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Abstract

Gene regulatory networks (GRNs) consist of gene regulations
between transcription factors (TFs) and their target genes.
Single-cell RNA sequencing (scRNA-seq) brings both oppor-
tunities and challenges to the inference of GRNs. On the one
hand, scRNA-seq data reveals statistic information of gene
expressions at the single-cell resolution, which is conducive
to the construction of GRNs; on the other hand, noises and
dropouts pose great difficulties on the analysis of scRNA-seq
data, causing low prediction accuracy by traditional methods.
In this paper, we propose 3D Co-Expression Matrix Analysis
(3DCEMA), which predicts regulatory relationships by clas-
sifying 3D co-expression matrices of gene triplets using a 3D
convolutional neural network. We found that by introducing
a third gene as a comparison factor, our method can avoid the
disturbance of noises and dropouts, and significantly increase
the prediction accuracy of regulations between gene pairs.
Compared with other existing GRN inference algorithms on
both in-silico datasets and scRNA-Seq datasets, our algorithm
based on deep learning shows higher stability and accuracy in
the task of GRN inference.

Introduction
Single-cell RNA sequencing (scRNA-seq) is a technique of
high-resolution transcriptomic analysis of individual cells
(Kolodziejczyk et al. 2015). The first scRNA-seq method
was proposed by Fuchou Tang et al (Tang et al. 2009). In
contrast with bulk transcriptomic data which provide the av-
erage gene expression values of all cells within each sam-
ple, scRNA-seq data provide a two-dimensional matrix of
cells and genes, with each value representing a gene’s ex-
pression level in a cell. The variation of the gene expression
values across cells provides new research perspectives. By
observing gene expression level at the single-cell resolution,
scRNA-seq brings new computational biology topics such
as cell-clustering (Tasic et al. 2016) and cell-differentiation
(Xie et al. 2020), helping people understanding cell hetero-
geneity, dynamic biological processes (Deng et al. 2014) and
diseases such as cancer (Nam, Chaligne, and Landau 2021).
However, scRNA-seq data suffer from features such as low
signal-to-noise ratio and high sparsity caused by measure-
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ment dropouts, which bring great challenges to the analysis
of the scRNA-seq data.

Genes are the key to all biological processes, therefore fig-
uring out how genes interact with each other has become an
important and attracting scRNA-seq study. Gene regulatory
networks (GRNs) are used to depict regulatory relationships
among genes, aiming to simplify the analysis of complex
biological systems (Chasman, Fotuhi Siahpirani, and Roy
2016). A GRN is composed of transcription factors (TFs),
genes and regulations. Each node of the GRN represents a
TF or a gene. The edges connecting TFs and target genes in-
dicate regulations. The edges are either labeled as activation
or inhibition, showing the regulatory function of the TFs on
their target genes.

ScRNA-seq based GRN inference algorithms are compu-
tational methods of reconstructing GRNs using scRNA-seq
datasets. Given the datasets, the task is to find out all possi-
ble regulations among genes. Methods have been proposed
from different computational perspectives, such as regres-
sions, mutual information, correlations, etc. But most exist-
ing methods suffer from the drawback of low accuracy. The
following factors may account for it.

Zero-Inflation and Noise Zero-inflation and low signal-
to-noise ratio are two main characteristics of scRNA-seq
data. Large percentage of dropouts, up to 80% for instance,
poses difficulties on traditional computational methods such
as regression and correlation. Besides, noises may over-
whelm the exact expression values of genes, making it hard
for algorithms to recognize true regulations.

Cascade Effect Tools such as SLINGSHOT (Kelly et al.
2018) take raw scRNA-seq data as input, aiming at giv-
ing cells the timestamps to indicate the differential order.
Models have been proposed to infer GRNs using temporal
scRNA-seq data with pseudotime order. However, cascade
effect on accuracy occurs when the tool fails to generate the
precise pseudotime order, causing poor performance of pre-
diction tasks.

Assumption Dependence Most algorithms work on their
own assumptions to infer GRNs. For instance, some meth-
ods construct GRNs by estimating an ordinary differen-
tial equation given the pseudotime information. However,
whether these assumptions depict the very nature of gene
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regulation remains open to question. Methods based on
wrong assumptions may suffer from inaccuracy.

