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Abstract

Healthcare providers are increasingly using machine learn-
ing to predict patient outcomes to make meaningful interven-
tions. However, despite innovations in this area, deep learn-
ing models often struggle to match performance of shallow
linear models in predicting these outcomes, making it dif-
ficult to leverage such techniques in practice. In this work,
motivated by the task of clinical prediction from insurance
claims, we present a new technique called reverse distilla-
tion which pretrains deep models by using high-performing
linear models for initialization. We make use of the longi-
tudinal structure of insurance claims datasets to develop Self
Attention with Reverse Distillation, or SARD, an architecture
that utilizes a combination of contextual embedding, tempo-
ral embedding and self-attention mechanisms and most crit-
ically is trained via reverse distillation. SARD outperforms
state-of-the-art methods on multiple clinical prediction out-
comes, with ablation studies revealing that reverse distillation
is a primary driver of these improvements. Code is available
at https://github.com/clinicalml/omop-learn.

Introduction
Machine learning of predictive models on health data is
widely used to guide preventative, prophylactic and pallia-
tive care. We focus on a subset of electronic medical records
that are frequently found as part of health insurance claims
or as administrative data in large hospital systems. For each
patient, we receive a time series of visits – single contin-
uous interactions of a patient with the healthcare system –
and codes – the medical events occurring during each visit.
These codes detail the specialties of visited doctors, diag-
noses, procedures, the administration of drugs, and other
medical concepts.

Several aspects of these claims data make the machine
learning challenge unique from other settings where se-
quential data is observed (e.g., natural language processing).
First, the data is extremely sparse. Second, multiple observa-
tions are recorded during a single visit (e.g., diagnoses, pro-
cedures, medications) and the vocabulary of medical con-
cepts is often in the tens of thousands. Third, visits cor-
respond to highly irregularly-spaced time series of events,
since care is often administered in short bursts punctuated
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by long gaps. Variable timescales must be simultaneously
accounted for, since the time between visits made by a sin-
gle patient can vary from years to days.

Deep learning suggests a path to improving predictive
performance by learning representations of longitudinal
health records that capture a patient’s medical status and po-
tential future risks. State-of-the-art models in the literature
have largely focused on shorter-term prediction over hori-
zons of days or weeks, most notably during a single hospital
visit or in the immediate aftermath of a visit (Choi et al.
2017). Approaches to longer-term prediction often rely on
manually feature-engineering longitudinal health data into
patient state vectors (Razavian et al. 2015; Ahmad et al.
2018; Avati et al. 2018; Miotto et al. 2016), as opposed to
training end-to-end from raw longitudinal EHR data. Due to
this heuristic approach, these methods cannot fully exploit
the temporal nature of EHR data, nor the relationships be-
tween clinical concepts.

We introduce Self Attention with Reverse Distillation, or
SARD, a self-attention based architecture for longitudinal
health data, which uses a self-attention mechanism (Vaswani
et al. 2017) to extract meaning from the temporal struc-
ture of medical claims and the relationships between clinical
concepts. Our architecture is inspired by BEHRT (Li et al.
2020), which recently outperformed previous deep learn-
ing algorithms for medical records including RETAIN (Choi
et al. 2016b) and Deepr (Nguyen et al. 2016). Building off
of BEHRT, our major contribution is our novel pre-training
procedure, reverse distillation (RD); our architecture also
differs in several other key aspects.

In reverse distillation, we first initialize our model to
mimic a performant linear model, and subsequently fine-
tune. We find empirical evidence that reverse distillation
acts as an effective way to perform soft feature selection
over complex feature spaces, such as multidimensional time-
series data. We further establish statistically significant gains
against strong baselines in terms of predictive performance
for three long-term tasks – predicting the likelihood of a
patient dying, requiring surgery, and requiring hospitaliza-
tion – with clear applications to preventative and palliative
healthcare. Our experiments also establish that reverse dis-
tillation is a key driver behind these wins, and pave the way
for the use of this method in future research.

In summary, we present the following contributions:
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• SARD, a transformer architecture which uses an explicit
visit representation to better encode claims data. SARD
also uses a convolutional prediction head to ingest the
outputs of its transformer layers, in contrast to the linear
heads used in previous work.

• Reverse distillation, a novel and broadly applicable
method of initializing machine learning models using
high-performing linear models.

• An introspection analysis of how reverse distillation al-
lows SARD, and deep models in general, to generalize
better and make more accurate predictions by effectively
regularizing deep models to make good use of features
known to be clinically meaningful.

