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Abstract

In this paper, we propose an effective global relation learning
algorithm to recommend an appropriate location of a building
unit for in-game customization of residential home complex.
Given a construction layout, we propose a visual context-
aware graph generation network that learns the implicit global
relations among the scene components and infers the loca-
tion of a new building unit. The proposed network takes as
input the scene graph and the corresponding top-view depth
image. It provides the location recommendations for a newly-
added building units by learning an auto-regressive edge dis-
tribution conditioned on existing scenes. We also introduce a
global graph-image matching loss to enhance the awareness
of essential geometry semantics of the site. Qualitative and
quantitative experiments demonstrate that the recommended
location well reflects the implicit spatial rules of components
in the residential estates, and it is instructive and practical to
locate the building units in the 3D scene of the complex con-
struction.

Introduction
Customized residential complex design becomes a popular
element in modern MMORPG games. This module allows
players to virtually create personalized housing experiences
with a comprehensive construction and design interface. For
instance, a player could have a palace-like mansion with a
carefully-shaped garden of pools and a greenhouse. Possess-
ing such luxury housing is unlikely to be possible for most
of us. Yet, it could enhance the feeling of belongingness and
escalate the joyfulness during the gaming. On the downside,
designing a residential housing complex is not “as easy as
pie”, which requires professional expertise and extensive ex-
periences. Our answer to this dilemma is to resort to machine
learning to prompt smart suggestions during the user inter-
action, which is similar to smart typing system that predicts
the following word we will input.

Following this motivation, we introduce an algorithm for
location recommendation, which interactively provides sug-
gestions to players on where to place new building compo-
nents etc. A few techniques have been proposed to suggest a
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Figure 1: A high-level overview of our pipeline: from an in-
put image of in-game the home customization site, our sys-
tem extracts a relation graph. With other learned features, we
train a graph generation network to infer the deployment of
new edges. Finally, our system outputs a location prediction
indicates the “suitableness” for the next building unit.

placement of a new component in an indoor scene automat-
ically (Wang et al. 2018, 2019; Nauata et al. 2020; Wu et al.
2019). They use deep learning techniques e.g., the FiLM
net (Perez et al. 2018), to predict a component location as an
attribute of the new node. However, these approaches do not
directly transfer to the home construction which occurs in an
open outdoor space. Clearly, planning the building construc-
tion of a residential complex involves elements of diverse
dimensions and scales. Therefore, searching all the possible
positions on the site is not efficient. Second, items/elements
in indoor scenes are normally associated with well-defined
functional constraints, which can be fully exploited by the
network. However, we have much weaker functional rela-
tions among buildings on the construction site. Certain types
of building units are also exclusive – for instance, one can-
not add extra building blocks on the top of a swimming pool,
and we name such locations forbidden areas. This type of
exclusiveness is not considered in previous algorithms.

Given a layout of a housing site, we aim to suggest
the user a location directly without any prior knowledge
of the building unit to be placed. Our method is inspired
by planIT (Wang et al. 2019) converting the site layout
into a graph. To reduce the search space, we do not iter-
ate all the candidate locations on the layout. Instead, we
infer a possible location of a building unit through global
graph relations. While building units do not have strong
local/neighborhood dependence, in a complex with multi-
ple building units, we leverage global relations (i.e., graph
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edges) among all the building units to facilitate our pre-
diction. For instance, one does not want to have houses to
fully enclose a golf court. In this way, our graph genera-
tion network learns implicit global constraints from the ex-
isting graph and understands how to add new graph edges
following such ineffable rules. To account for the exclusive
units/areas, we extract the essential visual clues of the input
scene from the top view of the site image through a con-
volutional net and fuse them into the graph generation net-
work. Concretely, we construct two data structures as the
network inputs. One is the top-down rendered scene image
(with the detailed exclusive units labeled area description),
and the other is the scene graph. Our graph generation net-
work takes as input the scene graphs and integrates the corre-
sponding visual clues learned from the scene image to learn
the global relations of nodes, and mimic constructing new
edges. The scene graph does not contain the building’s vi-
sual geometry semantics, nor can it describe the forbidden
area in the scene. To this end, we introduce a global graph-
image feature matching loss to enable the awareness of the
scene geometry during graph generation. The proposed vi-
sual context-aware global relation learning network can pre-
cisely describe the geometric and topological semantics of
the input scene. The auto-regressive generative mode within
the network can effectively model the edge distribution from
the existing nodes to the future nodes. Finally, we infer the
recommended location for guiding the placement from the
learned edge distribution.

