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Abstract

This work proposes an approach for latent-dynamics learning
that exactly enforces physical conservation laws. The method
comprises two steps. First, the method computes a low-
dimensional embedding of the high-dimensional dynamical-
system state using deep convolutional autoencoders. This de-
fines a low-dimensional nonlinear manifold on which the
state is subsequently enforced to evolve. Second, the method
defines a latent-dynamics model that associates with the solu-
tion to a constrained optimization problem. Here, the objec-
tive function is defined as the sum of squares of conservation-
law violations over control volumes within a finite-volume
discretization of the problem; nonlinear equality constraints
explicitly enforce conservation over prescribed subdomains
of the problem. Under modest conditions, the resulting dy-
namics model guarantees that the time-evolution of the latent
state exactly satisfies conservation laws over the prescribed
subdomains.

Introduction
Learning a latent-dynamics model for complex real-world
physical processes (e.g., fluid dynamics (Morton et al. 2018;
Wiewel, Becher, and Thuerey 2019; Lee and Carlberg 2020),
deformable solid mechanics (Fulton et al. 2019)) comprises
an important task in science and engineering, as it provides
a mechanism for modeling the dynamics of physical sys-
tems and can provide a rapid simulation tool for time-critical
applications such as control and design optimization. Two
main ingredients are required to learn a latent-dynamics
model: (1) an embedding, which provides a mapping be-
tween high-dimensional dynamical-system states and low-
dimensional latent variables, and (2) a dynamics model,
which prescribes the time evolution of the latent variables
in the latent space.

There are two primary classes of methods for learn-
ing a latent-dynamics model. The first class comprises
data-driven dynamics learning, which aims to learn both
the embedding and the dynamics model in a purely data-
driven manner that requires only measurements of the
state/velocity. As such, this class of methods does not re-
quire a priori knowledge of the system of ordinary differen-
tial equations (ODEs) governing the high-dimensional dy-
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namical system. These methods traditionally learn a non-
linear embedding (e.g., via autoencoders (Lusch, Kutz, and
Brunton 2018; Morton et al. 2018; Otto and Rowley 2019;
Takeishi, Kawahara, and Yairi 2017)), and—inspired by
Koopman operator theory—learn a dynamics model that is
constrained to be linear. In a control (Lesort et al. 2018)
or reinforcement-learning context (Böhmer et al. 2015),
the embedding and locally linear dynamics models can
be learned simultaneously from observations of the state
(Goroshin, Mathieu, and LeCun 2015; Karl et al. 2017; Wat-
ter et al. 2015; Banijamali et al. 2018). More recently, deep-
learning-based techniques for constructing nonlinear em-
beddings and nonlinear dynamics, e.g., via long short-term
memory (Hochreiter and Schmidhuber 1997), neural ordi-
nary differential equations (Chen et al. 2018), have been pro-
posed (Gonzalez and Balajewicz 2018; Maulik, Lusch, and
Balaprakash 2020; Portwood et al. 2019).

The second class of methods corresponds to projection-
based dynamics learning, which learns the embedding in a
data-driven manner, but computes the dynamics model via
a projection process executed on the governing system of
ODEs, which must be known a priori. As opposed to the
data-driven dynamics learning, projection-based methods al-
most always employ a linear embedding, which is typically
defined by principal component analysis (or “proper orthog-
onal decomposition” (Holmes et al. 2012)) performed on
measurements of the state. The projection process that pro-
duces the latent-dynamics model requires substituting the
linear embedding in the governing ODEs and enforcing or-
thogonality of the resulting residual to a low-dimensional
linear subspace (Benner, Gugercin, and Willcox 2015),
yielding a (Petrov–) Galerkin projection formulation.

Each approach suffers from particular shortcomings. Be-
cause data-driven dynamics learning lacks explicit a priori
knowledge of the governing ODEs—and thus predicts la-
tent dynamics separately from any computational-physics
code—these methods risk severe violation of physical prin-
ciples underpinning the dynamical system. On the other
hand, projection-based dynamics-learning methods heavily
rely on linear embeddings and, thus, exhibit limited dimen-
sionality reduction compared with what is achievable with
nonlinear embeddings (Ohlberger and Rave 2016). Recently,
this limitation has been resolved by employing a nonlin-
ear embedding (learned by deep convolutional autoenoders)
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and projecting the governing ODEs onto the resulting low-
dimensional nonlinear manifold (Lee and Carlberg 2020).
Another shortcoming of many projection-based dynamics-
learning methods is that the (Petrov–)Galerkin projection
process that they employ does not preclude the violation of
important physical properties such as conservation. To miti-
gate this issue, a recent work has proposed a projection tech-
nique that explicitly enforces conservation over subdomains
by adopting a constrained least-squares formulation to de-
fine the projection (Carlberg, Choi, and Sargsyan 2018).

