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Abstract

Traffic forecasting is attracting considerable interest due to it-
s widespread application in intelligent transportation system-
s. Given the complex and dynamic traffic data, many meth-
ods focus on how to establish a spatial-temporal model to
express the non-stationary traffic patterns. Recently, the lat-
est Graph Convolution Network (GCN) has been introduced
to learn spatial features while the time neural networks are
used to learn temporal features. These GCN based method-
s obtain state-of-the-art performance. However, the curren-
t GCN based methods ignore the natural hierarchical struc-
ture of traffic systems which is composed of the micro layers
of road networks and the macro layers of region network-
s, in which the nodes are obtained through pooling method
and could include some hot traffic regions such as down-
town and CBD etc., while the current GCN is only applied on
the micro graph of road networks. In this paper, we propose
a novel Hierarchical Graph Convolution Networks (HGC-
N) for traffic forecasting by operating on both the micro
and macro traffic graphs. The proposed method is evaluat-
ed on two complex city traffic speed datasets. Compared to
the latest GCN based methods like Graph WaveNet, the pro-
posed HGCN gets higher traffic forecasting precision with
lower computational cost.The website of the code is http-
s://github.com/guokan987/HGCN.git.

Introduction
The intelligent transportation system has been a fast grow-
ing research field with the development of sensor technolo-
gy and the diversification of travel modes. One of significant
tasks in such systems is how to predict the future traffic s-
tate of road network, which has many applications in daily
travel such as planning travel routes in advance and guiding
the allocation of road usage, etc. Recently, the ride-hailing
and ride-sharing services have emerged and been popular in
cities. This novel travel mode accumulates a huge volume
of traffic data along with the traditional sensor data, which
provides abundant traffic data to analyze traffic patterns and
achieve traffic forecasting in the complex city road environ-
ment.

For traffic forecasting (Ahmed and Cook 1979), it has a
long history of development from 1980s. Usually, early re-
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searches were based on the historical data of the road net-
work and utilized the simple linear regression methods to
predict traffic state in the next few minutes. Then, with the
development of statistical technology and regression meth-
ods, in order to construct the Advanced Traveler Information
Systems (ATIS) and Advanced Traffic Management System-
s (ATMS), some real-time traffic simulation systems were
proposed, such as DynaMIT (Ben-Akiva et al. 1998, 2012)
and DYNASMART-X (Mahmassani et al. 2005). They in-
tegrate the state estimation, traffic assignment and control
strategies functions into one system, in which the state esti-
mation adopts Kalman Filters (KFs) and its variants (Wang
and Papageorgiou 2005; Tampere and Immers 2007; van
Hinsbergen et al. 2012). Different from KFs or its vari-
ants, some works focus on the machine learning methods
of data-driven models such as Auto Regressive Integrated
Moving Average (ARIMA) (Ahmed and Cook 1979; Smith,
Williams, and Oswald 2002), Support Vector Regression
(SVR) (Wu, Wei, and Su 2004; Cong, Wang, and Li 2016),
Random Forest Regression (Leshem and Ritov 2007; Yang
and Qian 2018), and so on. For these models, their perfor-
mances are usually limited by the feature representation ca-
pacity.

As the most important component of machine learning,
Neural network, especially deep neural network, has power-
ful representation ability, thus it is widely used in Computer
Vision, Natural Language Processing, and Traffic Forecast-
ing (Yu and Chen 1993; Florio and Mussone 1996; Zhou
and Nelson 2002). When huge volume of traffic data are ac-
cumulated, deep neural network has been used to explore
the inner relationship hiding in the traffic data for improv-
ing the result of traffic forecasting (Lv et al. 2015). Recur-
rent Neural Networks (RNNs) such as LSTM (Cui, Ke, and
Wang 2016) and the Gated Recurrent Unit (GRU) (Agarap
2017) were also utilized to explore the temporal feature of
traffic data. Except for RNNs, Deep Spatial Temporal Con-
volution Network (DSTCN) (Zhang, Zheng, and Qi 2017)
was proposed to learn spatial-temporal features with Convo-
lution Neural Network (CNN). However, it needs to transfer
the traffic data to image-grid data and doing so destroys the
natural connection of road network.