Related Work

Many recent works analyze how deep learning can be ap-
plied to clinical prediction (Choi et al. 2016a; Rajkomar
et al. 2018; Che et al. 2018; Steinberg et al. 2020; Choi
et al. 2016b; Harutyunyan et al. 2019; Gao et al. 2020; Ma
et al. 2018; Zhang et al. 2019). Several approaches use re-
current neural networks (RNNs) to ingest medical records,
and achieve excellent performance on tasks like predicting
in-patient mortality upon hospital admission (Choi et al.
2016a). Further refinements add learned imputation to ac-
count for missingness (Che et al. 2018), and improvements
in featurizing time by using architectures like bi-directional
RNNs (Ma et al. 2017), explicit temporal embeddings (Bay-
tas et al. 2017) and two-level attention mechanisms to find
the influence of past visits on a prediction (Choi et al. 2016b;
Kwon et al. 2018). Research has also focused on using con-
volutional neural networks (CNNs) to develop better em-
beddings of clinical concepts passed into a recurrent model
(Ma et al. 2018), and graphically representing the patient-
clinician relationship to augment health record data (Zhang
et al. 2019). Self-attention has also been used to develop re-
lationships between medical features that have already been
collapsed over the temporal dimension using recurrent meth-
ods (Ma et al. 2020) and to phenotype patients (Song et al.
2017). More recently, self-attention was used in BERT for
EHR, or BEHRT (Li et al. 2020), to simultaneously predict
the likelihood of 301 conditions in future patient visits.

When making predictions with horizons of months or
years, the state-of-the-art is often still simple, linear mod-
els with carefully chosen features (Bellamy, Celi, and Beam
2020; Razavian et al. 2015; Ahmad et al. 2018). Recent work
exploring deep-learning based approaches to long-term clin-
ical prediction train neural networks directly on features
constructed using hand-picked time windows and summary
statistics (Avati et al. 2018) or use denoising autoencoders
to pre-process this type of data (Miotto et al. 2016), and do
not necessarily beat strong linear baselines (Rajkomar et al.
2018, Supplemental Table 1). Critically, many of these mod-
els rely on manual feature-engineering to create representa-
tions of the time-series data that forms a patient’s medical
record rather than learning this structure in tandem with the
task at hand.

SARD Model Architecture
Our model builds upon self-attention architectures (Vaswani
et al. 2017), most recently applied in the clinical domain by
the BEHRT model. SARD differs from BEHRT in several
important ways. Firstly, SARD operates on visit embeddings
which summarize a patient’s medical events in that visit in
a single input, while BEHRT encodes each diagnosis sepa-
rately in a sequence, using separators to indicate the bound-
aries of each visit. This allows SARD to include significantly
more data from a patient’s history with the same computa-
tional efficiency. Secondly, SARD uses a convolutional pre-
diction head applied to all transformed visit embeddings,
while BEHRT uses dense layers applied to a single trans-
former output. Furthermore, BEHRT was demonstrated on
a feature dimension of 301 condition codes, which did not
include medications and procedures; in this paper, we apply
SARD on a much larger set of 37,004 codes, spanning con-
ditions, medications, procedures, and physician specialty.

We use a set encoding approach to address the challenge
of sparsity and the need to represent a set of data observed
at each visit, and a self-attention based architecture to allow
any visit’s embedding to interact with another visit embed-
ding through O(1) layers, thus ensuring that we can capture
temporal information and dependencies. An overview of the
architecture is provided in Figure 1.

We denote the set of visits made by a patient i by Vi, and
represent this patient’s jth visit by V ij . We further denote the
time of visit V ij by tij and the set of codes assigned during
visit V ij with Cij ⊆ C.

Input Embedding: We adapt the method of Choi, Chiu,
and Sontag (2016) to generate an initial concept embed-
ding map φ : C → Rde , learned only using data in the
training window to prevent label leakage. The vector rep-
resentation ψ(V ij ) ∈ Rde of each visit is calculated as
ψ(V ij ) =

∑
c∈Ci

j
φ(c), providing invariance to permutations

of the codes. This is similar to the Deep Sets paradigm, with
nonlinearity provided by the embedding φ and downstream
components of our architecture (Zaheer et al. 2017).

Temporal Embedding: SARD does not explicitly encode
the order of events, and visits do not occur in regular in-
tervals. We embed the time of each visit into Rde using si-
nusoidal embeddings (Vaswani et al. 2017), and generate a
temporal embedding τ(V ij ) = sin(t̃ijω)|| cos(t̃ijω), where
t̃ij = min(365, TA − tij) and TA represents the prediction
date. This allows us to measure time relative to the predic-
tion date. We found that clipping these relative time dif-
ferences at one year increased performance – this design
choice effectively groups together all longer-term dependen-
cies. Note that we denote concatenation with ||, ω is a length
de/2 vector of frequencies in geometric progression from
10−5 to 1, and sin and cos are applied element-wise.

Self-Attention: We add ψ(V ij ) and τ(V ij ) to create fi-
nal encodings that represent the content and timing of vis-
its. To contextualize visits in a patient’s overall history we
use multi-headed self-attention (Vaswani et al. 2017) with
L = 2 self-attention blocks and H = 2 heads. For effi-
ciency, we truncate to the nv = 512 most recent visits, and

250



Σ

Concept Set
𝐶!"