In this study, we consider problems characterized by
physical conservation laws. Such problems are ubiquitous
in science and engineering.1 For such problems, we propose
Deep Conservation: a projection-based dynamics learning
method that combines the advantages of Refs. (Lee and Carl-
berg 2020) and (Carlberg, Choi, and Sargsyan 2018), as the
method (1) learns a nonlinear embedding via deep convolu-
tional autoencoders, and (2) defines a dynamics model via a
projection process that explicitly enforces conservation over
subdomains. The method assumes explicit a priori knowl-
edge of the ODEs governing the conservations laws in in-
tegral form, and an associated finite-volume discretization.
In contrast to existing methods for latent-dynamics learn-
ing, this is the only method that both employs a nonlin-
ear embedding and computes nonlinear dynamics for the
latent state in a manner that guarantees the satisfaction
of prescribed physical properties. Moreover, we propose
a physics-informed training objective for training the au-
toencoder, which enforces physical conservation laws di-
rectly into the autoencoder during the training. Numerical
experiments on a benchmark advection problem illustrate
the method’s ability to drastically reduce the dimensional-
ity while successfully enforcing the physical conservation
laws.

Relatedly, deep-learning-based approaches for enforcing
conservations laws include (1) designing neural networks
that can learn arbitrary conservation laws (hyperbolic con-
servation laws (Raissi, Perdikaris, and Karniadakis 2019),
Hamiltonian dynamics (Greydanus, Dzamba, and Yosinski
2019; Toth et al. 2019; Chen et al. 2019), Lagrangian dy-
namics (Cranmer et al. 2020)), or (2) designing a loss func-
tion or adding an extra neural network constraining linear
conservations laws (Beucler et al. 2019). These approaches,
however, approximate states in (semi-)supervised-learning
settings and the resulting approximations do not guaran-
tee exact satisfaction of conservation laws. Instead, the pro-
posed latent-dynamics model associates with the approxi-
mate states with the solution to a constrained residual mini-
mization problem, and guarantees the exact satisfaction of
conservation laws over the prescribed subdomains under
modest conditions.

1In physics, conservation laws state that certain physical quan-
tities of an isolated physical system do not change over time. In
fluid dynamics, for example, the Euler equations (LeVeque 2002)
governing inviscid flow are a set of equations representing the con-
servation of mass, momentum, and energy of the fluid.

Full-order Model
Physical Conservation Laws
This work considers parameterized systems of physical con-
servation laws. The equations governing a system of conser-
vations laws in integral form correspond to

d

dt

∫
ω

wi(~x, t;µ) d~x+

∫
γ

gi(~x, t;µ)·n(~x) d~s(~x)=

∫
ω

si(~x, t;µ) d~x,

(1)
for i = {1, . . . , nw}, which is solved in time domain t ∈
[0, T ] given an initial condition such that wi(~x, 0;µ) =
w0
i (~x;µ), i = {1, . . . , nw}. Here, ω denotes any subset

of the spatial domain Ω ⊂ Rd with d ≤ 3; γ := ∂ω de-
notes the boundary of the subset ω, while Γ := ∂Ω denotes
the boundary of the domain Ω; d~s(~x) denotes integration
with respect to the boundary; and wi ∈ R, gi ∈ Rd, and
si ∈ R denote the ith conserved variable, the flux associ-
ated with wi, and the source associated with wi. The pa-
rameters µ ∈ D characterize physical properties of the gov-
erning equations, where D ⊂ Rnµ denotes the parameter
space. Finally, n ∈ Rd denotes the outward unit normal to
ω. We emphasize that Eq. (1) describe conservation of
any set of variables wi (e.g., mass, momentum, and en-
ergy), given their respective flux gi and source si func-
tions, e.g., without source term, the rate of change of mass
w inside a certain region ω, d

dt

∫
ω
w, equals the incoming

flux (the flux entering minus the flux leaving the domain ω)
−
∫
γ
g(~x, t;µ)·n(~x) d~s(~x).

Finite-volume Discretization
To discretize the governing equations (1), we apply the
finite-volume method (LeVeque 2002), as it enforces con-
servation numerically by decomposing the spatial domain
into many control volumes, numerically approximating the
sources and fluxes, and then enforcing conservation (Eq.
(1)) over the control volumes using the approximated quan-
tities. In particular, we assume that the spatial domain Ω
has been partitioned into a mesh M of NΩ ∈ N non-
overlapping (closed, connected) control volumes Ωi ⊆ Ω,
i = 1, . . . , NΩ. We define the mesh asM := {Ωi}NΩ

i=1, and
denote the boundary of the ith control volume by Γi := ∂Ωi.
Figure 1 depicts a one-dimensional spatial domain and a
finite-volume mesh.