To avoid the disadvantage of CNN, recently, Graph Con-
volution Network (Bruna et al. 2014; N.Kipf and Welling
2017) was introduced to exploit the non-grid local spatial
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Figure 1: The proposed HGCN for traffic forecasting.

feature through Laplacian matrix. Then Graph Convolution
Recurrent Network (GCRN) (Seo et al. 2017) and Gat-
ed Spatial-Temporal Graph Convolution Network (Gated-
STGCN) (Yu, Yin, and Zhu 2018) were proposed to solve
the sequence modeling problem of traffic forecasting by
combining GCN with RNNs or Gated-CNN. However, they
are based on the empirical or handcrafted Laplacian ma-
trix, which ignores many useful spatial relations hiding in
the traffic data. Thus, the data-driven parametric Laplacian
matrix was proposed, such as Optimized Graph Convolution
Recurrent Neural Network (OGCRNN) (Guo et al. 2020a)
and Optimized Temporal-Spatial Gated Graph Convolution
Network (OTSGGCN) (Guo et al. 2020b), in which the same
size of parametric matrix was added on Laplacian matrix to
reveal more relations between nodes. Besides the parametric
Laplacian matrix, the graph WaveNet (GWNET) (Wu et al.
2019) was proposed based on diffusion GCN (Li et al. 2018)
to deal with a directed graph in the traffic forecasting.

As the GCN based methods are more suitable to process
the irregular graph type of traffic data, they have achieved
state-of-the-art traffic forecasting performance. In spite of
this, the current GCN based methods generally deal with the
traffic data based on the fundamental road network, the basic
and single-layer of graph of the traffic system, in which the
nodes represent road segments and the links mean pairs of
correlative road segments. However, these methods ignore
the natural hierarchical structure of traffic system, which not
only includes the basic micro layer of road network but also
has the macro layers of networks with the nodes representing
the hot traffic regions covering downtowns, CBDs or other
important blocks, etc. The feature and information of region

or community play an important role in traditional transfor-
mation theory for traffic planning or macro feature analy-
sis (Chen et al. 2006), while the current GCN based traffic
forecasting methods have seldom utilized this information at
present.

From the above analysis, in this paper, we propose a novel
Hierarchical Graph Convolution Networks (HGCN) for traf-
fic forecasting. As shown in Figure 1, the proposed HGC-
N is featured in multi-layers of GCN for traffic forecasting,
i.e. the micro layer of road network and the macro layer of
network with region nodes, which are constructed from the
clustering of the nodes of road segments. Additionally, the
most important contribution of this work is that we construct
the interaction between the micro and macro layers of GC-
Ns, which integrates the different scales of features of road
segments and regions for improving the traffic forecasting
performance. The main contributions of our paper are sum-
marized as follows,

• A novel Hierarchical Graph Convolution Network based
on pooling is proposed for traffic forecasting considering
both the road segments and regions feature of traffic sys-
tem;

• The multiple GCNs on different layers of traffic graphs
are properly integrated by introducing interaction of dy-
namic transfer blocks;

• The proposed method is tested on two traffic datasets cap-
tured from two big cities and the results outperform the
state-of-the-art related works.
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Related Work
Traffic Forecasting
Traffic forecasting can be modeled as a function which map-
s the observed traffic data of the road network to the future
traffic state such as flow, speed, etc. From another perspec-
tive, traffic forecasting is also a sequence modeling problem
which constructs the relation between the historical data and
future data through the moving window technique. So, for
the traffic data in the ith road segment at t time, we define
it as xit ∈ RD , in which D is the feature size of xit. As
a result, the traffic data of the total road network at time t
can be defined as Xt = [x1t , . . . , x

i
t, . . . , x

N
t ]T ∈ RN×D,

where N is the number of road segments. In the traffic fore-
casting, we forecast the traffic state for the next T2 times
by using T1 historical data, so the input sequence of his-
torical data can be defined as {X1, . . . , Xt, . . . , XT1

} ∈
RN×T1×D, and its forecasting sequence of the future can
be defined as {X̂(T1+1), . . . , X̂(T1+T2)} ∈ RN×T2×D, and
its ground truth is denoted by {X(T1+1), . . . , X(T1+T2)} ∈
RN×T2×D. To represent the natural topological connection
of road network, the graph of road network is defined as
G = (V,E,A), where V ∈ RN is the road segment(node)
set, E is the edge set, A ∈ RN×N is the adjacent matrix of
G.

