and-right based
on image ratio), as shown in Fig. 5. Then we take half of
the image as style and the centerline of the other half as in-
put, with the objective to reconstruct the original half image
for the centerline half. Through this way, the style image
and the input image have completely different contents, but
their styles are naturally the same because they originally
belong to the same line drawing. We also adopt IOU, P-
SNR, and SSIM to measure the similarity between output
half image and ground-truth half image. The statistics are
shown under “Half-reconstruction” in Table 1. Our method
also outperforms all competitors in all metrics. One interest-
ing thing is that, the performance of our method in “Half-
reconstruction” is only slightly lower than our performance
in ‘Self-reconstruction”. This shows that our method suc-
cessfully extracts the style features from the style images
and applies to the input content.

Ablation Study
To validate the effectiveness of our network design, we con-
duct ablation studies for each key design of our system both
visually and quantitatively. The quantitative experiment is
the same with the self-reconstruction experiment above.

Ablation on Centerline Stylization Network While our
centerline stylization network is based on U-net, the net-
works of the existing style transfer methods are usually
based on VGG. So we first study the performance of U-net
and VGG respectively, while keeping all the rest unchanged.
A visual example is shown in Fig. 6 where the style im-
age adopts thicker lines for outline and thinner lines for in-
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Figure 5: Half-reconstruction experiment. Given a line
drawing in (a), we take half of it as style and the center-
line of the other half as input in (b), and output a half image.
The output half is combined with the style half in (c).

Figure 6: Comparisons on adopting different network struc-
tures, i.e. VGG and U-net (ours), for the centerline styliza-
tion network.

ner structures. While the VGG network fails to capture this
global style, our network successfully transfers this style to
the output image. The quantitative experiment also shows
that our U-net structure outperforms the VGG structure in
all three metrics since U-net can better capture global styles
and high-frequency image details, as presented in Table 2.

Ablation on Input of Style Extractor Then we measure
the effectiveness of our input design for the style extractor.
Fig. 7 presents a visual comparison of feeding and not feed-
ing the centerline to the style extractor. Without the center-
line input, the style extractor fails to capture the line-width
of the style image. In sharp comparison, by feeding both the
style image and its centerline counterpart to the style extrac-
tor, the line-width of the style image is well preserved. The
quantitative experiment also shows that the performance of
not feeding the centerline is consistently lower than the per-
formance of feeding the centerline, as shown in Table 2.

Fig. 8 further presents the visual differences of adopt-
ing different operators to resample the style image. With
the cropping operator, the local line-width is captured, but
the global style is not preserved. With the resizing opera-
tor, the global style is captured, but the local line-width are
not preserved. With both resized and cropped input, both the
global style and local line-width of the style image are well

Ablation Experiments IoU PSNR SSIM

Ablation study on centerline stylization network:
VGG-based network 0.72 16.07 0.83

Ablation study on input of style extractor:
Without centerline 0.75 16.13 0.87
With centerline (resize only) 0.76 16.63 0.86
With centerline (crop only) 0.76 16.72 0.87
With centerline (resize + 3 crops) 0.77 16.96 0.87
Ablation study on discriminator:
Without discriminator 0.76 16.78 0.87

Ablation study on centerline extraction:
Thinning (Zhang and Suen 1984) 0.76 16.78 0.87

Ours 0.77 16.96 0.87

Table 2: Statistics of ablation study.

Figure 7: Comparisons on feeding and not feeding the cen-
terline image to the style extractor.

preserved. While one may suggest feeding more cropped
patches since one patch might be biased, we find that there’s
no significant improvement with more cropped patches. The
quantitative experiment also shows that either feeding the re-
sized input or the cropped input is lower than feeding both,
and feeding more cropped patches does not further improve
the performance.

Ablation on Discriminator We also study the effective-
ness of the discriminator. Quantitatively, the system without
discriminator shows slightly lower performance than the one
with the discriminator, as shown in Table 2.