Enforcing conservation (1) on each control volume yields

d

dt

∫
Ωj

wi(~x, t;µ) d~x+

∫
Γj

gi(~x, t;µ)·nj(~x) d~s(~x)=

∫
Ωj

si(~x, t;µ) d~x,

(2)

(a) 1D spatial domain (b) Finite-volume mesh

Figure 1: An example one-dimensional spatial domain Ω
and an example finite-volume mesh M = {Ωi}NΩ

i=1. The
conservation laws are enforced in each control volume Ωi.
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for the ith conserved variable on the j control volume, where
nj ∈ Rd denotes the unit normal to control volume Ωj .
Finite-volume schemes complete the discretization by form-
ing a state vector x ∈ RN with N = NΩnw such that

xI(i,j)(t;µ) =
1

|Ωj |

∫
Ωj

wi(~x, t;µ) d~x, (3)

where I denotes a mapping from conservation-law index
and control-volume index to degree of freedom, and a ve-
locity vector f : (ξ, τ ;ν) 7→ fg(ξ, τ ;ν) + fs(ξ, τ ;ν) with
fg,fs ∈ RN whose elements consist of

fgI(i,j)(x, t;µ) = − 1

|Ωj |

∫
Γj

gFV
i (x; ~x, t;µ) · nj(~x) d~s(~x),

fsI(i,j)(x, t;µ) =
1

|Ωj |

∫
Ωj

sFV
i (x; ~x, t;µ) d~x,

where gFV
i ∈ Rd and sFV

i ∈ R denote the approximated
flux and source, respectively, associated with the ith con-
served variable. The conservation laws are enforced in
each control volume with the approximated flux and
source, e.g., the rate of change of the mass inside each con-
trol volume equals the incoming flux to that control volume.

Substituting
∫

Ωj
wi(~x, t;µ) d~x ← |Ωj |xI(i,j)(t;µ),

gi ← gFV
i , and si ← sFV

i in Eq. (2) and dividing by |Ωj |
yields

ẋ = f(x, t;µ), x(0;µ) = x0(µ), (4)

where x0
I(i,j)(µ) := 1

|Ωi|
∫

Ωj
w0
i (~x;µ) d~x denotes the pa-

rameterized initial condition. This is a parameterized system
of nonlinear ordinary differential equations (ODEs) char-
acterizing an initial value problem, which is our full-order
model (FOM). We refer to Eq. (4) as the FOM ODE.

Numerically solving the FOM ODE (4) requires appli-
cation of a time-discretization method. For simplicity, this
work restricts attention to linear multistep methods. A linear
k-step method applied to numerically solve the FOM ODE
(4) leads to solving the system of algebraic equations

rn(xn;µ) = 0, n = 1, . . . , Nt, (5)

where the time-discrete residual rn : RN × D → RN , as a
function of ξ parameterized by ν, is defined as

rn : (ξ;ν) 7→α0ξ −∆tβ0f(ξ, tn;ν) +
k∑
j=1

αjx
n−j

−∆t
k∑
j=1

βjf(xn−j , tn−j ;ν).

(6)

Here, ∆t ∈ R+ denotes the time step,xk denotes the numer-
ical approximation tox(k∆t;µ), and the coefficients αj and
βj , j = 0, . . . , k with

∑k
j=0 αj = 0 define a particular lin-

ear multistep scheme. These methods are implicit if β0 6= 0.
We refer to Eq. (5) as the FOM O∆E.

Figure 2: Deep Conservation model – the second stage: a
latent dynamics (blue arrows) and a decoder (red arrows, the
decoder associated with a nonlinear embedding).

Computational Barrier: Time-critical Problems
Many problems in science and engineering are time criti-
cal in nature, meaning that the solution to the FOM O∆E
(5) must be computed within a specified computational bud-
get (e.g., less than 0.1 core–hours) for arbitrary parameter
instances µ ∈ D. When the FOM is truly high fidelity,
the computational meshM often becomes very fine, which
can yield an extremely large state-space dimension N (e.g.,
N ∼ 107). This introduces a de facto computational barrier:
the FOM is too computationally expensive to solve within
the prescribed computational budget. Such cases demand a
method for approximately solving the FOM while retaining
high levels of accuracy.

We now present a two-stage method that (1) computes
a nonlinear embedding of the state using deep convolu-
tional autoencoders, and (2) computes a dynamics model
for latent states that exactly satisfies the physical con-
servation laws over subdomains comprising unions of
control volumes of the mesh. Figure 2 depicts the sec-
ond stage of the proposed method, where the latent space
is identified by convolutional autoencoders during the first
stage; the method computes latent states {x̂n(µ)}Ntn=1 via
conservation-enforcing projection (Section Latent-dynamics
model), and computes high-dimensional approximate states
{x̃n(µ)}Ntn=1 through a decoder associated with the nonlin-
ear embedding (Section Nonlinear Embedding).