Graph Convolution Network
Graph Convolution Network (Bruna et al. 2014) is derived
from Graph Spectral Theory (Chung 1992). Different from
CNN, GCN specially deals with irregular graph data de-
pending on the decomposition of graph Laplacian matrix,
which achieves the process of filter in the frequency domain
as follows,

gθ ? G(x) = gθ(L)x = Ugθ(Λ)UTx (1)

where L = UΛUT is the graph Laplacian matrix, and U
is the Fourier basis of G and Λ = diag([λ1, . . . , λN ]) ∈
RN×N . So, the original GCN is dependent on the decom-
position of L, which is a computationally high demanded
process. For this purpose, the fast GCN (Defferrard, Bres-
son, and Vandergheynst 2016) was proposed to solve this
computational problem as follows,

gθ ? G(x) = gθ(L)x =
M−1∑
m=0

θmCm(L̃)x (2)

where θm is the learnable parameters and m = 0, ...M −
1 is the order of the Chebyshev Polynomials Cm(L̃) =

2L̃Cm−1(L̃) − Cm−2(L̃) and C1(L̃) = L̃, C0(L̃) = IN .
L̃ = 2

λmax
L− IN is scaled Laplacian matrix for better rep-

resentation capacity.
To process a graph with two different directions: the node

of input and output, the diffusion GCN (Li et al. 2018) was
proposed based on the spatial GCN (Duvenaud et al. 2015)
as follows,

gθ ? G(x)d =

M−1∑
m=0

θm,fP
m
f x+ θm,bP

m
b x (3)

where Pf = A/rowsum(A), and Pmf is the m-order ma-
trix power of Pf . Pb = AT /rowsum(AT ), and Pmb is
the m-order matrix power of Pb. Then θm,f and θm,b are
parameters. Except for Pf and Pb, GWNET (Wu et al.
2019) added the optimized Laplacian matrix to learn the pa-
rameterized spatial relation from data, i.e. it is defined as
Ãadp = Softmax(Relu(E1E

T
2 )), where E1 ∈ RN×E and

E2 ∈ RN×E are two parameters in the size of E. Thus, G-
WNET can be represented as follows,

gθ ? G(x)adp =
M−1∑
m=0

θm,fP
m
f x+ θm,bP

m
b x+ θm,adpÃ

m
adpx

(4)
where Ãmadp is the m-order matrix power of Ãadp.

Methodology
The framework of HGCN is shown in Figure 1. It contains
five components which are labeled in red text. We will de-
scribe each component in details in the sequel.

Traffic Hierarchical Graphs Generating by
Spectral Clustering
The micro graph of a road network can be constructed from
its natural structure. In this paper, we use the distance be-
tween the nodes of road segments to construct the graph of
road network, i.e. we use the GPS coordinates of the ter-
minal point of road segments to calculate their distance and
omit these segments with distance great than a given thresh-
old. The value of the node is the observed traffic data like
the speed, flow or density on the road segment. We denote
the observed traffic data of the graph of road network by
−→
X = {X1, . . . , Xt, . . . , XT1

} ∈ RN×T1×D, which will be
used as the input for the following GCN.

Matrix 
Representing

Spectral
Clustering

Constructing
Graph of Regions

Figure 2: The sketch map of the region data generation.