We have qualitatively and quantitatively evaluated our
method on a residential housing dataset collected from a
commercial game. The results show that our method can ef-
fectively model the global spatial rules in the layout of build-
ing components. With the extracted visual clues, our net-
work effectively avoids suggestions in the forbidden areas
and collisions with existing buildings. The perceptual study
and the quantitative evaluation results demonstrate that our
generated location maps yield meaningful and instructive
guidance for the players to place new building units.

Related Works
Residential Scene Layout Synthesis. Residential scene
layout synthesis plays an important role in various do-
mains, such as game designs and architectural layouts. With
the emergence of large scene datasets, more deep learn-
ing based models are proposed to address the layout gen-
eration problem. DeepSynth (Wang et al. 2018) and Fast-
Synth (Ritchie, Wang, and Lin 2019) introduce iterative gen-
eration methods to synthesize new indoor layouts with repre-
senting the unstructured input as top view rendered images.
In GRAINS (Li et al. 2019) the input is represented as a tree
structure and a recursive auto-encoder network is introduced
to learn and sample the layout hierarchies. (Zhang et al.
2020) represents the input as both arrangement matrix and
rendered images and generates scenes in an attribute-matrix
form with a generative adversarial network. PlanIT (Wang
et al. 2019) proposes a two-stage method with first generat-
ing a layout plan encoded as a relation graph and then instan-
tiating the plan through an autoregressive convolutional gen-
erator based on the rendered images. In (Zhang et al. 2019),

a stylistic GAN is proposed to model the relationship be-
tween the style distribution and the enhancements for 3D
indoor scenes. A novel evaluation method is also introduced
by (Liu 2019) to evaluate the synthesized 3D indoor scenes
qualitatively. In addition to the work mentioned above on the
indoor layout generation, a few researchers have also pro-
posed some techniques working on floor layout design. For
example, (Wu et al. 2019) proposes a two-stage method to
iteratively locate rooms and walls given an input boundary
while (Hu et al. 2020) introduces an interactive solution in
which users can specify some constraints during planning.
In (Nauata et al. 2020), they propose a convolutional mes-
sage passing network named House-GAN that takes as input
a bubble diagram and outputs the house layout with axis-
aligned bounding boxes. Unlike these tasks of indoor layout
and floor plan design, our work focuses on outdoor home
planning, and specifically, we aim to suggest locations for
the new buildings.

Graph Generation Networks. Graphs are natural repre-
sentations of information in many areas, such as biology, en-
gineering, and social sciences. Traditional techniques, such
as (Bollobás and Béla 2001; Leskovec et al. 2010; Margaritis
2003; Leskovec, Kleinberg, and Faloutsos 2007), are based
on hand-engineered graph priors that adhere to a pre-decided
distribution, thus the learned generative models do not have
enough capacity to represent the graph structures contained
in the observed data. Inspired from recent advances in deep
generative models in computer vision (Wang, She, and Ward
2019; Kingma and Welling 2019; Kobyzev, Prince, and
Brubaker 2019) and natural language processing (Radford
et al. 2019; Brown et al. 2020), recent techniques have
shifted towards a learning-based approach and have made
significant progress. (Simonovsky and Komodakis 2018)
proposes a VAE based graph generation model to learn to
translate a latent continuous vector to a graph that can gener-
ate a graph matrix at once. However, different node ordering
would lead to different graph matrices for the same graph
structure, making the learning process difficult. In (Li et al.
2018), a message passing method is introduced to express
probabilistic dependencies between nodes and edges within
a graph, but the message is passing on every single edge,
leading to a complex training process. GraphRNN (You et al.
2018) proposes a hierarchical RNN framework to generate
nodes and edges alternately. It also proposes a BFS node or-
dering scheme to improve scalability. To speed up the gener-
ative velocity, GRAN (Liu et al. 2019) employs an efficient
framework to generate one block of edge connections be-
tween nodes at a time. Inspired by GRAN (Liu et al. 2019),
we propose a graph generation stream in our framework to
learn the edge distribution between existing scene building
units and the new units.