To address these challenges, we propose our method
called 3D co-expression matrix analysis (3DCEMA), which
applies a 3D convolutional neural network (CNN) to infer
gene regulations. To avoid the cascade effect on accuracy,
3DCEMA takes raw scRNA-seq data rather than temporal
data as input. No assumptions are needed for our deep learn-
ing model. Given a gene pair of x and y, the model compares
y with every other gene z to test if there is a regulation of x
on y with reference to z. 3D CNN do this comparison pro-
cess by classifying the 3D co-expression matrix of x, y and
z, which implies the joint distribution of the three genes in
all cells. A GRN is inferred by synthesizing the predicted
labels of all 3D matrices. 3DCEMA is less affected by zero-
inflation and low signal-to-noise ratio by focusing on the
asymmetry of y and z, which are under equal influence of
noises and measurement dropouts.

The model is trained and tested on the datasets of BEE-
LINE (Pratapa et al. 2020), which is an evaluation frame-
work for benchmarking different GRN inference algorithms
based on single-cell transcriptomic data. Experiments show
that 3DCEMA has strong stability over the in-silico datasets
and has significant higher accuracy on large scRNA-seq
datasets compared to state-of-the-art algorithms.

Our work makes the following contributions:

• We propose a deep learning method called 3DCEMA,
which is the first to apply the 3D convolutional neural net-
work to the task of GRN inference based on single-cell
transcriptomic data.

• A unique labeling method is employed for training and
inferring. Given three genes x, y and z, the label of them
reveals the relative regulation of x on y to z by reflecting
the asymmetry between y and z. The GRN can be inferred
by synthesizing the predicted labels of all matrices.

• 3DCEMA significantly outperforms other GRN inference
methods in both stability and accuracy on scRNA-seq
datasets, and may serve as a reliable tool for other co-
expression analysis tasks.

Related Work
Gene regulatory network inference has attracted much re-
search attentions with the prevailing of sc-RNA sequencing
technology in the past decade. Methods have been proposed
from different computational perspectives.

Regression methods determine a gene’s possible regula-
tors by focusing on large coefficients of its regression on
other genes. GENIE3 (Huynh-Thu et al. 2010) first em-
ployed random forests and extra-trees to solve the regression
problems. Later, a method based on gradient boosting trees
called GRNBoost2 was proposed and was aggregated with
GENIE3 into a framework called Arboreto (Moerman et al.
2018). Besides tree based methods, there are also attempts
to apply regressions to discover the dynamics of regulations.
For instance, GRNVBEM (Sanchez-Castillo et al. 2017) an-
alyzes pseudotime ordered data by using a regressive model
within a variational Bayesian framework; regularized linear

regression is employed by SINCERITIES (Papili Gao et al.
2017) to identify regulations after cell stimulation; SCINGE
(Deshpande et al. 2019) uses Granger causality regression
to overcome irregular pseudotime and dropouts. Regressive
models explain the mechanics of regulations to some extent,
while they are not well capable of discovering possible non-
linear patterns of regulations, which however, can be cap-
tured by the deep learning model.

There are methods using ordinary differential equation
(ODEs) to infer regulations. An ODE is a kinetic equa-
tion which depicts the dynamic regulation functions between
genes. Based on the ODE assumption, SCODE (Matsumoto
et al. 2017) rebuilds gene regulations, while GRISLI (Aubin-
Frankowski and Vert 2020) models the dynamics of cell tra-
jectories by inferring the velocity of each cell. Cascade ef-
fects on accuracy become a major obstacle for these meth-
ods when using pseudotime created by trajectory inference
tools.

With the use of mutual information, SCRIBE (Qiu et al.
2020) predicts regulations by estimating the strength of in-
formation transferred from a TF to its target gene. PIDC
(Chan, Stumpf, and Babtie 2017) uses partial information
decomposition (PID) to find out possible regulatory relation-
ships between genes; specifically, it determines the regula-
tion between a pair by introducing a third gene and compare
PIDs among them. This comparison process shares similar-
ity with 3DCEMA.