Nonlinear Embedding
Deep Convolutional Autoencoders
Autoencoders (DeMers and Cottrell 1993; Hinton and
Salakhutdinov 2006) consist of two parts: an encoder
henc(·;θenc) : RN → Rp and a decoder hdec(·;θdec) : Rp →
RN with latent-state dimension p� N such that

h : (x;θenc,θdec) 7→ hdec(·;θdec) ◦ henc(x;θenc),

where θenc and θdec denote parameters associated with the
encoder and decoder, respectively.

Because we are considering finite-volume discretiza-
tions of conservation laws, the state elements xI(i,j), j =
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1, . . . , NΩ correspond to the value of the ith conserved vari-
able wi distributed across the NΩ control volumes charac-
terizing the mesh M. As such, we can interpret the state
x ∈ RN as representing the distribution of spatially dis-
tributed data with nw channels (i.e., N = NΩnw). This is
precisely the format required by convolutional neural net-
works, which often generalize well to unseen test data (Le-
Cun, Bengio, and Hinton 2015) because they exploit local
connectivity, employ parameter sharing, and exhibit trans-
lation equivariance (Goodfellow et al. 2016; LeCun, Ben-
gio, and Hinton 2015). Thus, we leverage the connection
between conservation laws and image data, and employ con-
volutional autoencoders.

Offline Training
The first step of the offline training is snapshot-based data
collection. This requires solving the FOM O∆E (5) for
training-parameter instances µ ∈ Dtrain ≡ {µitrain}

ntrain
i=1 ⊂ D

and assembling the snapshot matrix,
X :=

[
X(µ1

train) · · · X(µntrain
train )

]
∈ RN×nsnap (7)

with nsnap := Ntntrain and X(µ) ≡ [x1(µ) · · · xNt(µ)] :=
[x1(µ)− x0(µ) · · · xNt(µ)− x0(µ)] ∈ RN×Nt .

To improve numerical stability of the gradient-based opti-
mization for training, the first layer of the proposed autoen-
coder applies data standardization through an affine scaling
operator S, which ensures that all elements of the training
data lie between zero and one. Then the autoencoder refor-
mats the input vector into a tensor compatible with convolu-
tional layers; the last layer applies the inverse scaling oper-
ator S−1 and reformats the data into a vector.

Given the network architecture h(x;θenc,θdec), we com-
pute parameter values (θ?enc,θ

?
dec) by approximately solving

minimize
θenc,θdec

nsnap∑
i=1

‖xi − h(xi;θenc,θdec)‖22 (8)

using stochastic gradient descent (SGD) with minibatching
and early stopping.

Along with this vanilla autoencoder, inspired by the
formulation of physics-informed neural networks (Raissi,
Perdikaris, and Karniadakis 2019), we devise a physics-
informed training constraint, which is added to the opti-
mization objective (8),

ρ

nsnap∑
i=1

‖ri(x0(µ) + S−1(h(xi;θenc,θdec);µ
i))‖22,

which enforces minimization of the time-discrete residuals.
The advantage of this approach is that it aligns the training
objective more closely with the online objective (described
in the next Section); the disadvantage is that evaluating the
objective function requires evaluating the underlying finite-
volume model, whereas the objective function (8) can be
computed by accessing only the snapshot matrix.

Nonlinear Embedding
Given the trained autoencoder h : (x;θ?enc,θ

?
dec) 7→

hdec(·;θ?dec)◦henc(x;θ?enc), we construct a nonlinear embed-
ding by defining a low-dimensional nonlinear “trial mani-
fold” on which we will restrict the approximated state to

evolve. In particular, we define this manifold from the ex-
trinsic view as S := {d(ξ̂) | ξ̂ ∈ Rp}, where the parame-
terization function is defined from the decoder as d : ξ̂ 7→
hdec(ξ̂;θ?dec) with d : Rp → RN . We subsequently approx-
imate the state as x(t;µ) ≈ x̃(t;µ) ∈ xref(µ) + S , where
xref(µ) = x0(µ) − d(x̂xx0(µ)) is the reference state. This
approximation can be expressed algebraically as

x̃(t;µ) = xref(µ) + d(x̂(t;µ)), (9)

which elucidates the mapping between the latent state x̂ :
R+×D→Rp and the approximated state x̃ :R+×D→RN .