For constructing the macro graph of regions from road
network, the ideal way is to use the actual traffic hot re-
gions or communities as the nodes. However, how to de-
tect and recognize these hot regions in a complex traffic
system is another challenging issue. For simplicity, we u-
tilize the spectral clustering method on the graph of road
network to construct the macro graph of regions. As shown
in Figure 2, we first obtain the adjacent matrix from the
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graph of road network. Then we conduct spectral cluster-
ing on the Laplacian matrix of the adjacent matrix, and get
a partition of the road network. Each cluster of the partition
can be regarded as a macro node of the graph of regions.
For example, in Figure 2, the road network is clustered into
four regions. The value of the macro node is the combina-
tion of the mean and minimum values of the micro nodes
in the cluster. The edge of the macro graph is construct-
ed based on the micro graph, for example, if i ∈ region1
and j ∈ region2, and the ith node connects to jth node
in micro graph, then region1 connects to region2 in macro
graph. From this construction, we denote the macro graph of

regions by
−−→
XR = {XR

1 , . . . , X
R
t , . . . , X

R
T1
} ∈ RNR×T1×D,

where NR is the number of macro traffic regions.

GCN on the Graph of Regions
As shown in Figure 1, GCN on the graph of regions is im-
plemented by one Linear Transformation and two stacked
Spatial-Temporal Blocks (S-T Blocks). The former realizes

the transformation for the input region data
−−→
XR, and the lat-

ter is designed to extract the spatial and temporal feature of
the region data by GCN.

Spatial-Temporal Block The S-T Block consists of three
parts: Temporal Gate Convolution, Spatial Gate Graph Con-
volution and Temporal Attention Mechanism, which aim to
learn the local temporal feature, the local spatial-temporal
feature and the global temporal relation of region data, re-
spectively. The details are given in following.

(1) Temporal Gate Convolution: It is presented to par-
allelly extract hierarchical local temporal features by using
gate convolution in timeline. Compared to LSTM, it is high-
ly efficient for the long-range time series data. Specifically,
it can be represented as follows,

TC(
−→
X ) = Φ ?

−→
X = Convts(

−→
X )

(~β1, ~β2) = split(TC(
−→
X ))

TGC(
−→
X ) = tanh(~β1) ∗ sigmoid(~β2)

(5)

where Convts represents the temporal Convolution opera-
tor in time size and its kernel size is ts, and split repre-
sents the operator of equally partition, thus TGC(

−→
X ) ∈

RNR×T 1
1×D1 , ~β1 ∈ RNR×T 1

1×D1/2, ~β2 ∈ RNR×T 1
1×D1/2,

T 1
1 = T1 − (2 ∗ ts − 2), and sigmoid, tanh are activation

functions.
To expand receptive filed of gate convolution, we adopt

the dilation convolution (Wu et al. 2019) to replace original
convolution with the dilation coefficient dil = 2. So, the
above Temporal Gate Convolution can be revised as follows,

TC(
−→
X ) = Φ ?

−→
X = Convdilts (

−→
X )

(~β1, ~β2) = split(TC(
−→
X ))

TGC(
−→
X ) = tanh(~β1) ∗ sigmoid(~β2)

(6)

(2) Spatial Gate Graph Convolution: To explore the s-
patial feature and the local temporal feature simultaneously,
we propose to embed the diffusion graph convolution in (4)

into the Temporal Gate Convolution (without dilation con-
volution) as follows,

GTC(
−→
X ) =

M−1∑
m=0

Φm,f ? P
m
f x+ Φm,b ? P

m
b x

+ Φm,adp ? Ã
m
adpx

(~β1, ~β2) =split(GTC(
−→
X ))

DGGC(
−→
X ) =tanh(~β1) ∗ sigmoid(~β2)

(7)

where DGGC(
−→
X ) ∈ RNR×T 2

1×D1 , T 2
1 = T 1

1 − (ts − 1) =

T1 − (3 ∗ ts − 3), Ãadp = norm(Relu(E1E
T
2 )) and norm

is defined as follows,

Aadp = Relu(E1, E
T
2 )

Dadpii =
∑
j

Aadpij

Dadp1 = diag(1/(Dadpii))

Ãadp = Dadp1Aadp

(8)

Here, we use norm instead of softmax in (4) to avoid full
connection of all nodes and keep the sparsity of Ãadp.