Ablation on Centerline Extraction Since the centerline
contributes a significant part to our system, we also study
how our system performs with different centerline extraction
methods. We adopt another classic thinning method (Zhang
and Suen 1984) to extract the centerline while keeping the
rest unchanged. Statistics show that our system will not be
much affected with different centerline extraction methods.
The skeleton extraction method used in our paper performs
slightly better than the thinning method. We think that this
may because that the skeleton extraction method extracts
more detailed structures, which provide better hints when
synthesizing the final output.

Timing Statistics
We tested the traditional style transfer method Frigo on a PC
with Intel Core i7-9700 3.0GHz CPU and 16GB memory,
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Figure 8: Comparisons on different ways of feeding the style
image to the style extractor.

Figure 9: Application on combining multiple line drawings.
In the left image, the reference style is the flower. In the right
image, the reference style is the background scene.

and all the other methods on an RTX 2080Ti GPU. AdaIN,
our method, and DMIT have the best performance, taking
0.6, 0.8, 1.1 seconds respectively to process a 512 × 512
image. WCT, TET, CCD, and Frigo perform slightly s-
lower, taking 3.5 − 6 seconds per image. Gatys and Im-
age2StyleGAN are the slowest, taking 1 and 15 minutes re-
spectively for a 512× 512 image.

Applications
Combination of Multiple Line Drawings To combine
multiple line drawings into one image, the users need to
place the line drawings at their wanted positions and scales,
and select one of them as the reference style. Then our sys-
tem can automatically transfer the styles of the other line
drawings to the reference style, as shown in Fig. 9.

Text Style Transfer Since hand-written text exhibit sim-
ilar style features with line drawings, we can directly ap-
ply our method to transfer the styles of hand-written text, as
shown in the first row of Fig. 10. Note that we directly apply
our trained model without additional training. We believe
that training on text images may achieve better results.

Clip Art Style Transfer While the styles of clip arts are
expressed by lines and color shading, the styles of the lines
have key impact on the style of the clip arts. We further apply
our line style transfer methods on the lines of the clip arts
by first extracting the lines, then transferring the styles of
the lines, and finally recombining the lines with the color
shading, as shown in the second row of Fig. 10.

Figure 10: Application on font and clip art style transfer. (c)
is generated by taking (a) as input and (b) as style. (d) is
generated by taking (b) as input and (a) as style.

Limitations

Our method still has some limitations. Firstly, though our
method is applicable to input and style images of any res-
olution, the visual quality of the generated image becomes
lower when the sizes of the style is significantly different
from size of the input. Secondly, the collected line draw-
ings in our training dataset may suffer from various quality
issues, e.g. low resolution, JPEG compression, containing
signatures with completely different styles, etc. We believe
our results could be improved with a higher-quality training
dataset. Furthermore, our method takes the centerline of the
line drawing as content and assumes that the content remain-
s unchanged. If the line drawing contains shading strokes or
sketchy strokes, the centerline image of this line drawing
will also contain the centerlines of the shading strokes or s-
ketchy strokes, so the style of shading or sketchiness will
not be captured during the style transfer. Besides, the style
of content, e.g. the shape of the skeleton of hand-writing
character, will not be captured as well since content remains
unchanged with our system.

Conclusions

In this paper, we proposed a novel style transfer network
tailored for line drawings. The centerline of the line draw-
ing is taken as the content, so we are able to formulate this
challenging problem as a centerline stylization problem and
solve it via a novel style-guided image-to-image network.
Experiments showed that our method significantly outper-
formed existing methods both qualitatively and quantitative-
ly. While our current method only captures the style of line-
width dynamics, there is potential to extend our work to
transfer the style of more complex features, such as shading
and sketchiness. A potential solution is to first simply the
line drawing with the existing sketch simplification method-
s and take the simplified line drawing as content, and then
capture the shading and the sketchiness of the line drawing
as style. We will explore towards this direction in the future.