Remark 1 (Linear embedding via POD) Classical meth-
ods for projection-based dynamics learning employ proper
orthogonal decomposition (POD) (Holmes et al. 2012)—
which is closely related to principal component analysis—
to construct a linear embedding. Using the above nota-
tion, POD computes the singular value decomposition of
the snapshot matrix X = UΣV and sets a “trial basis
matrix” Φ ∈ RN×p to be equal to the first p columns of
U . Then, these methods define the low-dimensional affine
“trial subspace” such that the state is approximated as
x(t;µ) ≈ x̃(t;µ) ∈ x0(µ) + Ran(Φ), which is equiva-
lent to the approximation in Eq. (9) with xref(µ) = x0(µ)

and a linear parameterization function d : ξ̂ 7→ Φξ̂.

Latent-dynamics Model:
Conservation-enforcing Projection

We now describe the proposed projection-based dynam-
ics model, starting with deep least-squares Petrov–Galerkin
(LSPG) projection (proposed in Ref. (Lee and Carlberg
2020)), and proceeding with the proposed Deep Conserva-
tion projection.

Deep LSPG Projection
To construct a latent-dynamics model for the approximated
state x̃, the Deep LSPG method (Lee and Carlberg 2020)
simply substitutes x ← x̃ defined in Eq. (9) into the FOM
O∆E (5) and minimizes the `2-norm of the residual, i.e.,

x̂n(µ) = arg min
ξ̂∈Rp

∥∥∥rn (xref(µ) + d(ξ̂);µ
)∥∥∥2

2
, (10)

which is solved sequentially for n = 1, . . . , Nt.
Eq. (10) defines the (discrete-time) dynamics model for

the latent states associated with Deep LSPG projection. The
nonlinear least-squares problem (10) can be solved using,
for example, the Gauss–Newton method, which leads to the
iterations, for k = 0, . . . ,K ,

Ψn(x̂n(k);µ)TΨn(x̂n(k);µ)pn(k) =

−Ψn(x̂n(k);µ)Trn
(
xref(µ)+d(x̂n(k));µ

)
,

x̂n(k+1) = x̂n(k)+αn(k)pn(k).

Here, x̂n(0) is the initial guess (often taken to be x̂n−1);
αn(k) ∈ R is a step length chosen to satisfy the strong Wolfe
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conditions for global convergence; and Ψn : Rp × D →
RN×p, as a function of ξ̂ ∈ RN parameterized by ν, is

Ψn(ξ̂;ν) =
∂rn

∂ξ
(xref(ν) + d(ξ̂);ν)J(ξ̂)

=

(
α0I−∆tβ0

∂f

∂ξ

(
xref(ν)+d(ξ̂), tn;ν

))
J(ξ̂),

where J : ξ̂ 7→ dd
dξ̂

(ξ̂) is the Jacobian of the decoder.

Remark 2 (POD–LSPG projection) POD–LSPG projec-
tion (Carlberg, Barone, and Antil 2017) employs the same
residual-minimization projection (10), but with reference
state xref(µ) = x0(µ) and linear parameterization func-
tion d : ξ̂ 7→ Φξ̂ as described in Remark 1.

Deep Conservation Projection
The Deep LSPG projection (10), however, violates the con-
servation laws in general, (which will be elaborated later in
Remark 3). To overcome this, we derive the proposed Deep
Conservation projection, which effectively combines Deep
LSPG projection (Lee and Carlberg 2020) just described
with conservative LSPG (Carlberg, Choi, and Sargsyan
2018), which was developed for linear embeddings only.

To begin, we decompose the mesh M into subdomains,
each of which comprises the union of control volumes. That
is, we define a decomposed mesh M̄ of NΩ̄(≤ NΩ) sub-
domains Ω̄i = ∪j∈K⊆N(NΩ)Ωj , i ∈ N(NΩ̄) with M̄ :=

{Ω̄i}NΩ̄
i=1 and denote the boundary of the ith subdomain by

Γ̄i := ∂Ω̄i.Note that the global domain can be considered by
employing M̄ = M̄global, which is characterized byNΩ̄ = 1
subdomain that corresponds to the global domain. Figure 3
depicts example decomposed meshes.

Enforcing conservation (1) on each subdomain in the de-
composed mesh yields
d
dt

∫
Ω̄j
wi(~x, t;µ)d~x+

∫
Γ̄j
gi(~x, t;µ)·n̄j(~x)d~s(~x)=

∫
Ω̄j
si(~x, t;µ)d~x,

(11)
for the ith conserved variable on the jth subdomain, where
n̄j denotes the unit normal to subdomain Ω̄j . We propose
applying the same finite-volume discretization employed to
discretize the control-volume conservation equations (2) to
the subdomain conservation equations (11). To accomplish
this, we introduce a “decomposed” state vector x̄ ∈ RN̄
with N̄ = NΩ̄nw and elements

x̄Ī(i,j)(x, t;µ) =
1

|Ω̄j |

∫
Ω̄j

wi(~x, t;µ) d~x, (12)

(a) Decomposed mesh M̄ (b) Decomposed mesh M̄global
with NΩ̄ = 1, and Ω̄1 = Ω.