(3) Temporal Attention Mechanism: To further explore
the global temporal relation, we utilize the Temporal Atten-
tion (Feng et al. 2017) to capture the large scale temporal
correlation of traffic data

−→
X as follows,

E =Veσ((
−→
X )TU1)U2((

−→
X )U3)T + be)

E′i,j =
exp(Ei,j)∑T 2
1
j=1 exp(Ei,j)

Tatt(
−→
X ) =E′

−→
X

(9)

where Ve, be ∈ RT 2
1×T

2
1 , U1 ∈ RN×1, U2 ∈ RD1×N ,

U3 ∈ RD1×1. From the above, we summary S-T Block as
Algorithm 1.

Algorithm 1 Spatial-Temporal Block

Require:
The current input traffic data

−→
X =

{X1, . . . , Xt, . . . , XT1
} ∈ RN×T1×D; The output

feature
−→
F3 ∈ RN×T 2

1×D1

1:
−→
F = TGC(

−→
X );

2:
−→
F1 = DGGC(

−→
F );

3:
−→
F2 = Tatt(

−→
F1);

4:
−→
F3 = Batch norm(

−→
F2 + conv1×1(

−→
X )[:,−T 2

1 :, :]);
5: return

−→
F3

GCN on the Graph of Road Network
As shown in Figure 1, GCN on the Graph of Road Network
shares the same structure to GCN on the Graph of Region-

s. Except for the different input data, i.e.
−→
X instead of

−−→
XR,
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the main difference is that the output feature of S-T Block in
the micro graph is combined with the feature of the macro
graph. Thus, the graph convolution on the road network will
be affected by the convolution of region graph, and it is
the unique feature of our method, which utilizes the natu-
ral hierarchical structure of the transportation system and its
observed data for improving traffic forecasting. In the fol-
lowing subsection, we will describe the interaction layer be-
tween the macro and micro graphs in detail.

Interaction Layer between Macro and Micro
Graphs
To realize the interaction between the macro and micro
graph convolutions, we propose a dynamic transfer block to
fuse the region features and road segment features. First, we
construct a transfer function to form the combined feature,
in which if the road node i belongs to the region j, we copy
the region j’s feature and concatenate it with the feature of
the road segment i, i.e. we define a transformation matrix
Tran ∈ RN×NR

as follows,

[Tran]ij =

{
1, if the node i belongs to the region j;
0, else.

Then, for the road segment feature
−→
F ∈ RN×T 2

1×D1 and

the Region feature
−→
FR ∈ RNR×T 2

1×D1 , the feature transfer
function can be formulated as follows,

−−−→
FRTran = (Tran)(

−→
FR)

−−→
Fout = Concat(

−→
F ,
−−−→
FRTran)

(10)

where
−−−→
FRTran ∈ RN×T 2

1×D1 and the output feature of trans-
fer
−−→
Fout ∈ RN×T 2

1×(2∗D1).
As the dynamic change characteristic of traffic data, the

relation between road segment and region is also change-
able. So we further propose a dynamic transfer matrix
Trand ∈ RN×NR

based on the attention mechanism similar
to (9) with the following form.

Ed = σ((
−→
F )TU1)U2((

−→
FR)U3)T + be)

Ed = Ed −mean(Ed, axis = 0)

Trand = σ(Ed) ∗ Tran

(11)

From this, Dynamic Transfer Block can be finally defined as
follows, −−−→

FRTran = (Trand)(
−→
FR)

−−→
Fout = Concat(

−→
F ,
−−−→
FRTran)

(12)

Traffic Forecasting Block
We utilize the fused feature of two graphs for traffic forecast-
ing. To get more information from different stage features,
we design a skip-connection to process these features. Then,
we integrate the output of skip-connection and feed it into
the predicting block for forecasting results. The predicting
block is composed of two stacked layers of relu with linear

transformation, as shown in Figure 1. The procedure of the
forecasting block can be formulated as follows,

−−−→
Fskip1 =

−−−→
Fout1S1,

−−−→
Fout1 ∈ RN×T

2
1×(2∗D1)

−−−→
Fskip2 =

−−−→
Fout2S2,

−−−→
Fout2 ∈ RN×tw×(2∗D1)

−−−→
Fsum = Relu(

−−−→
Fskip1[:,−tw :, :] +

−−−→
Fskip2)

−−−→
Fsum1 = Relu(

−−−→
FsumW1)

Output =
−−−→
Fsum1W2

(13)

where S1 ∈ R(2∗D1)×D2 , S2 ∈ R(2∗D1)×D2 ,W1 ∈
Rtw×1×D2×D3 ,W2 ∈ RD3×T2 are parameters and
Output = {X̂(T1+1), . . . , X̂(T1+T2)}. W1 will decrease the
time size of

−−−→
Fsum to 1.