359



Acknowledgements
This work was supported in part by grants from the
National Natural Science Foundation of China under
Grant 61973221 and Grant 62002232, the Natural Sci-
ence Foundation of Guangdong Province of China un-
der Grant 2018A030313381 and Grant 2019A1515011165,
the Key Lab of Shenzhen Research Foundation of Chi-
na under Grant 201707311550233, the COVID-19 Pre-
vention Project of Guangdong Province of China under
Grant 2020KZDZX1174, and the Major Project of the New
Generation of Artificial Intelligence of China under Grant
2018AAA0102900.

References
Abdal, R.; Qin, Y.; and Wonka, P. 2019. Image2StyleGAN:
How to Embed Images Into the StyleGAN Latent Space? In
Proceedings of the IEEE International Conference on Com-
puter Vision, 4431–4440.

Azadi, S.; Fisher, M.; Kim, V. G.; Wang, Z.; Shechtman, E.;
and Darrell, T. 2018. Multi-Content GAN for Few-Shot Font
Style Transfer. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 7564–7573.

Frigo, O.; Sabater, N.; Delon, J.; and Hellier, P. 2016. Split
and Match: Example-Based Adaptive Patch Sampling for
Unsupervised Style Transfer. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
553–561.

Gao, W.; Li, Y.; Yin, Y.; and Yang, M. 2020. Fast Video
Multi-Style Transfer. In Proceedings of the IEEE Win-
ter Conference on Applications of Computer Vision, 3211–
3219.

Garces, E.; Agarwala, A.; Gutierrez, D.; and Hertzmann, A.
2014. A similarity measure for illustration style. ACM Tran-
s. Graph. 33(4): 93:1–93:9.

Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image
Style Transfer Using Convolutional Neural Networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2414–2423.

Gonzalez-Garcia, A.; van de Weijer, J.; and Bengio, Y. 2018.
Image-to-image translation for cross-domain disentangle-
ment. In Advances in Neural Information Processing Sys-
tems, 1294–1305.

Haralick, R. M.; and Shapiro, L. G. 1992. Computer and
Robot Vision, volume I. USA: Addison-Wesley Longman
Publishing Co., Inc., 1st edition. ISBN 0201569434.

Hertzmann, A.; Jacobs, C. E.; Oliver, N.; Curless, B.; and
Salesin, D. 2001. Image analogies. In Proceedings of the
28th Annual Conference on Computer Graphics and Inter-
active Techniques, 327–340. ACM.

Huang, X.; and Belongie, S. J. 2017. Arbitrary Style Trans-
fer in Real-Time with Adaptive Instance Normalization. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 1510–1519.

Huang, X.; Liu, M.; Belongie, S. J.; and Kautz, J. 2018. Mul-
timodal Unsupervised Image-to-Image Translation. In Pro-
ceedings of the European Conference on Computer Vision,
volume 11207, 179–196.
Isola, P.; Zhu, J.; Zhou, T.; and Efros, A. A. 2017. Image-to-
Image Translation with Conditional Adversarial Networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 5967–5976.
Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Perceptual
Losses for Real-Time Style Transfer and Super-Resolution.
In Proceedings of the European Conference on Computer
Vision, volume 9906, 694–711.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for S-
tochastic Optimization. In Bengio, Y.; and LeCun, Y., eds.,
Proceedings of the 3rd International Conference on Learn-
ing Representations.
Kotovenko, D.; Sanakoyeu, A.; Lang, S.; and Ommer, B.
2019. Content and Style Disentanglement for Artistic Style
Transfer. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 4421–4430.
Lee, H.; Tseng, H.; Huang, J.; Singh, M.; and Yang, M.
2018. Diverse Image-to-Image Translation via Disentangled
Representations. In Proceedings of the European Confer-
ence on Computer Vision, volume 11205, 36–52.
Lee, H.; Tseng, H.; Mao, Q.; Huang, J.; Lu, Y.; Singh,
M.; and Yang, M. 2019. DRIT++: Diverse Image-to-Image
Translation via Disentangled Representations. CoRR ab-
s/1905.01270.
Li, W.; He, Y.; Qi, Y.; Li, Z.; and Tang, Y. 2020. FET-GAN:
Font and Effect Transfer via K-shot Adaptive Instance Nor-
malization. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 1717–1724.
Li, X.; Liu, S.; Kautz, J.; and Yang, M. 2018. Learning Lin-
ear Transformations for Fast Arbitrary Style Transfer. CoRR
abs/1808.04537.
Li, Y.; Fang, C.; Yang, J.; Wang, Z.; Lu, X.; and Yang, M.
2017. Universal Style Transfer via Feature Transforms. In
Advances in Neural Information Processing Systems, 386–
396.
Liu, M.; Breuel, T.; and Kautz, J. 2017. Unsupervised
Image-to-Image Translation Networks. In Advances in Neu-
ral Information Processing Systems, 700–708.
Mescheder, L. M.; Geiger, A.; and Nowozin, S. 2018. Which
Training Methods for GANs do actually Converge? In Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80, 3478–3487.
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y.
2018. Spectral Normalization for Generative Adversarial
Networks. In Proceedings of the 6th International Confer-
ence on Learning Representations.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, volume 9351,
234–241.