Few deep learning methods have been proposed for the
task of GRN inference. CNNC (Yuan and Bar-Joseph 2019)
uses a 2D convolutional neural network to predict regula-
tions by classifying co-expression histograms of gene pairs.
Good performance though it has compared to other non-
deep methods, CNNC suffers from the distortion of the his-
tograms caused by dropouts and extreme values. By con-
trast, 3DCEMA deals with extreme values properly and
overcomes zero-inflation by introducing a third gene.

A comprehensive evaluation framework named BEE-
LINE (Pratapa et al. 2020) has been developed in an attempt
to assess both temporal and none-temporal GRN inference
algorithms on accuracy, robustness and efficiency.

Problem Statement
ScRNA-seq provides a sparse gene expression matrix called
A of g rows and c columns,

Ag×c =

a11 . . . a1c
...

. . .
...

ag1 . . . agc


where g is the number of genes, c is the number of cells. aij
is the expression value of the i-th gene in the j-th cell. Let
G be the set of the genes, and R be the set of unknown regu-
latory edges. G and R make up the gene regulatory network
N = 〈G,R〉 hidden behind scRNA-seq data. The task is to
infer the regulations among the genes inG, with the supervi-
sion on a training graph N ′ and its gene expression matrix,
whose gene set can be totally different from G.
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Method
GRN inference is to find out all possible regulations between
genes. To determine whether there is a regulation of gene x
on gene y, one thought is to focus exactly on x and y by
learning the regulatory patterns between them. However, a
large number of false positives may occur when patterns of
irrelevant gene pairs are all similar to them. Instead of pre-
dicting regulations directly, 3DCEMA focuses on the rela-
tive regulation of x on y to z given the 3D co-expression
matrix of them. The GRN is finally inferred by synthesiz-
ing all predicted labels of matrices. In the following part, we
will first present the process of building 3D matrices. We
then demonstrate our unique labeling method. Finally the
training and inference phases are introduced.

Building 3D Co-Expression Matrices
A 3D co-expression matrix Exyz reflects the joint distribu-
tion of x, y, z in all cells. Here, we set the matrix size to
16 × 16 × 16, which is a tradeoff between accurately pre-
serving information and consuming appropriate amount of
disk space. If the expression values of x, y and z are dis-
cretized into integers of 1, 2, ..., 16, then the element eijk of
Exyz can be interpreted as the number of cells where the
discrete expression levels of x, y and z are i, j and k corre-
spondingly.

For every gene, the first task is to divide its range of ex-
pression values into 16 bins ranging from 1 to 16, with the
bin index reflecting the levels of expression. However, ex-
treme value points will stretch the whole range, causing nor-
mal value points squeezing together instead of uniformly
distributed in all bins. The following logarithm step is to re-
duce the extreme points by mitigating the variation of gene
expression values.

Given the gene expression matrix A with g genes and c
cells, we replace every non-zero element of A by its loga-
rithm, and for zero elements mainly caused by dropouts, we
marked them as ’NaN’. Therefore we obtain matrix A′:

A′g×c =

a
′
11 . . . a′1c
...

. . .
...

a′g1 . . . a′gc


where

a′ij =

{
ln(aij) aij > 0

NaN aij = 0
.

Considering that extreme points still exist after logarithm,
we calculate a limited range for each gene for binning. For
the i-th row in A′, which represents the expression values
of the i-th gene, we calculate the mean mi and standard de-
viation si of the non-’NaN’ values, and use them to get the
range of the i-th gene as follows.

Ri = [mi − 2si,mi + 2si) .

We then divide Ri into 16 bins with equal range:

Rik =

[
mi +

(k − 9)si
4

,mi +
(k − 8)si

4

)
, k = 1, 2, ...16.

Algorithm 1 The co-expression matrix of the three genes.

Require: gene x, y and z, matrix B, constant p.
Ensure: 3D co-expression matrix E16×16×16

xyz .
1: initialize Exyz = 0;
2: for each cell n do
3: get the integer expression values of the three genes in

the n-th cell i = bxn, j = byn, k = bzn;
4: record co-expression eijk+ = 1;
5: end for
6: for each element eijk of Exyz do
7: eijk = eijk ∗ p

c ;
8: end for
9: output Exyz .