In this paper, we use the Mean Absolute Error (MAE) to
form the loss function, i.e. for the ground truth Truth =
{X(T1+1), . . . , X(T1+T2)}, the loss function can be repre-
sented as follows,

loss = MAE(Output, T ruth)

=

∑T2

i=1

∑N
j=1 |(X̂j

(T1+i) −X
j
(T1+i)

)|
T2 ∗N

(14)

Finally we summarize the proposed HGCN as shown in Al-
gorithm 2.

Algorithm 2 The HGCN algorithm for traffic forecasting.

Require:
The observed traffic data

−→
X =

{X1, . . . , Xt, . . . , XT1} ∈ RN×T1×D;

1: Generating the region data
−−→
XR =

{XR
1 , . . . , X

R
t , . . . , X

R
T1
} ∈ RNR×T1×D from

−→
X ;

2: Get the input feature of segment and region
−→
F0 and

−→
FR0

from
−→
X and

−−→
XR by Linear Transformation;

3: Get the combined feature
−−−→
Fout0 from

−→
F0,
−→
FR0 by Dy-

namic Transfer Block 0;
4: Get the segment feature

−→
F1 from

−−−→
Fout0 by S-T Block 1;

5: Get the region feature
−→
FR3 from

−→
FR0 by S-T Block 3;

6: Get the combined feature
−−−→
Fout1 from

−→
F1,
−→
FR3 by Dy-

namic Transfer Block 1;
7: Get the segment feature

−→
F2 from

−−−→
Fout1 by S-T Block 2;

8: Get the region feature
−→
FR4 from

−→
FR3 by S-T Block 4;

9: Get the combined feature
−−−→
Fout2 from

−→
F2,
−→
FR4 by Dy-

namic Transfer Block 2;
10: Get the Output of HGCN from

−−−→
Fout1,

−−−→
Fout2 by (13);

11: return Output
12: Calculate the loss of HGCN by (14).

Experiments
In our experiments, we evaluate the proposed HGCN on two
real-world traffic datasets to compare with state-of-the-art
related methods.
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Data Method 30 min 1 hour 2 hour

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

JiNan

HA 5.69 7.60 20.02% 5.69 7.60 20.02% 5.69 7.60 20.02%
ARIMA 3.96 6.14 14.12% 4.48 6.56 16.10% 5.09 7.01 18.24%
LSTM 3.21 4.85 12.85% 3.67 5.48 14.92% 4.30 6.26 17.38%
GRU 3.20 4.85 12.82% 3.67 5.47 14.86% 4.30 6.26 17.41%
GCRN 2.99 4.54 12.11% 3.30 4.96 13.53% 3.71 5.45 15.13%
Gated-STGCN 2.96 4.48 11.85% 3.29 4.92 13.33% 3.71 5.44 15.03%
OGCRNN 3.12 4.60 12.35% 3.39 4.93 13.40% 3.67 5.24 14.38%
OTSGGCN 3.00 4.48 11.86% 3.26 4.73 13.11% 3.57 5.21 14.32%
GWNET 2.89 4.37 11.49% 3.16 4.71 12.52% 3.52 5.16 13.77%
HGCN WH(our) 2.89 4.38 11.59% 3.15 4.73 12.70% 3.43 5.04 13.65%
HGCN WDF(our) 2.91 4.45 11.58% 3.15 4.78 12.57% 3.41 5.10 13.45%
HGCN(our) 2.89 4.37 11.35% 3.11 4.68 12.31% 3.36 5.02 13.31%