Concept 
Embedding Set

Deep Set 
Transformation

Visit Content Embedder 𝜓

𝑡!" 𝑡̃!" = min(365, 𝑇# − 𝑡!")
sin(𝑡̃!"𝜔)

cos(𝑡̃!"𝜔)

Temporal Embedder 𝜏

𝜙

+ =

Visit 
Embedding

Contextualized 
Visit Embedding

Self-
Attention 𝑝̂

Max-Pooled    
Outputs

… … … … 

Outcome 
Prediction

Convolution

Figure 1: SARD Architecture for Longitudinal Claims Data

add padding for patients with less than nv visits, but use a
masking mechanism to only allow non-pad visits to attend
to each other. We apply dropout with probability ρtd = 0.05
after each self-attention block to prevent overfitting. This
approach allows any visit to attend to any other, so longer-
range dependencies of clinical interest can be learned.

Each layer of each head performs three affine transfor-
mations on the input embeddings, which for the first layer
are ψ(V ij ) + τ(V ij ) for each visit V ij . These transformations
produce vectors kij , q

i
j and vij respectively. We find the con-

textualized embedding of visit V ij by computing raw atten-
tion weights wij` = qij · ki`/

√
de, normalizing via softmax to

w̃ij` =
(∑nv

r=1 e
wi

jr

)−1
ew

i
j` , and taking the weighted sum∑nv

`=1 w̃
i
j`v

i
`. This process is then repeated at each layer us-

ing the contextualized embeddings as inputs, and residual
connections are used between layers. The outputs of each
head are concatenated to create final, contextualized visit
representations ψ̃(V ij ).

Convolutional Prediction Head: The prediction head re-
turns an estimated probability of the target event using the
outputs of the self-attention mechanism. We do so by creat-
ing K convolutional kernels of size de × 1. Then, each ker-
nel extracts a feature from the non-pad contextualized visit
embeddings by first calculating a cross-correlation versus
each ψ̃(V ij ), then using a max-pooling operation to select
the highest of these cross-correlations. Concatenating these
outputs gives a length-K real vector of extracted features. To
obtain a predicted probability p̂(i) for each patient, we ap-
ply a sigmoid nonlinearity to this vector, take the dot prod-
uct of the transformed components with a learned vector of
weights, and apply another sigmoid nonlinearity to obtain a
final prediction probability.

Learning with Reverse Distillation
Reverse distillation is a novel method by which we initial-
ize a deep model using a linear proxy. We consider a bi-

nary prediction model fθ : X → [0, 1] parametrized by
θ which maps from a domain X of data to a probability
value, and a linear model gw : X → [0, 1] defined by
gw(x) = σ(wT ξ(x)), where σ is the sigmoid function and
ξ is a fixed feature engineering transformation ξ : X → Rd
based on heuristic domain knowledge.

While fθ may be a large, highly-parametrized model, gw
may perform better on prediction tasks for several reasons,
including the ability to select features and avoid overfitting
through regularization of w, and the quality of the transfor-
mation ξ. As such, we initialize fθ to mimic the outputs of
gw in order to benefit from the structure and performance
of the linear model while allowing for further data-driven
improvements.

We interpret predictions fθ(x) (resp gw(x)) as indicating
that the distribution of the label for data point x is B(fθ(x))
(resp B(gw(x))), where B(p) indicates a Bernoulli distribu-
tion with success parameter p. We perform reverse distilla-
tion by pre-training our deep model to optimize over θ a loss
function defined by

`RD(x) = −pcgw(x) log fθ(x)
−(1− gw(x)) log(1− fθ(x)). (1)

This algorithm is inspired by the standard knowledge distil-
lation paradigm (Hinton, Vinyals, and Dean 2015), in which
a simpler model is trained to mimic a complex model. To
fine-tune fθ, we make use of both the true label y(x) ∈
{0, 1} and the prediction gw(x), combining a cross-entropy
loss versus the true label

`CE(x) = −pcy(x) log fθ(x) (2)
−(1− y(x)) log(1− fθ(x)) (3)

and the reverse distillation loss `RD, to get a loss function

`tune(x) = `CE(x) + α`RD(x). (4)

We include a class weighting term pc equal to the ratio
between the number of negative and positive training data
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points to encourage higher recall in our trained model, and
a hyperparameter α to represent the weight placed on dif-
ferences between gw(x) and fθ(x). We note that cross-
validation over α always selected 0 in our experiments,
meaning that reverse distillation was only needed for ini-
tializing the model.