360



Sanakoyeu, A.; Kotovenko, D.; Lang, S.; and Ommer, B.
2018. A Style-Aware Content Loss for Real-Time HD Style
Transfer. In Proceedings of the European Conference on
Computer Vision, volume 11212, 715–731.
Shih, Y.; Paris, S.; Barnes, C.; Freeman, W. T.; and Durand,
F. 2014. Style transfer for headshot portraits. ACM Trans.
Graph. 33(4): 148:1–148:14.
Shih, Y.; Paris, S.; Durand, F.; and Freeman, W. T. 2013.
Data-driven hallucination of different times of day from a
single outdoor photo. ACM Trans. Graph. 32(6): 200:1–
200:11.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
Proceedings of the 3rd International Conference on Learn-
ing Representations.
Song, C.; Wu, Z.; Zhou, Y.; Gong, M.; and Huang, H. 2019.
ETNet: Error Transition Network for Arbitrary Style Trans-
fer. In Advances in Neural Information Processing Systems,
668–677.
Wang, H.; Li, Y.; Wang, Y.; Hu, H.; and Yang, M. 2020. Col-
laborative Distillation for Ultra-Resolution Universal Style
Transfer. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 1857–1866.
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P.
2004. Image quality assessment: from error visibility to
structural similarity. IEEE Trans. Image Process. 13(4):
600–612.
Yang, S.; Liu, J.; Lian, Z.; and Guo, Z. 2017. Awesome
Typography: Statistics-Based Text Effects Transfer. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2886–2895.
Yang, S.; Liu, J.; Wang, W.; and Guo, Z. 2019. TET-GAN:
Text Effects Transfer via Stylization and Destylization. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 1238–1245.
Yi, R.; Liu, Y.; Lai, Y.; and Rosin, P. L. 2019. APDraw-
ingGAN: Generating Artistic Portrait Drawings From Face
Photos With Hierarchical GANs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 10743–10752.
Yu, X.; Chen, Y.; Liu, S.; Li, T. H.; and Li, G. 2019. Multi-
mapping Image-to-Image Translation via Learning Disen-
tanglement. In Advances in Neural Information Processing
Systems, 2990–2999.
Zhang, T. Y.; and Suen, C. Y. 1984. A Fast Parallel Algo-
rithm for Thinning Digital Patterns. Commun. ACM 27(3):
236–239.
Zhang, Y.; Fang, C.; Wang, Y.; Wang, Z.; Lin, Z.; Fu, Y.;
and Yang, J. 2019. Multimodal Style Transfer via Graph
Cuts. In Proceedings of the IEEE International Conference
on Computer Vision, 5942–5950.

361