XiAn

HA 6.02 8.16 21.79% 6.02 8.16 21.79% 6.02 8.16 21.79%
ARIMA 3.70 6.05 12.96% 4.26 6.57 15.28% 5.04 7.24 18.26%
LSTM 3.16 4.83 11.92% 3.70 5.52 14.22% 4.52 6.53 17.42%
GRU 3.15 4.82 11.96% 3.69 5.52 14.25% 4.51 6.53 17.50%
GCRN 2.92 4.48 11.13% 3.28 4.98 12.83% 3.78 5.60 14.91%
Gated-STGCN 2.89 4.48 11.09% 3.23 4.94 12.69% 3.73 5.52 14.56%
OGCRNN 2.94 4.47 11.26% 3.20 4.79 12.43% 3.54 5.19 13.73%
OTSGGCN 2.87 4.42 11.14% 3.16 4.79 12.48% 3.50 5.20 13.80%
GWNET 2.76 4.26 10.46% 3.03 4.61 11.71% 3.44 5.10 13.22%
HGCN WH(our) 2.75 4.28 10.40% 3.00 4.61 11.55% 3.34 5.05 13.17%
HGCN WDF(our) 2.77 4.33 10.50% 3.02 4.66 11.69% 3.30 4.99 12.72%
HGCN(our) 2.75 4.26 10.46% 2.96 4.54 11.44% 3.24 4.85 12.52%

Table 1: The traffic forecasting results of different methods on JiNan and XiAn datasets.

Experimental Settings

(a) JiNan

(b) XiAn

Figure 3: The points are the terminal points of the road seg-
ments with the different color representing its traffic region
belonged to.

Datasets Two traffic speed datasets used in our experi-
ments are collected by Didi Chuxing GAIA Initiative (https:
//gaia.didichuxing.com) in JiNan and XiAn cities in China,
as Figure 3 shown. These datasets contain the average speed
of road segments in one with sampling rate of one sample
per 10 minutes. The total sample number of the two dataset-
s is 52286 each. In the two datasets, there are 561 and 792
road segments (nodes) in city center area for JiNan and Xi-
An, respectively. We adopt Z-score normalization to process
the data in both datasets. Based on a thresholded Gaussian
kernel (Shuman et al. 2013), we construct the adjacent ma-
trix of the road network. Each dataset is splitted into 60% for
training, 20% for validation and 20% for test with chrono-
logical order. We train models in the training-set, and ac-
cording to the results of the validation-set choose the optimal
parameters to test the model on the test-set. It is noted that
missing values are excluded in both cases from training-set,
validation-set and test-set.

Comparison methods The proposed method is com-
pared with nine traffic forecasting methods: Historical Av-
erage(HA), ARIMA, LSTM(Cui, Ke, and Wang 2016),
GRU(Agarap 2017), GCRN(Seo et al. 2017), Gated-
STGCN(Yu, Yin, and Zhu 2018), OGCRNN(Guo et al.
2020a) , OTSGGCN(Guo et al. 2020b) , GWNET(Wu et al.
2019). To estimate the impact of GCN on the graph of re-
gions, we make a version of our model without hierarchi-
cal structure, i.e. only using road segment feature, denot-
ed by HGCN WH. To further evaluate the efficiency of the
proposed Dynamic Transfer Block in HGCN, we replace
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Trand with Tran resulting in a model without a dynamic
transfer matrix, denoted by HGCN WDF. The performance
of all methods is measured by three metrics: Mean Absolute
Error(MAE), Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE).
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Figure 4: MAE and MAPE of 2 hours forecasting with dif-
ferent NR on the two datasets.

Parameters Setting In our experiments, we set the order
of GCN’s order M = 3 in the S-T Block according to the
previous works (N.Kipf and Welling 2017; Wu et al. 2019).
The size of the temporal kernel ts = 3 in S-T Block 1 and
S-T Block 3, and ts = 2 in S-T Block 2 and S-T Block 4.
The forecasting time interval and input time interval is equal,
i.e. T1 = 12, T2 = 12, thus tw = 3. The feature sizes are
D = 1, D1 = 32, D2 = 256, D3 = 512. The size of initial-
ize node embedding in Ãadp is 10, i.e.E = 10. To select op-
timal setting of the number of regions NR, we let NR = 20
for JiNan dataset and NR = 40 for XiAn dataset according
to the results on the validation-set, which are shown in Fig-
ure 4. The proposed model is implemented by Pytorch 1.2.0
on a virtual workstation with a 11G memory Nvidia RTX
2080Ti. The batch size is 64. The Adam Optimization is uti-
lized. The original learning rate is 0.001. We train 50 epochs
in the training phase.