Training Procedure for SARD. We next describe our
procedure for training a SARD model with reverse distilla-
tion. All training is performed end-to-end, including the ini-
tial embedding φ of clinical concepts. We reverse distill from
a highly L1-regularized logistic regression model. As the
logistic regression’s predictions tend to be well-calibrated
(Niculescu-Mizil and Caruana 2005), we interpret its out-
put as a distribution over outcomes. While hand-engineered
features are often created for specific tasks in the clinical
domain, we opt for a more general formulation. Inspired
by prior work in high-performance linear models for clin-
ical prediction (Razavian et al. 2015), we construct features
by aggregating codes over different temporal windows, and
thus we refer to this model as a windowed linear model.
Given a time intervalW = [ts, te], we find the feature vector
corresponding to this interval for patient i by finding the sub-
set of visits Vi(W ) = {V ij ∈ Vi|tij ∈ W} and subsequently
finding the set of codes Ci(W ) =

⋃
V i
j ∈Vi(W ) C

i
j . We find

that performance was optimized by using a multi-hot vector
fi(W ) of size |C| as the feature engineering transformation
ψ to map these sets of codes to real-valued vectors, with the
element corresponding to concept c ∈ C set equal to 1 if
c ∈ Ci(W ) and 0 otherwise.

To capture the longitudinal nature of claims data, we use
multiple windows simultaneously as features. We establish
a list WC of candidate windows, each of which has an end
time equal to the prediction date and start times ranging from
15 to ∞ days before the prediction date, as shown in Ap-
pendix Table 5. We selected the nW = 5 best windows from
all
(|WC |
nW

)
unique window choices by comparing validation

performances.

Theoretical Analysis
We note that a deep model and a linear model making the
same classifications are not necessarily learning the same
classification boundary. We investigate if the self-attention
model actually replicates the linear model’s classification
function.

We find that it is possible to construct a set of weights
such that SARD and a windowed logistic regression model
have identical outputs for all inputs:

Lemma 1. In the limit de → ∞,K → ∞ and for an ap-
propriate choice of ω, SARD can identically replicate a win-
dowed linear model.

The proof can be found in the Appendix. The crux of
the argument is that we can express a filter of the form
[[tij < T ]] for any T as a linear combination of the elements
τ(V ij ) = sin

(
tijω
)
||cos

(
tijω
)
, with weights determined as

Fourier series coefficients. This allows SARD to replicate
the windowed feature vectors of the linear model. We note
that this lemma holds even with a single self-attention layer.

This result increases our confidence in our choice of ar-
chitecture and its ability to generalize and improve beyond a
linear model. For example, windows of the form [[tij < T ]]
implied by the linear model might be inferior to a more
complex filter in the time domain. However, such filters
can be learned by SARD. While the existence of this set
of weights does not mean that SARD will converge to these
exact weights after reverse distillation, it does highlight one
possible mechanism for ensuring that the deep and linear
models generalize in the same way.

Interpretability via Network Dissection
We next introduce a technique to investigate whether and
how reverse distillation surfaces features of the windowed
linear baseline. We utilize the Network Dissection global
interpretability framework of Bau et al. (2018) to compare
the outputs of the penultimate layer of SARD networks to
the linear baseline’s features. Our goal is to match the la-
tent features which are inputted to the final prediction head
in the deep model to the interpretable features of the linear
model, as a means of both understanding which linear fea-
tures are preserved using reverse distillation, as well as to aid
in interpreting the deep model features which are ultimately
used in prediction. To do this “matching,” we binarize the
penultimate layer of the deep model by taking the sign of
each output, and then calculate the Matthew’s Correlation
Coefficient (MCC) of each output with each windowed lin-
ear baseline feature, across all people in the test set.

Experiments
We evaluate our approach using a de-identified dataset of
121, 593 Medicare Advantage patients provided by a large
health insurer in the United States. This data is mapped into
the Observational Medical Outcomes Partnership (OMOP)
common data model (CDM) version 6 (Hripcsak et al.
2015). OMOP provides a normalized concept vocabulary,
and although our dataset is not public, hundreds of health
institutions with data in an OMOP CDM can use our code
out-of-the-box to reproduce results on local datasets1. We
also investigate the properties of reverse distillation through
experimentation on synthetic data.

Baselines. We compare to several baselines. First, we
compare to the windowed L1-regularized logistic regression
model (Razavian et al. 2015) described earlier in the context
of reverse distillation. Second, we compare to two of the pre-
vious state-of-the-art deep learning models for similar tasks:
RETAIN (Choi et al. 2016b; Kwon et al. 2018), a recurrent
architecture with attention, and BEHRT (Li et al. 2020), the
transformer-based architecture which served as the jumping
off point for our model. Third, we compare to our own self-
attention-based model trained without reverse distillation.

To build a BEHRT model in our data setting, we use a self-
attention architecture to ingest sequences of medical codes
(as in the original BEHRT model) instead of aggregated se-
quences of entire visits (as in SARD). This model is very
similar to BEHRT, with some minor differences. Specifi-
cally, we omit the use of SEP tokens and age embeddings.

1https://github.com/clinicalml/omop-learn
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Due to the computational constraints imposed on both the
SARD and BEHRT models, it was generally not possible to
include significantly more than one year of data for a given
patient, rendering a per-code age embedding superfluous.
For the same computational reasons, we omit the SEP to-
ken to allow more actual codes to be embedded per patient.
In our initial experimentation, we found no gains from using
a masked language model to pretrain transformer architec-
tures (including both BEHRT and SARD) in our setting. We
instead used the method of Choi, Chiu, and Sontag (2016)
for initialization in all cases. We further discuss our choice
of baselines in the Appendix.