Figure 3: Examples of decomposed meshes M̄ for the finite-
volume mesh shown in Figure 1. The conservation laws are
enforced in each control volume Ωi and each subdomain Ω̄j .

where Ī denotes a mapping from conservation-law index
and subdomain index to decomposed degree of freedom.
With this formulation, the conservation laws are en-
forced in each subdomain with the approximated flux
and source, e.g., the rate of change of the mass inside each
subdomain equals the incoming flux to that subdomain.

The decomposed state vector can be computed from the
state vector x as

x̄(x) = C̄x

where C̄ ∈ RN̄×N+ has elements C̄Ī(i,j),I(l,k)
=

|Ωk|
|Ω̄j |

δilI(Ωk ⊆ Ω̄j), where I is the indicator function, which
outputs one if its argument is true, and zero otherwise.

Similarly, the velocity associated with the finite-volume
scheme applied to subdomain can be expressed as

f̄(x, t;µ) = C̄f(x, t;µ), (13)
such that subdomain conservation can be expressed as

C̄ẋ = C̄f(x, t;µ). (14)
Applying a linear multistep scheme to (14) yields

C̄rn(xn;µ) = 0. (15)
Remark 3 (Lack of conservation for Deep LSPG) We
note that the Deep LSPG dynamics model (10) in general
violates the conservation laws underlying the dynamical
system of interest. This occurs because the objective
function in (10) is generally nonzero at the solution, and
thus conservation condition (15) is not generally satisfied
for any decomposed mesh M̄. This lack of conservation
can lead to spurious generation or dissipation of physical
quantities that should be conserved in principle (e.g., mass,
momentum, energy).

We aim to remedy this primary shortcoming of Deep
LSPG with the proposed Deep Conservation projection
method. In particular, we define the Deep Conservation
dynamics model by equipping the nonlinear least-squares
problem (10) with nonlinear equality constraints corre-
sponding to Eq. (15), which has the effect of explicitly
enforcing conservation over the decomposed mesh M̄.
In particular, the Deep Conservation dynamics model com-
putes latent states x̂n(µ), n = 1, . . . , Nt that satisfy

minimize
ξ̂∈Rp

∥∥∥rn (xref(µ) + d(ξ̂);µ
)∥∥∥2

2

subject to C̄rn
(
xref(µ) + d(ξ̂);µ)

)
= 0.

(16)

That is, conservation laws over control volumes and sub-
domains are enforced via minimizing the objective func-
tion and satisfying the constraint, respectively (see Figure
3(b), for instance, where the conservation laws are enforced
over the global domain via the optimization constraint).

To solve the problem (16) at each time instance, we
follow the approach considered in (Carlberg, Choi, and
Sargsyan 2018) and apply sequential quadratic program-
ming (SQP) with the Gauss–Newton Hessian approxima-
tion, which leads to iterations[
Ψn(x̂n(k);µ)TΨn(x̂n(k);µ) Ψn(x̂n(k);µ)TC̄T

C̄Ψn(x̂n(k);µ) 0

] [
δx̂n(k)

δλn(k)

]
= −

[
Ψn(x̂n(k);µ)Trn(xref(µ) + d(x̂n(k));µ)

C̄rn(xref(µ) + d(x̂n(k));µ))

]
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[
x̂n(k+1)

λn(k+1)

]
=

[
x̂n(k)

λn(k)

]
+ ηn(k)

[
δx̂n(k)

δλn(k)

]
,

where λn(k) ∈RN̄ denotes Lagrange multipliers at time in-
stance n and iteration k and ηn(k) ∈ R is the step length that
can be chosen, e.g., to satisfy the strong Wolfe conditions to
ensure global convergence to a local solution of (16).

Remark 4 (Conservative LSPG projection)
Conservative LSPG projection (Carlberg, Choi, and
Sargsyan 2018) employs the same formulation (16), but
with linear parameterization function d : ξ̂ 7→ Φξ̂ as
described in Remark 1.

Numerical Experiments
This section assesses the performance of (1) the proposed
Deep Conservation projection, (2) Deep LSPG projection,
which also employs a nonlinear embedding but does not en-
force conservation, (3) POD–LSPG projection, which em-
ploys a linear embedding and does not enforce conservation,
and (4) conservative LSPG projection, which employs a lin-
ear embedding but enforces conservation. We consider a pa-
rameterized Burgers’ equation, as it is a classical benchmark
advection problem. We employ the numerical PDE tools
and projection functionality provided by pyMORTestbed
(Zahr and Farhat 2015), and we construct the autoencoder
using TensorFlow 1.13.1 (Abadi et al. 2016).