Given the discretization of all genes, we can rewrite the ex-
pression values as their bin index numbers, and obtain a bin-
normalized matrix B:

Bg×c =

b11 . . . b1c
...

. . .
...

bg1 . . . bgc


where

bij =


k a′ij ∈ Rik

1 a′ij < mi − 2si or a′ij = NaN
16 a′ij ≥ mi + 2si

.

Here bij is the integer expression level of the i-th gene in
the j-th cell. The total time complexity of bin-normalization
is O(gc).

Based on the bin-normalized matrix B, we can build co-
expression matrices of all gene triplets. Specifically, we scan
every column ofB to get the three integers of gene x, y and z
in the cell, and use the three integers as index to find the ele-
ment inExyz , and plus it by 1 to record one co-expression of
the three genes. We then multiply every element by a factor
so that the sum of all elements in a 3D matrix is a constant
p, which is set to 4096 across our experiments. Algorithm 1
shows the building process in details. The time complexity
of building a 3D co-expression matrix is O(c).

Labeling
Once co-expression matrices are prepared, the next task is
to design labels for the matrices. For a gene triplet of x, y
and z, we view x as a potential regulator, with y and z be-
ing its targets. Here, we use mark +, −, and 0 to represent
activation, inhibition and no regulation. We use nine basic
labels:

00,+0, 0+,−0, 0−,++,−−,+−,−+
to distinguish different regulatory types of x on y and z. For
instance, label +0 means that x has an activation regulation
on y but no regulation on z.

Though exactly reflecting the regulation types, the nine
basic classes are not suitable for the training and inference
task, mainly because matrices of ++,−−,+−,−+ are too
rare when the GRN is sparse. Therefore, more simplified and
balanced labeling is needed.
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Figure 1: The heatmaps of 3D co-expression matrices of six different labels. The co-expression matrices are sliced along x-axis.
The matrices displayed are built on the GSD datasets of BEELINE (Pratapa et al. 2020).

The Characteristics of the Nine Basic Classes In order
to design such labels, we first examine the characteristics of
the nine basic classes. Figure 1 shows the heat maps of 3D
co-expression matrices of six different basic classes. Classes
of 0+, 0− and −+ are not included for they are symmetric
to +0,−0,+−. Each 3D co-expression matrix are displayed
by 6 squares along x axis, where the expression level of gene
x increases from left to right. Each square reveals the joint
distribution of y and z at a certain expression level of x.

We find out that in each class, the cluster of bright spots in
the squares follows a unique pattern with the increase of x.
For instance, in the matrix of class 00, there is a uniform dis-
tribution of spots in all squares, mainly because the change
in x have no influence on y and z. While as to class +0 and
−0, with the increase of x, the spots are moving towards
left and right correspondingly, respectively illustrating the
activation and inhibition regulation of x on y. Deduced by
this pattern, the regulation of x on z will results in the spots
moving towards top or bottom with the increase of x, which
is illustrated in the matrices of class ++, −− and +− with
the moving directions being top-left, bottom-right, bottom-
left correspondingly. We conclude the moving directions of
the nine classes in a clock shown in figure 2.

New Labels Reflecting Relative Regulations Here we
introduce three new labels. We aggregate 0+,−+,−0 as
new label ’Y<Z’, 00,++,−− as new label ’Y=Z’, and
0−,+−,+0 as new label ’Y>Z’. The decision boundary is
the diagonal line of the YZ plane in the clock. Here Y and
Z in the labels are not specific gene names, but represent the
second and third genes of the matrix.

Given the regulation order − < 0 < +, the new labels

z

y o

Figure 2: The clock of the nine basic labels. The arrow of
each label shows the moving direction of the spots with the
increase of x. Red, green and blue represent 3 new labels
’Y<Z’, ’Y=Z’, and ’Y>Z’ correspondingly.

have the semantic explanation: the relative regulation of the
first gene on the second to the third. In contrast to the nine
basic labels, The new labeling method is more simple and
balanced.