We train using a single NVIDIA k80 GPU. Our algo-
rithms are implemented in Python 3.6 and use the PyTorch
autograd library (Paszke et al. 2019). We train our deep mod-
els using an ADAM optimizer (Kingma and Ba 2014) with
the hyperparameter settings of β1 = 0.9, β2 = 0.98, ε =
10−9 and a learning rate of η = 2 × 10−4. A batch size of
500 patients was used for ADAM updates.

Prediction Tasks. We consider three tasks important for
predictive healthcare:

1: The End of Life (EoL) prediction task: we estimate pa-
tient mortality over a six-month window. This task is key to
proactively providing palliative care to patients.

2: The Surgical Procedure (Surgery) prediction task: we
predict if a patient will require any surgical procedure in a
six-month window. If so, an appropriate, intervention can be
taken early on.

3: The Likelihood of Hospitalization (LoH) prediction
task: we estimate if a patient will require inpatient hospi-
talization in a six-month window. This allows for early in-
terventions that could mitigate the need for hospitalization.

We split the 121, 593 patients into training, validation,
and test sets of size 82, 955, 19, 319, and 19, 319 respec-
tively. Data was collected up to the end of the calendar year
2016, and outcomes measured between April and Septem-
ber of 2017 – patients who had an outcome in the three-
month gap between the end of data collection and the out-
come measurement were excluded from the dataset. We de-
note the set of all OMOP concepts used in the dataset by
C, which in our case contained |C| = 37, 004 codes. All
models are trained using the SARD architecture, using re-
verse distillation with early stopping for both pre-training
and fine-tuning. SARD models are trained with de = 300
and K = 10; we found that validation performance did not
increase with larger embedding sizes or number of convolu-
tional kernels. Early stopping and the selection of the hyper-
parameters as outlined in Appendix Table 5 are performed
using the validation set, and the parameters that maximized
validation ROC-AUC are used to evaluate performance on
the test set.

Our metric for measuring the performance is the area un-
der the receiver-operator curve (ROC-AUC), i.e. the area un-
der a plot of the true positive rate of the model as a func-
tion of false positive rate. An equivalent interpretation is the
probability that the model gives a higher score to a random
positive-outcome patient than a random negative-outcome
patient. Thus, ROC-AUC is a good proxy for the applica-
tion of choosing which patients should receive early inter-

Model
Task Name EoL Surgery LoH

L1-reg. logistic regression
(Razavian et al. 2015) 83.4 79.2 73.1

RETAIN (Choi et al. 2016b) 82.2 79.8 72.5
BEHRT (Li et al. 2020) 83.1 80.3 71.2
BEHRT + RD 83.7 81.1 73.7
SARD (no RD) 85.0 82.7 72.7
SARD 85.6 83.1 74.3

Table 1: AUC-ROC Scores on Test Set. + RD indicates
that reverse distillation is used for pre-training. Increases in
AUC-ROC for SARD are significant versus the closest base-
line in all cases (paired z-test, p < .005).

ventions. While in class-balanced problems metrics like ac-
curacy are useful, and in cases of extreme class imbalance
metrics like AUC-PRC may provide insights, our metric is
meaningful across a wide variety of class imbalances that
may occur in the clinical domain. Indeed, our class balances
range from 1.8% for EoL, to 8.5% for LoH, to 57.8% for
Surgery. Nevertheless, for completeness, we also provide an
AUC-PRC comparison in the Appendix, and find that SARD
continues to outperform baselines.

Main Results
As seen in Table 1, our model outperforms all baselines for
each of the example tasks. Increases in AUC-ROC are sig-
nificant versus the closest baseline in all cases (paired z-test,
p < .005) (DeLong, DeLong, and Clarke-Pearson 1988).
Notably, while the SARD model has the absolute highest
performance, RD pre-training still offers improvement to the
BEHRT baseline; through ablation studies, we show that RD
similarly improves performance across additional, varied ar-
chitecture choices. In the next section, we explore the nu-
ances of how SARD extracts clinical narratives, and qualita-
tively find that SARD is able to use a patient’s entire medical
history to contextualize visits, whereas the high-performing
linear models are not able to make these connections.

Ablation Studies. We empirically test the design deci-
sions made in our SARD Model Architecture section via
ablation studies. These studies validate our architecture
choices, as ablation of both SARD’s self-attention mecha-
nism and its convolutional prediction head lead to perfor-
mance decreases.