The Dataset
We collected near 150K residential garden plans designed
by players from a popular online game, which provides a
large area of 165 grid × 183 grid (1 grid = 64pixels)
and multiple building units of different sizes. Many players
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are novices to home design and landscaping, or they sim-
ply do not want to spend time on it. Some home designs
are more like a collection of random building units. Sig-
nificant efforts have been devoted to clean up the dataset.
We first rendered all the designs into images and randomly
picked 30K out of them. Those images were sent to an an-
notation team, consisting of trained professionals. Each im-
age will be labeled with five grades, and a ResNet50 was
trained with those manually annotated labels. Another about
30K designs that fell into the top three grades were auto-
matically picked out by the trained model. Afterwards, the
annotation team re-assessed machined-graded designed, and
we kept ones labled in the top three grades. After this pro-
cessing, our dataset contains about 28K designs, with 276
building units per sample on average. There are 381 differ-
ent building units in total, including 280 infrastructure units
(e.g., walls, doors etc.), 101 architectural units, and one for-
bidden unit that can be any shape (i.e., the pool).

Relation Graph Extraction
We convert the scene into a directed relation graph
G = (V, E). In this graph, nodes V denote scene units, which
also have a spatial coordinate. Edges E ⊆ V × V represent
the spatial relations between nodes.

Edges. In order to encode the arrangement relations be-
tween the components, the spatial relationship is described
with four direction types i.e., front, back, right, left and four
distance types, next to, adjacent, proximal, distant, resulting
16 spatial edge types in total. To model the geometric rela-
tionship between units in more details, we also detect six
edge alignment attributes, namely left side, vertical center,
right side, top side, horizontal center, and bottom side. To
extract spatial edges for node vi, we first raycast from the
four sides of its oriented bounding box on the xy plane, and
then detect intersection with other nodes. For an intersect-
ing node, an edge is added to the graph from vi to that node
if the node is visible from vi with more than 15% on one
side, and the directions are defined in the coordinate frame
of node vi. We set the distance label based on the distance
between the two nodes’ oriented bounding boxes: next to if
distance = 0, adjacent if 0 < distance ≤ 30, proximal if
30 < distance ≤ 80 and distant otherwise. The alignment
attributes are added if there is an edge connecting two nodes.
For clarity, we only show one edge between two nodes. In
fact, once one edge is detected between two nodes, we will
add another edge between them (opposite direction, same
distance).

Nodes. An obvious strategy is to to represent a building
unit as a node in the relation graph. However, as one lay-
out design in our dataset contains about 276 different units
(most of them are infrastructural units), doing so leads to an
over-complicated graph. To this end, we simplify the rela-
tion graph by merging multiple infrastructure units to one
node. Two units can be merged if they satisfy all the follow-
ing conditions: 1) they are in the same category and have
the same orientation; 2) they have the same height and are

aligned in the x-axis or the same width and aligned the y-
axis; 3) they are next to each other and are completely vis-
ible to each other. After merging, the number of nodes in
the graph is reduced to an average of 63 with the primary
information preserved.

Attributes. We assign attribute vectors to each graph node
and edge to encode the geometrical/semantic information of
the corresponding scene. Specifically, for a node vi ∈ V , its
attribute vector is defined as ṽi = [lTi , o

T
i ], where li ∈ R|D|

is the one hot encoded vector of the label, and |D| is the
number of the unit labels. oi ∈ R4 is the oriented bound-
ing box of the unit on the xy plane. For an edge ek ∈ E ,
its attribute vector is defined as ẽk = [tTk , d

T
k ,m

T
k ], in which

tk ∈ R16 is the one hot encoded vector of the edge type (16
edge types in total). tk ∈ R1 is the distance between two
nodes. mk ∈ R6 is the alignment vector of the edge.

Top-down View Representation
We convert the 3D residential home design into a 2D layout
with a top-down orthographic depth render. Doing so brings
several benefits. First, since the forbidden area in the design
can be in any shapes, it is difficult to represent it as a node in
the graph. Instead, rendering it into a spatial image can pro-
vide detailed shape information to the network. Second, al-
though the design is in 3D, most building units are arranged
in 2D. The top-view rendering better reveals spatial outline
of the design. Following (Wang et al. 2018), this rendering
maps a 165 grid× 183 grid area to a 512× 512 image.