The final step is to examine whether the three labels con-
tain enough information for the GRN inference task. Given
a prediction ’Y>Z’ for a 3D matrix by 3D CNN, we may be
curious about what exact kind of regulations the first gene
has on the second and the third, for there are three possible
regulation types 0−,+−,+0. However, if the predicted la-
bels are mostly ’Y>Z’ for set {Exyi|i = 1, 2, ..., g}, mean-
ing x has a relative activation regulation on y compared to
every other gene i, we can confirm that there exists an acti-

102



Conv

Max pool

Basic block 1
Avg pool

Basic block 3

Basic block 4

Basic block 2 Fully connected

INPUT

OUTPUT

+

Conv 1

Conv 2
Wsx relu

x

relu

Figure 3: The 3D CNN based on ResNet-10 structure. Each
basic block contains two convolutional layers and a shortcut.

vation regulation of x on y. Noticing that Y and Z play equal
roles in labeling, we can also infer the regulation of the first
gene on the third in a similar way.

Training and Inferring
3D CNN 3D CNN are mainly used in computer vision
tasks such as video classification and motion detection. Here
we use the 3D CNN to detect the moving directions of the
spots along x axis. We follow ResNet-10 structure (He et al.
2016) to build the 3D CNN as shown in Figure 3. Each basic
block contains two convolutional layers and a short cut, and
is defined by He et al. as:

y =W2σ (W1x) +Wsx.

Here x and y are the input and output vector, σ is the relu
function, W1 and W2 are the weights of the first and second
convolutional layer in the block, and Ws is a linear projec-
tion when the output planes of the two layers are different.

Training During the training process, it is desirable that
we build all g3 matrices, while they will devour disk mem-
ory rapidly when g is getting larger. Therefore, a limitation
on the number of training matrices are required. Given a
predetermined limit k for the number of matrices, the time
and disk space complexities for building and storing training
matrices are O(ck) and O(k), which show good scalability.
Also, training time will not increase with g when the size
limit k and the epoch number are fixed.

For sparse GRN, it is likely that the basic class of 00 dom-
inates the whole set of matrices, causing ’Y=Z’ being a ma-
jor class. Therefore, before feeding matrices to the 3D CNN,
adjusting the proportions of the classes is essential. The spe-
cific proportions are data-dependent and will be mentioned
in the experiments. After adjusting the proportion of each
class, we then feed matrices and their labels to the 3D CNN
to complete training.

Inferring the GRN As for the inference part, we want to
obtain a ranked edge list showing the confidence of an edge
being a regulation. We use positive edge weights to indicate
activation while the negative ones indicating inhibition. The
absolute values of edge weights can be viewed as the confi-
dence.

Algorithm 2 Synthesizing Labels to Infer the GRN.

Require: set of matrices S, trained CNN W .
Ensure: directed graph N .

1: initialize directed graph N with nodes being the genes
and edge weights being all 0;

2: for every matrix Tijk in S do
3: get label predicted by W ;
4: if label ==’Y>Z’ then
5: N(i, j)+ = 1, N(i, k)− = 1;
6: end if
7: if label ==’Y<Z’ then
8: N(i, j)− = 1, N(i, k)+ = 1;
9: end if

10: end for
11: output N .

ABC DCEBDE Y<ZY>Z Y=Z

Synthesis

 Discretized ScRNA-Seq Data

A
B
C
D
E

BC

A

D

E

Sampling gene triplets

Figure 4: The whole GRN inference process.

First, We use the trained model to predict the labels of
the matrices, and then we synthesize all the predicted labels
to a GRN. The synthesis is simple: for every co-expression
matrix Exyz , if its label is ’Y>Z’, we add nxy by 1 and
minus nxz by 1, and reversely for label ’Y<Z’, where nij
represents the weight of the directed edge from i to j. Al-
gorithm 2 shows the synthesis process. In this way, a fi-
nal edge weight nxy are determined by the predicted la-
bels of 2g matrices from set {Exyi|i = 1, 2, ..., g} and set
{Exiy|i = 1, 2, ..., g}, therefore more stable and accurate
prediction will be made. Figure 4 shows the whole GRN in-
ference procedure.