As seen in Figure 1, the SARD architecture naturally
splits into modular parts, the two most important of which -
the transformer and the prediction head - we investigate via
ablation:

• Self-attention: A key aspect of our work is its use of a
self-attention architecture as a tool to ingest time-series
of embedded clinical data. Until recently, RNN-based ap-
proaches (Choi et al. 2016a,b; Ma et al. 2017) have been
the state-of-the-art, and as such we developed an ablation
study in which we replace our architecture with a unidi-
rectional recurrent GRU-cell network, leaving the rest of
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the network unchanged. This GRU-cell network used in-
put dimension de = 300 and hidden dimension de = 300.
In Table 2, the row RNN (no RD) corresponds to this
ablated model trained from a random initialization, and
RNN + RD to the ablated model trained using the same
reverse distillation procedure used in SARD.
To ensure that our ablation fairly compared recurrent and
self-attention based approaches, we preserved all other
architectural elements including the visit-level input em-
beddings, use of temporal embeddings (fixed-frequency
sinusoidal time embeddings led to the best performance),
and the prediction head to aggregate the final visit rep-
resentations, which here operates on the hidden states of
each element of the last layer of the RNN. We found the
prediction head’s aggregation to be more performant and
serve as a more apt comparison than the standard recur-
rent technique of simply predicting from the hidden state
of the last element of the last layer of the RNN. This de-
sign choice helps mitigate the fact that older visits may
be ‘forgotten’ by the RNN, by allowing these visits to di-
rectly influence the inputs of the prediction head. We find
that the self-attention architecture is competitive with the
RNN, so long as the RNN is also trained with reverse dis-
tillation. An important finding is that reverse distillation
can also be used to successfully train highly-performant
recurrent models, further validating the usefulness of this
method and indicating that it can be used more generally.
We performed a similar ablation in which we replaced the
the self-attention layers with the identity, to further eval-
uate the value of explicitly contextualizing visits. In Ta-
ble 2, the row Identity (no RD) corresponds to this
ablated model trained from a random initialization, and
Identity + RD to this model trained using the same
reverse distillation procedure used in SARD. We find that
self-attention and recurrent architectures improve perfor-
mance on our surgery task, but have less of an impact on
our other two tasks; why this is requires further investiga-
tion. Furthermore, the strong performance of our identity
ablation speaks to the strength of our convolutional pre-
diction head, a design choice that likely contributes to our
improvement over the previous state of the art, BEHRT.

• Prediction Head: We also ablate our convolutional pre-
diction head by replacing it with a naive alternative which
simply sums the contextualized vector representations of
all visits to obtain a vector

∑
j ψ̃(V

i
j ) representing the en-

tire history of patient i. This summed vector, which will
have dimension de, is then passed into a single linear layer
with sigmoid activation to make a final prediction. We use
input embedding, sinusoidal time embedding and a self at-
tention mechanism identical to those of the SARD model
described in our SARD Model Architecture section.
We find that SARD’s convolutional prediction head gives
performance increases when compared with this simpler
alternative. Even in this regime, we again find that reverse
distillation allows models to be more performant. In Table
2, the row Summing Head (no RD) corresponds to
this ablated model trained from a random initialization,
and Summing Head + RD to this model trained using

Design Choice
Task Name EoL Surgery LoH

SARD 85.6 83.1 74.3
SARD (no RD) 85.0 82.7 72.7
Replace Self-Attention with:
RNN + RD 85.5 82.8 74.1
RNN (no RD) 84.3 82.3 72.6
Identity + RD 85.3 81.6 74.1
Identity (no RD) 84.3 79.9 73.2
Replace Convolutional Prediction Head with:
Summing Head + RD 84.2 82.4 74.2
Summing Head (no RD) 83.1 81.6 72.0

Table 2: Ablation Study Results. + RD indicates that reverse
distillation is used for pre-training

the same reverse distillation procedure used in SARD.

As seen in Table 2, our design choices perform as well
as or better than alternatives. Importantly, our ablation
studies highlight that in addition to architectural innova-
tions, reverse distillation is a key driver in SARD’s per-
formance gains, and more generally in performance gains
across diverse architectures. Indeed, the smallest difference
in ablated performance was observed when SARD’s self-
attention architecture was replaced with a recurrent equiv-
alent, but reverse distillation was still used for pre-training,
indicating reverse distillation’s universal applicability.

Model Introspection
In healthcare applications, it is critical to understand and in-
terpret how models make predictions. In this section we em-
ploy a local, or per-prediction, method of introspecting on
the SARD model; specifically, we examine which visits are
most influential in the prediction head for a given individ-
ual, and how those visits leverage self-attention to contex-
tualize. Our primary goal in this analysis is to introspect on
the SARD model to better understand how its self-attention
architecture leverages and transforms our input features to
make improved predictions, and we note that further work
would be needed before using such interpretation methods
to justify clinical decisions.

To determine which visits are most influential to a predic-
tion, we introspect directly on our convolutional prediction
head. In notating this introspection, we suppress indices cor-
responding to batches (i.e. patients), as the introspection will
be ultimately performed at the level of a single individual.