Our Method
We propose a visual context-aware graph generation model
to learn the edge distribution for the possible building. Our
model consists of two streams: one is a ConvNet that learns
detailed semantic information of each unit from the rendered
image; the other stream is a graph generation network that
takes as input the relation graph and fuses the visual clues
learned from the ConvNet and outputs the edge distribution
based on the existing graph for the possible building unit.

Visual Context Extraction
We extract transformed visual features from the rendered
images with a ConvNet. It is known that low-level features
from a ConvNet characterize the details of local regions,
and high-level features represent the global structural in-
formation of the input image. In our framework, we pro-
duce the transformed visual features using FPN based ob-
ject detector (Lin et al. 2017) in a multi-stage manner. We
crop the visual feature of each building unit from the feature
pyramids {C1, C2, C3, C4} through the ROIAlignLayer (He
et al. 2017). Each cropped visual feature is then transformed
into a fixed dimensional visual clue through a convolutional
block and finally integrated into the corresponding node fea-
tures in the graph relation learning network to make the
learning process visual context-aware (Figure 2). The con-
volutional block is a Conv-BN-ReLU block with a kernel
size 3× 3.
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Figure 2: An overview of our proposed visual context-aware attentive message passing for the r-th round. This is a toy example
with five building units and four edges to illustrate a single message passing iteration (“large bld”: “large building”).

Context-Aware Global Relation Learning
With the extracted visual clues and the relation graph as in-
put, our global relation learning model outputs the edge dis-
tribution between the existing nodes and the possible node.
Inspired by (Liao et al. 2019), we encode the edges of the
relation graph G = (V, E) with a label weighted adjacency
matrixA. For each edge (i, j) ∈ E ,Aij = tij , where tij ∈ T
is the edge label, and T is the edge type set. Each row vector
ai ∈ A is interpreted as a connectivity feature of node vi rep-
resenting connected relations between vi and other nodes in
the graph. We learn an edge distribution P (a|V |+1|G), which
samples connectivity features of relations between the new
node and existing nodes in the graph. In our experiment, we
only model the edge distribution from the previous nodes to
the new node, which can easily infer the opposite relations.
In the following, we describe how to learn edge distribution
in detail. More implementation details of the network struc-
ture are provided in the supplementary material.

Graph Node Initialization. We first translate the adja-
cency matrixA into an one-hot matrix Ã of size |V |×(|T |+
1)× |V | with Ã[i, Aij , j] = 1. All the node features ãi ∈ Ã
are padded with zeros to the max dimension of the adjacency
matrix in the whole dataset (443 in our dataset). Together
with the node attribute vector vi, the node representation is
initialized as:

h0i = finit(ãi, ṽi;Winit), (1)

where finit is a stacked 1D convolutional block transform-
ing the raw connectivity features ãi into the latent embed-
dings. Then the following one-layer MLP takes as input the
embeddings and node attribute vector vi and outputs a node
representation h0i ∈ RI , where I is the dimension of the
node representation. For the new node representation, we set
h0|V |+1 = 0 and h0|V |+1 ∈ RI .

Edge Masked Attentive Message Propagation. With
node features (including the node representation and the
corresponding visual clues) and associated attribute vectors,

stacked edge masked attentive message propagation blocks
propagate the messages and update the node representations’
state. For the new node, we assume that it is connected to all
existing nodes with an unknown label. At the r-th step, we
first compute the visual semantic augmented node represen-
tations for all graph nodes:

hr
′

i = fctx(h
r
i , c

r
i ;Wctx), (2)

where hri is the node representation, and the cri is the corre-
sponding cropped visual clue. fctx is a two-layer MLP with
learnable parameters Wctx to make the output node repre-
sentations aware of the corresponding visual clues.

To propagate messages and update node representations,
the multi-head attention mechanism (Veličković et al. 2018)
is used to weight different messages for different nodes:

mrk
ij = frkmsg(h

r′

i , h
r′

j , ẽk;W
rk
msg), (3)

markij = frkatt(h
r′

i , h
r′

j , ẽk;W
rk
att), (4)

attrkij =
exp(markij )∑
l∈N (i)(ma

rk
il )

, (5)

hr+1
i = frGRU(h

r
i , ‖k=Kk=1

∑
j∈N (i)attrkij m

rk
ij ;w

rk
GRU). (6)