Experimental Results
Traffic Forecasting results The 30 minutes, 1 hour and 2
hours traffic forecasting results of different methods on the
two datasets are shown in Table 1. It is shown that the pro-
posed HGCN has the best performance compared with other
methods in all metrics, including GWNET which is the lat-
est related GCN based method with state-of-the-art perfor-
mance. Overall, the GCN based methods, including GCRN,

Gated-STGCN, OGCRNN, OTSGGCN, GWNET and our
HGCN, are better than the remaining methods, which mean-
s that the graph convolution is more suitable to process
the traffic data with graph structure. Additionally, the deep
learning based methods are better than traditional HA and
ARIMA methods, which validates that deep learning meth-
ods have stronger ability to learn useful features for this ap-
plication.

Effect of the Hierarchical Structure To estimate the ef-
fect of hierarchical structure and dynamic transfer block, we
design the validation experiments and show the forecasting
results of HGCN WH and HGCN WDF in Table 1. From
the results, we can conclude that both of hierarchical struc-
ture and dynamic transfer block of HGCN are effective as
the results of HGCN outperform both of HGCN WH and
HGCN WDF.

From the maps in Figure 3, one can further observe the ef-
fect of the hierarchical structure intuitively. It is shown that
the road segments are divided into different regions which
cover city hot regions such as school, supermarket, airport,
etc. Thus the hierarchical structure meets the natural proper-
ty of the city transportation system. Additionally, our region
partition is more detailed than the real city administrative
division. For example, XiAn City has 4 real communities in
the center of the city, which is too rough compared with the
optimal 40 region division in Figure 4(b).

Figure 5: The vision of the part of dynamic transfer matrix
on the two datasets in the one time step.

As for the effect of the Dynamic Transfer Block, we plot
the dynamic transfer matrix Trand ∈ RN×NR

as a heatmap
in Figure 5. It is shown that the values of the matrix change
from 0.3 to 0.6, which means the Dynamic Transfer Block
successfully controls the information flow from the region
graph to the road segment graph.

Computation Time We compare the computation time
of OGCRNN, OTSGGCN and GWNET with HGCN WH,
HGCN WDF and HGCN on the XiAn dataset. The result-
s are shown in Table 2. It indicates that although HGCN
is slower than OGCRNN and OTSGGCN, it has accuracy
far better than these methods. HGCN is slightly slower than
HGCN WH and HGCN WDF, which illustrates that the cost
of hierarchical structure and dynamic transfer block is de-
served. Compared with the latest GWNET method, HGCN
is not only two times faster than it but also has accuracy
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Model Computation Time
Training(s/epoch) Inference(s)

OGCRNN 27.65/39.28 4.61/5.96
OTSGGCN 30.27/46.80 3.13/4.84
GWNET 165.73/235.95 12.01/25.35
HGCN WH 55.38/81.02 4.96/7.61
HGCN WDF 51.07/101.95 5.13/8.61
HGCN 74.03/106.52 5.98/8.89

Table 2: The computation time on the JiNan and XiAn
dataset.

higher than GWNET, which validates that HGCN is an effi-
cient method with high performance.

Conclusion
In this paper, a novel graph convolution network, namely
HGCN, was proposed to forecast traffic data. Different from
the current GCN based methods, which only use road seg-
ments information in graph convolution, HGCN constructs
a two-stream graph network to consider micro and macro
traffic information. The proposed method is evaluated on t-
wo real-world traffic datasets. The experimental results show
that the proposed method outperforms the related state-of-
the-art traffic forecasting methods. However, considering
the dynamic complexity of the road network and the inter-
ference of weather or other factors, the more data sources
should be introduced in the traffic forecasting and their GC-
N framework is worth exploring in future work.
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