Recall that the prediction head convolves K kernels of
size de×1 with the final contextualized visit representations,
then uses a max-pooling operation to return the maximum
cross-correlation between the kernel and any individual con-
textualized visit. For the kth of these K kernels, denote this
maximum cross-correlation value by χk, and the maximiz-
ing visit by νi. Let wk denote the weight given to the out-
put from the kth kernel in the final linear layer mapping
to a prediction. We assign a score of s(Vj) =

∑
k[[Vj =

νk]]wkσ(χk) to visit Vj , where σ represents the sigmoid
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nonlinearity applied after max-pooling. This metric repre-
sents the total importance of visit Vj by summing all of its
possible contributions to the final prediction.

We use these introspection techniques in the Appendix
to interpret the case of a ≥90 year-old female patient
whose death was predicted with high probability (71.1%) by
SARD, but missed by our baseline windowed linear model
(5.4% probability of death). Using the total importance met-
ric described above, we can find the most predictive visits for
our case study patient in SARD. We present her top four vis-
its, which include visits from 2011, 2015 and 2016 in which
the patient chiefly experienced cardiovascular diseases and
their complications, in Appendix Table 7.

We then seek to understand how each visit is contextu-
alized by examining its attention weights in SARD’s self-
attention layers. For example, in our case study, we examine
the visits attended to most strongly by the patient’s top visit;
we include these results in Appendix Table 8 and visualize
the attention weights from her top visit in Appendix Figure
5. We find that while this patient’s top visit occurred in 2016
and included detection of a myocardial infarction along with
other cardiovascular disease, her top visit strongly attends
to a cluster of visits in 2011. By carefully analyzing these
visits, we find that during the 2011 visits, the patient expe-
rienced other manifestations of atherosclerotic vascular dis-
ease. We conjecture that these continued, albeit more minor,
cardiovascular issues over the years provide context for the
2016 visit, and ultimately augment the risk of death associ-
ated with the events of the 2016 visit.

More generally, introspecting on the SARD model reveals
that its self-attention mechanism leverages important con-
textual information from throughout a patient’s history to
gain a nuanced understanding of which parts of the med-
ical timeline are most important for prediction. Thus, the
deep model is able to make better predictions than simpler
baselines when it is necessary to interpret an entire clini-
cal narrative. In particular, in cases where SARD outper-
forms linear baselines, patients have significantly more data,
as measured by the patient’s total number of visits, than in
cases where the linear baseline outperforms (Mann-Whitney
U test, p < .05).

Model Performance Across Subpopulations. For any
clinical machine learning model, it is important to introspect
on and be aware of differential performance across different
groups of patients. We evaluate SARD’s performance across
a diverse range of patient clinical categories. We consider
subpopulations defined by Clinical Classifications Software
Refined (CCSR) codes2, and place a patient in a subpopula-
tion if they experience at least three occurrences of a related
condition within two years of prediction time. For the LoH
task, Figure 2 shows the positive predicted value (PPV, com-
puted at a sensitivity of 0.5 for each category and model) of
SARD trained with and without RD across the 189 CCSR
categories with at least 10 positive outcomes in the associ-
ated subpopulations. In addition to improvements in overall

2CCSR for ICD-10-CM Diagnoses was developed as part of
the Healthcare Cost and Utilization Project (HCUP), www.hcup-
us.ahrq.gov/toolssoftware/ccsr/dxccsr.jsp.

Figure 2: PPV for SARD with vs. without RD across sub-
populations in the LoH task. Each point represents a patient
category.

AUC, we find that SARD trained with RD outperforms a
SARD model trained without RD in 147 out of 189 cate-
gories, spanning many diverse subpopulations, such as pa-
tients with immunity disorders and neonatal disorders.

Figure 2 also indicates whether the windowed linear base-
line performed better than SARD without RD on each sub-
populations, in terms of PPV. We find that for almost all cat-
egories where SARD outperforms SARD without RD, the
linear baseline also outperforms. This corroborates our un-
derstanding that the success of SARD’s unique pre-training
procedure emanates from its ability to capture performant
aspects of the linear baseline.

Analyses of Reverse Distillation
We empirically validate that the SARD model for the End
of Life task after reverse distillation (but before fine-tuning)
generalizes in the same way as a linear model by analyz-
ing the predictions made by both models on a held-out val-
idation set. As seen in Figure 3, we find a Spearman corre-
lation of 0.897 between the logit outputs of the two mod-
els on held-out data3. This indicates that even for unseen
patients, the models make similar predictions. Thus, the
reverse-distilled deep model does indeed mimic the linear
model, not just memorize its outputs at certain points.

Reverse distillation is further analyzed via experiments on
synthetic data in the Appendix. We find performance gains
through reverse distillation for classification problems where
data are poorly separated, or where only a small fraction of
features are relevant, both properties of our prediction tasks.

3Recall that the logit corresponding to an output probability p
is log (p/(1− p))
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Figure 3: Comparison of Predictions on Held-out Data by
Reverse Distilled and Linear Models
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Figure 4: Reverse distillation AUC gains on synthetic data,
as a function of sparsity of useful features

The ability of reverse distillation to enhance performance
in synthetic scenarios with this property is shown in Fig-
ure 4, where we additionally compare to alternative feature-
selection methods.