Here, K indicates that we use K different attention mech-
anisms to transform the messages flowing on the edges. In
the k-th attention mechanism, we first compute the message
markij for all triplets [vi, ek, vj ] (where vi and vj are the two
nodes of the edge ek) according to Eq. (3). An edge masked
self-attention weights on messages is then obtained (accord-
ing to Eq. (4) and Eq. (5)) to compute a linear combina-
tion of the messages for each node. Finally, the graph node
representations are updated with the concatenation of the K
different message combinations from K different attention
mechanism (according to Eq. (6)). In our experiments, frkmsg
is a two-layer MLP with learnable parameters W rk

msg , frkatt is
implemented as a single-layer forward neural network fol-
lowed with a ReLU nonlinearity. N (i) indicates the neigh-
boring nodes for each node i, and wrGRU are the learnable
parameters for GRU. We show an example of this process in
Figure 2.
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Edge distribution Modelling. After R steps of message
propagation, we obtain the final node representations hRi for
each node i and compute the raw messages from the existing
graph to the new node mR

i,|V |+1 = [hRi , h
R
|V |+1]. We model

the edge distribution from existing nodes to the new node
P (a|V |+1|G) with a mixture of categorical model based on
the raw messages:

P (a|V |+1|G) =
S∑
k=1

αs
∏

1≤j≤|V |

θs,j,|V |+1, (7)

α = Softmax(
∑

1≤j≤|V |

fα(m
R
j,|V |+1;Wα)), (8)

θ = Sigmoid(fθ(mR
j,|V |+1;Wθ)), (9)

where S is the number of the mixtures in our experiments.
α is the mixed coefficient of S dimension. θ is the learned
edge probabilities of different mixtures. Both fα and fθ are
implemented as a two-layer MLP, and Wα and Wθ are the
learnable parameters. The mixture of categorical distribu-
tion provides an efficient way to capture dependence in the
output distribution due to the latent mixture components.

Losses. To learn the edge distribution from existing nodes
to the new node, we define the objective function as the neg-
ative log posterior probability of the mixture model:

Lo = −
Z∑
z=1

logP (az,|V |+1|Gz), (10)

where Z is the batch size. To encourage the graph genera-
tion network to perceive the global visual semantics, we add
global graph-image matching loss to minimize the match-
ing score for the graph image pair. We first obtain the two
global features (ṽrG and ṽrI ) by averaging the corresponding
node features for simplify. The matching score is defined as
a cosine similarity:

R(Grz, I
r
z ) =

ṽrG
T
ṽrI

‖ṽrG‖ · ‖ṽrI‖
. (11)

Similar to (Xu et al. 2018), for a batch of graph-images
{(Gz, Iz)}Zz=1, the posterior probability of image Iz being
matching with graph Gz is computed as:

P (Grz|Irz ) =
exp(γR(Grz, I

r
z ))∑Z

b=1 exp(γR(Grz, Irb ))
, (12)

and the paired symmetric loss is defined as the negative pos-
terior probability:

Lrm = −
Z∑
z=1

logP (Grz|Irz )−
Z∑
z=1

logP (Irz |Grz). (13)

Finally, the objective function of our model is:

L = Lo +
R∑
r=1

Lrm. (14)

The current scene The edges to all to-
be-located buildings

The visualized 
heatmaps for edges

The thresholded and 
smoothed heatmaps

Figure 3: The visual examples of the discrete labels for eval-
uation.

Implementation Details
In our implementation, we first extract relation graphs and
rendered images from the unstructured sites. For the Con-
vNet to extract the visual clues for each component, we im-
plement it based on Detectron2 and choose ResNet50 as the
backbone. The aspect ratio is set as [0.25, 0.5, 1.0, 2.0, 4.0].
This detection model is pretrained on our rendered scene
images, and we will not change the parameters in the fol-
lowing training phases. The cropped features are then trans-
formed into visual clues with the size of 1, 024 based on
the convolution block. For the graph generation network, we
first learn the initial node representation with a size of 512.
Then we update the node representations 4 rounds together
with the corresponding visual clues based on the stack of
edge masked attentive message propagation blocks. For each
message passing block, we first obtain the messages with the
dimension of 128 and then concatenate the 4-head attention
mechanism output to update the node representation. We add
global graph-image matching loss at every round of message
passing. To model the latent dependencies between edges,
we set the number of mixtures to 10 in the edge distribution
model. During the training phase, we set the batch size as
32 and choose the Adam solver for optimization, with the
initial learning rate of lr = 10−4. The model is trained on 4
TitanX 2080 GPUs.