Network architecture The Deep Conservation and Deep
LSPG methods employ a 10-layer convolutional autoen-
coder. The encoder henc consists of 5 layers with 4 convo-
lutional layers, followed by 1 fully-connected layer. The de-
coder hdec consists of 1 fully-connected layer, followed by 4
transposed-convolution layers. The latent state is of dimen-
sion p, which will vary during the experiments to define dif-
ferent latent-state dimensions. The size of the convolutional
kernels in the encoder and the decoder are {16, 8, 4, 4} and
{4, 4, 8, 16}; the numbers of kernel filters in each convolu-
tional and transposed-convolutional layer are {8, 16, 32, 64}
and {64, 32, 16, 1}; the stride is configured as {2, 4, 4, 4}
and {4, 4, 4, 2}; the “SAME” padding strategy is used; and
no pooling is used. For the nonlinear activation functions, we
use ELU (Clevert, Unterthiner, and Hochreiter 2016), and no
activation function in the output layer.

Data collection and training We consider a parameter-
ized inviscid Burgers’ equation (Hirsch 2007), where the
system is governed by a conservation law of the form (1)
with nw = 1, d = 1, Ω = [0, 100], g(x, t;µ) = w(x,t;µ)2

2 ,
s(x, t;µ) = 0.02eµ2x with initial and boundary conditions
w(x, 0;µ) = 1, ∀x ∈ [0, 100], w(0, t;µ) = µ1, ∀t ∈ [0, T ].
There are nµ = 2 parameters (i.e., µ ≡ (µ1, µ2)) with
the parameter domain D = [4.25, 5.5] × [0.015, 0.03], and
the final time is set to T = 35. We apply Godunov’s
scheme (Hirsch 2007), which is a finite-volume scheme,
with NΩ = 512 control volumes, which results in a system
of ODEs of the form (4) with N = 512 spatial degrees of
freedom. For time discretization, we use the backward-Euler

(a) Full-order model solutions

(b) Latent dimension, p=2

49.45 49.53

4.2

4.3

(c) Latent dimension, p=4

Figure 4: Test stage: solution snapshots at time instances
t = {3.5, 7.0, 10.5, 14, 17.5} computed by the FOM, POD–
LSPG, conservative LSPG, Deep LSPG, and Deep Conser-
vation. All conservative methods enforce global conserva-
tion, i.e., they employ NΩ̄ = 1 subdomain with Ω̄1 = Ω.

scheme (i.e., k = 1, α0 = β0 = 1, α1 = −1, and β1 = 0
in Eq. (6)). We consider a uniform time step ∆t = 0.07,
resulting in Nt = 500.

For offline training, we set the training-parameter in-
stances to Dtrain = {(4.25 + (1.25/9)i, 0.015 +
(0.015/7)j)}i=0,...,9; j=0,...7, resulting in ntrain = 80
training-parameter instances. After collecting the snapshots,
we split the snapshot matrix (7) into a training set and a val-
idation set; the fraction of snapshots to use for validation is
10%. Then we compute optimal parameters (θ?enc,θ

?
dec) us-

ing the Adam optimizer (Kingma and Ba 2015) with an ini-
tial uniform learning rate η = 10−4 and initial parameters
(θ(0)

enc ,θ
(0)
dec ) are computed via Xavier initialization (Glorot

and Bengio 2010). The number of minibatches is determined
by a fixed batch size of 20; a maximum number of epochs is
nepoch = 1550; and early-stopping is enforced if the loss on
the validation set fails to decrease over 200 epochs.

Testing In the online-test stage, solutions of the model
problem at a parameter instanceµ1

test = (4.3, 0.021) /∈ Dtrain
are computed using all considered projection methods. The
stopping criterion for all nonlinear solvers is the relative
residual and the default stopping tolerance is τ = 10−5.
For conservative LSPG and Deep Conservation methods, we
consider decomposed meshes, where the subdomains are de-
fined such that they have equal size (|Ω̄i| = |Ω̄j |, ∀i, j), do
not overlap (meas(Ω̄i ∩ Ω̄j) = 0, ∀i 6= j), and their union is
equal to the full spatial domain (∪iΩ̄i = Ω).

Effective latent dimension Figure 4 reports solutions at
five different time instances computed using FOM and all
of the considered projection methods. Figure 4(a) shows
the FOM solutions demonstrating that the location of the
shock, where the discontinuity exists, moves from left to
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right as time evolves. All projection methods employ the
same latent-state dimension of p = 2 and p = 4. These
results clearly demonstrate that the projection-based meth-
ods using nonlinear embeddings yield significantly lower er-
ror than the methods using the classical linear embeddings.
Moreover, Figure 4 demonstrates that the accuracy of the
nonlinear embedding solutions is significantly improved as
the latent dimension is increased from p = 2 (Figure 4(b))
to p = 4 (Figure 4(c)). As the solutions of the problem are
characterized by three factors (t, µ1, µ2), the intrinsic
solution-manifold dimension is (at most) 3. Thus, autoen-
coders with the latent dimension larger than or equal to
p = 3 will be able to reconstruct the original input data
given sufficient capacity.