These experiments support that in addition to generaliz-
ing in the same way as an underlying linear model, a deep
model trained via reverse distillation learns a soft version
of the feature-selection performed by a regularized linear
model. This is especially interesting in the case of multi-
dimensional time-series data, where a simpler feature selec-
tion algorithm is not applicable. Indeed, in the case of longi-
tudinal data, we would need to select a temporal context per
feature, not just the features themselves. A naive approach
of limiting SARD to the features selected by the windowed
linear baseline in any time window results in no performance
gains versus the baseline.

Network Dissection: We present the results of our Net-
work Dissection approach for intepretability. We summa-
rize the findings of our correlation analysis as follows: for
each neuron in SARD’s penultimate layer, we “match” it to

Model
Task Name EoL Surgery LoH

Total # of Non-Zero Linear
Features 106 2000 1009

SARD (no RD) 41
(39%)

52
(3%)

43
(4%)

RD Only 71
(67%)

86
(4%)

161
(16%)

SARD 71
(67%)

69
(3%)

144
(14%)

Table 3: Number (percentage) of unique linear model fea-
tures represented by the final latent layer in the follow-
ing model variants: SARD trained without RD pre-training
(SARD (no RD)), SARD paused after pre-training (RD
Only), and SARD with pre-training and fine-tuning (SARD).

the single linear model feature with which it had the high-
est MCC correlation; the linear model we refer to is the
L1-regularized windowed logistic regression used for pre-
training, and we only include features which have non-zero
coefficients. In Table 3 we report the total number of unique
linear features which “matched” at least one of the latent
features in the penultimate layer of each deep model.

Unsurprisingly, we observe that the penultimate layers of
our SARD networks trained without RD pre-training do not
capture a high fraction of the linear model’s feature set. Af-
ter RD pre-training, a much higher fraction of the linear
model’s features are represented by the penultimate layers of
the deep models, and they remain so even after fine-tuning,
highlighting RD’s ability to effectively regularize even a
fine-tuned model to make use of features known to be clini-
cally meaningful. This helps explain the performance gains
driven by reverse distillation seen in our experiments.

To better understand the impact of RD at the neuron
level, we provide examples of top correlations for penul-
timate layer neurons trained with different SARD variants
on the EoL task in the Appendix (see Tables 9 and 10).
For example, when training the network with RD, before
fine-tuning, we find a neuron with correlation .487 with the
linear model feature “Hearing loss”, .414 with “Dementia”,
and .4 with “Alzheimer’s disease” (for all three, the∞-time
window). After fine-tuning, the same neuron has correlation
.403 with “Hearing loss”, .32 with “Dementia”, and .312
with “Subsequent hospital care”, keeping the same broad in-
terpretation although with a new emphasis on hospitaliza-
tion. By contrast, none of the top 10,000 correlations for
SARD trained without RD include a neuron correlated with
the linear model feature for “Hearing loss.”

Discussion
We showed in Table 1 that two of the previous state-of-
the-art deep models for longitudinal health data (Choi et al.
2016b; Li et al. 2020) do not outperform a well-tuned linear
model with windowed features, consistent with previously
reported results (Rajkomar et al. 2018, Supplemental Table
1). When trained without reverse distillation, our new archi-
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tecture, SARD, achieves substantial wins in two of the tasks,
yet also performs worse than the linear model on the third.
However, when the models are pre-trained using reverse dis-
tillation, all of the architectures outperform the linear model,
with SARD obtaining the best performance. Reverse distil-
lation is just one successful method by which self-attention
based predictive models can be initialized. Although we did
not observe an advantage in our dataset, possibly because
of the small number of individuals relative to the large vo-
cabulary, Li et al. (2020) demonstrated the use of masked
language models as an unsupervised pre-training method for
transformer-based models.

We hypothesize that reverse distillation will be of util-
ity in other applications of deep learning with limited data
where strong shallow models already exist. For example,
within healthcare, interpretation of ECG waveforms (e.g. to
predict atrial fibrillation) with deep models could be pre-
trained with reverse distillation using linear models on eas-
ily derived clinical features such as R-R intervals (Teijeiro
et al. 2018). Beyond healthcare, text classification in under-
resourced languages without pre-trained language models
might benefit from reverse distillation using linear models
with bag-of-words features.

We showed in Lemma 1 that our transformer architecture
with temporal embeddings can represent a windowed linear
model. However, that does not imply that gradient descent
will learn a function that is equivalent to the linear model
used within pre-training – the objective is nonconvex and,
even with infinite training data, there will be many equiva-
lently good solutions. Nonetheless, we showed in Figure 3
that the function learned by the deep model closely mirrors
the function learned by the linear model on held-out data.
A possible theoretical explanation might be found in recent
work on convergence of stochastic gradient descent in over-
parameterized deep models, coupled with the realization that
pre-training is attempting to fit a particularly simple concept
class, a linear model (Allen-Zhu, Li, and Song 2019).
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