Experiments
We have systematically tested the proposed method. We
choose 22.4K designs as the training set and the rest 5.6K
are used for testing.

Visualization. In order to intuitively evaluate our experi-
mental results, we first convert the discrete edges from the
existing scene graph to the target node for the testing set and
predictions based on introduced above. Since our purpose is
to recommend a location for the possible building unit, we
set the default target unit size as [24, 24] when visualizing
edges for both the ground truth testing dataset and the pre-
dictions. During the visualization process, for the edge set
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{e}t from the current scene to the component t, the prob-
ability of the location the current edge points to is set as
1/|{e}t|. The final heatmap is the sum of all the locations’
probability values implied by the corresponding edges. The
heatmap is normalized to a maximum value of 1. In our ex-
periment for perceptual study, we only keep the areas with
the probability value greater than 0.5 in the heatmap and
smooth them with a Gaussian kernel (kernel size = 5),
which better indicates our recommendation. Several exam-
ples are shown in Figure 3.

Comparisons. We compare our method with
planIT (Wang et al. 2019) and FastSynth (Ritchie, Wang,
and Lin 2019). While those two methods are originally
designed for indoor scenes, they are quite relevant to our
method. For a fair comparison, we implement the partial
graph completion of planIT and add only one unit for
each scene during the test. For (Ritchie, Wang, and Lin
2019), we implemented the Object Location and choose the
predicted location map indicated by the ground truth label.
The heatmaps generated in our method are visualized from
discrete edges. It is more coarse-grained than a pixel-level
prediction. Therefore, we enlarge the areas of position
with a probability value higher than the mean probability
value for a fair comparison. We enlarge the area for each
position with a size of [24, 24] and centroid of itself. Then
the heatmap is thresholded and smoothed as the above
visualization method. We also compared our method with
two degraded variants. The first variant is Baseline: we
implemented the GRAN model (Liao et al. 2019) with
5 GNN layers and tested on our dataset. In this model,
the relation graph is the only input. The second variant is
LocRec(w/o): we implemented with the proposed model
without the global graph-image matching loss during the
training process. We denote our model as LocRec in the
benchmark reports.

Quality Metrics. We provide two types of metrics to eval-
uate the quality of predicted location maps. First, we de-
fine two criteria to evaluate the visualized heatmaps. For the
ground truth heatmap htr and the corresponding predicted
heatmap htp, we first calculated the mask m of the inter-
section of the two non-zero areas, then the f1 score on both
areas and probabilities are calculated to evaluate the results.
The recall and the precision score of the area are defined as
ar =

∑
m/

∑
(htr > 0) and ap =

∑
m/

∑
(htp > 0),

the final f1 scorearea = 2/(ap−1 + ar−1). To calculate the
f1 score on probabilities, the recall and the precision score
are defined as pr =

∑
min(htr[m], htt[m])/

∑
htr and

pp =
∑

min(htr[m], htt[m])/
∑
htp. The high f1 score on

area indicates that our model can effectively recommend the
location for the new building units, while the high f1 score
on probabilities indicate that our recommend location is
compact and has clear guiding significance.

Since we aim at prompting players where to place new
units, we also provide a ranking choice perceptual study to
rank the results generated by different methods. We provided
60 questions and invited 45 participants to rank the different

Method ar ap pr pp f1sa f1sp
LocRec 0.494 0.847 0.297 0.551 0.624 0.386
LocRec(w/o) 0.463 0.834 0.283 0.561 0.596 0.376
Baseline 0.424 0.802 0.292 0.450 0.555 0.348
PlanIT 0.428 0.778 0.138 0.522 0.550 0.219
FastSynth 0.352 0.779 0.0981 0.499 0.485 0.164

Table 1: The quantitative score on the testing dataset for dif-
ferent methods. f1sa: f1 scorearea; f1sp: f1 scoreprobability .

results in each question. We provide two questions for each
participant, “does this heatmap clearly specify a location?”
and “are you willing to place a building at this location?”.
Participants are asked to rank the results based on their an-
swers. We define five levels to quantify the results, and par-
ticipants are not allowed to give the same rank to different re-
sults in the same question. Rank5 represents the best, while
Rank1 represents the worst. A detailed questionnaire is pro-
vided in the supplementary material.