Approximation accuracy Now, we quantitatively as-
sess the accuracy of of the approximated state x̃ com-
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(g) Proportion of error metrics where Deep Conservation
with the physics-informed constraint (ρ = 1) outperforms
Deep Conservation with ρ = 0 in 1, 2, and all 3 metrics.

Figure 5: Error metrics in log10 scale for Deep LSPG (None)
and Deep Conservation (NΩ̄ ≥ 1) for varying latent-space
dimensions p (vertical axis) and for varying numbers of sub-
domains NΩ̄ (horizontal axis) with the baseline (ρ= 0, left)
and the hybrid (ρ=1, right) training objective functions.

puted using Deep LSPG and Deep Conservation meth-
ods with the following metrics: 1) the state error, Ex :=√∑Nt

n=1 ‖xn(µ)− x̃n(µ)‖22
/∑Nt

n=1 ‖xn(µ)‖22 , 2) the er-

ror in the globally conserved variables, Ex,global :=√∑Nt
n=1‖C̄1(xn(µ)−x̃n(µ))‖22

/∑Nt
n=1‖C̄1xn(µ)‖22 , and

3) the violation in global conservation, Er,global :=√∑Nt
n=1 ‖C̄1rn(x̃n(µ);µ)‖22, where C̄1 ∈ Rnw×N+ is

the operator C̄ associated with the global conservation
M̄global := {Ω}.

Figure 5 reports these quantities for the considered meth-
ods. These results illustrate that the best performance
in most cases is obtained through the combination of a
nonlinear embedding and conservation enforcement as
provided by the proposed Deep Conservation method.
That is, lower errors can be achieved by using the proposed
Deep Conservation than the Deep LSPG projection. In par-
ticular, Deep Conservation reduces the global conservation
violation Er,global by more than an order of magnitude rela-
tive to that of Deep LSPG. As numerically demonstrated in
(Carlberg, Choi, and Sargsyan 2018), minimizing the resid-
ual with the conservation constraint leads to smaller errors
in states and globally conserved states.

Figure 5 also shows that Deep Conservation with the
physics-informed objective constraint (ρ = 1, right) can
lead to smaller errors than Deep Conservation with the
baseline autoencoder objective function (ρ = 0, left). The
hybrid objective function (ρ = 1) helps improving the ac-
curacy in terms of violation in global conservation (Fig-
ures 5(c)–5(f)). Based on the 12 experimental settings used
in Figure 5 (i.e., combinations of p = {4, 6, 8, 10} and
NΩ̄ = {1, 2, 3}), Figure 5(g) reports the proportions of the
error metrics where the Deep Conservation with the hybrid
objective (ρ = 1) outperforms Deep Conservation with the
baseline objective (ρ = 0) in 1, 2, and, all 3 error metrics.

Conclusion
This work has proposed Deep Conservation: a novel latent-
dynamics learning technique that learns a nonlinear embed-
ding using deep convolutional autoencoders, and computes a
dynamics model via a projection process that enforces phys-
ical conservation laws. The dynamics model associates with
a nonlinear least-squares problem with nonlinear equality
constraints, and the method requires the availability of a
finite-volume discretization of the original dynamical sys-
tem, which is used to define the objective function and con-
straints. Numerical experiments on an advection-dominated
benchmark problem demonstrated that Deep Conservation
both achieves significantly higher accuracy compared with
classical projection-based methods, and guarantees the time
evolution of the latent state satisfies prescribed conservation
laws. In particular, the results highlight that both the non-
linear embedding and the particular latent-dynamics model
associating with the solution to a constrained optimization
problem are essential, as removing either of these two ele-
ments yields a substantial degradation in performance.
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(DL/AI) and we believe that the study opens up an oppor-
tunity for more scientists in the computational science and
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search, who can contribute to developing models conform-
ing physical laws. Although there have been many efforts
to incorporate concepts of physics into neural networks and
build more physically-aware models, such models often fail
to provide optimal properties or to guarantee that physical
laws are enforced, which are of great interest to many scien-
tists. In this study, we proposed a method to resolve those
issues; we incorporate deep-learning techniques (autoen-
coder) into physical laws (the governing equations describ-
ing conservation laws) and then, based on well-developed
ideas from the computational physics community, we de-
velop an algorithm that enforces exact conservations laws.
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