Experimental Results. Figure 1 shows a location map
predicted by our method, where the heatmap is directly vi-
sualized from the predicted edges. We observe that the re-
sults generated by visualizing edges occupies a relatively
large area, but the central location with high probability is
still obvious, which has good guiding significance. We re-
port more results in Figure 4 (more results in the supple-
mentary material), where the background is the input scene,
and the corresponding predicted location map is imposed to
the background as a heatmap. To more clearly point out the
locations generated by different methods, we show the re-
sults after thresholding and smoothing in the figure. For the
results generated by our method (i.e., LocRec), we also plot
the generated edges. We observe that our model can effec-
tively learn the relations contained in the scenes, and the
edge set predicted from the learned distribution has a high
consistency and seldom point to multiple areas at the same
time, which ensures the stability of our results.

We find that the results generated by our method can in-
dicate accurate (only one peak area exists in the heatmap
and the area with large probability values is very compact)
and collision avoidance locations, which is instructive and
meaningful to locate the new building units for players. We
also find that our predictions can reasonably avoid the for-
bidden areas and are harmonious with the existing scenes.
The corresponding quantitative results are shown in Ta-
ble 1. It can be seen that our generated locations can hit
the ground truth results in the testing dataset in most cases
(with f1 scorearea = 62.4%, f1 scoreprob = 38.6%), which
shows that our approach can effectively model the sptial
rules within the units in the scene. The results of the per-
ception study (Table 2) also confirm that the players accept
our recommendation results and are willing to place build-
ings in such locations in most cases (with #Rank5 = 64%).

The visualization results of planIT are given in Figure 4,
the quantitative results and the perception study results are
provided in Tables 1 and 2. Compared with FastSynth,
planIT gives a more reasonable location, which verifies that
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Input scenes Ground truth Predicted edges LocRec LocRec(w/o) Baseline planIT FastSynth

Figure 4: Location predictions using different algorithms on our testing dataset.

Method Rank1 Rank2 Rank3 Rank4 Rank5
LocRec 0.0063 0.086 0.0060 0.26 0.64
LocRec(w/o) 0.18 0.17 0.18 0.24 0.24
Baseline 0.16 0.16 0.44 0.15 0.081
PlanIT 0.11 0.29 0.25 0.22 0.13
FastSynth 0.55 0.17 0.12 0.079 0.078

Table 2: The resulting scores of the perceptual study for dif-
ferent methods.

the constraint of the extrinsic relation graphs is more con-
ductive to us recommending a reasonable location. Because
planIT relies on the local relationship of the current unit
when recommending locations, it is more difficult to learn
the global relations between units in the scene, the resulting
recommendation locations are much worse than our result.
From the perceptual study results, compared to planIT we
observe that the players are more satisfied with the location
recommended by LocRec. This is because the construction
site has a large space, the locations and probability values
recommended by planIT can be scattered. Our method is
based on global relations and leads to consistent recommen-
dations. The pr score in Table 1 also reflects this fact.

We also provide the visualization results of our method
and its variants in Figure 4. The corresponding benchmarks
are shown in Tables 1 and 2. As one can see, our baseline
model is effective. Compared to FastSynth, which only in-
puts visual semantics, an algorithm based on relation graph
is more conducive to use to learn a compact location, even it

may appear to conflict with other building units in the scene.
After adding visual clues reasonably, the learned locations
becomes more effective. Since LocRec(w/o) does not inte-
grate the global graph-image matching loss into the learning
process of edge distribution, the resulting locations cannot
effectively avoid the forbidden areas (e.g., pools). With the
local visual clues and the global graph-image matching loss
for the learning process, our full model can effectively cap-
ture the detailed and global structure of the input scene, and
resulting in the best location prediction.

Conclusion
We propose an effective location recommendation method
based on a visual context-aware graph generation network.
This net learns the global relations between the building
units. To integrate the visual clues to the learning process,
a global graph-image matching loss in also designed to en-
able the awareness of the scene geometry during the graph
generation. The experimental results show that our method
can generate instructive and meaningful locations to place
the possible units. Currently, our work focus on recommend-
ing one location for the next building unit. In practice, it
is more convenient to recommend multiple choices for dif-
ferent units collectively, which clearly offers more options
to the user during the customization. However, more build-
ing units require more flexibility and ambiguities during the
learning. In the future, we plan to investigate possible solu-
tions to solve this problem. Besides, quantitative measure-
ment of uncertainty during learning is also worth exploring.
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