When inferring a GRN, usually g3 matrices are needed
for determining all g2 directed edges, which is unacceptable
when g scales up. By randomly building k matrices from set
{Exyi|i = 1, 2...g} to predict the regulation of x on y, we
can reduce the total time complexity to O(g2ck). Another
way is to compute a new ’gene’ called ’AVG’ to represent
the average expressions of all genes. The regulation of each
pair can be determined by only one comparison with ’AVG’,
and the total time complexity is reduced toO(g2c). In the in-
ference process, a matrix can be stored in run-time memory
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Figure 5: Results on three in-silico datasets under different dropout rates. The dark shade of the same color is AUPRC while
the light shade is AUROC. The total height of each bar is the sum of the two metrics.

and released after the prediction, therefore no disk memory
is needed for storing matrices.

Experiments
We conduct the experiments under the BEELINE framework
(Pratapa et al. 2020), which benchmarks the algorithms of
GRN inference using single-cell transcriptomic data. Three
in-silico datasets and two scRNA-seq datasets are used to
test the performance of 3DCEMA1 and other seven algo-
rithms.

Datasets Gonadal sex determination (GSD), hematopoi-
etic stem cell (HSC) differentiation, and mammalian corti-
cal area development (mCAD) are published boolean mod-
els, each representing a small GRN. BEELINE created in-
silico datasets by randomly simulating each GRN for 10
times using BoolODE (Pratapa et al. 2020). The gene num-
bers of GSD, HSC and mCAD are 19, 11 and 5, and the cell
numbers are 2000 for all simulations. 50 and 70 percent of
dropout rates of matrix elements are applied, and the pseu-
dotime information is provided.

Mouse embryonic stem cells (mESC) (Hayashi et al.
2018) and erythroid-lineage mouse hematopoietic stem cells
(mHSC-E) (Nestorowa et al. 2016) are two scRNA-seq
datasets. mHSC-E contains 4764 genes and 1071 cells, and
its GRN is constructed from ChIP-Atlas database. mESC
contains 18387 genes and 421 cells, with ESCAPE and
ChIP-Atlas being the GRN source. Slingshot was used by
BEELINE to create pseudotime for scRNA-seq datasets.

Algorithms for Comparison We examine 7 comparative
algorithms, among which six are from BEELINE, namely
GRISLI (Aubin-Frankowski and Vert 2020) applying ODEs
and regressions, GRNVBEM (Sanchez-Castillo et al. 2017)

1Code is avaliable at https://github.com/YueFan1014/3DCEMA.

basing on regressions, LEAP (Specht and Li 2016) and
PPCOR (Kim 2015) utilizing correlations, PIDC (Chan,
Stumpf, and Babtie 2017) employing mutual information,
SCINGE (Deshpande et al. 2019) using Granger causal-
ity regressions. Besides, we include CNNC (Yuan and Bar-
Joseph 2019), a deep learning method using 2D CNN to pre-
dict regulations by classifying 2D histograms of gene pairs.
When testing, all 6 algorithms under the BEELINE frame-
work output ranked edge lists where weights are confidence
of regulations. For CNNC, we use the value of the last sig-
moid layer of the CNN as the edge weight for a given gene
pair.

Experiments on In-Silico Datasets
Settings Here, 3DCEMA uses the labels of ’Y<Z’,’Y=Z’
and ’Y>Z’ for training, The matrices numbers of the three
classes are set to the same. We separately trained our model
on GSD-1, GSD-1-50 and GSD-1-70, meaning the 1st sim-
ulated data of GSD with 0, 50% and 70% dropout rates. We
obtained the trained model weights named as w1, w2 and
w3. The model weights w1, w2 and w3 were then used indi-
vidually to reconstruct the GRNs on simulated datasets with
dropout rate of 0, 50% and 70% correspondingly. Area un-
der PRC curve (AUPRC), Area under ROC curve (AUROC)
are computed for all edge lists with the knowledge of the
ground-truth network.

Given that the gene numbers of in-silico datasets are rela-
tively small, the total g2 matrices are too few to train CNNC,
therefore we exclude CNNC here.

3DCEMA Shows Strong Stability across GRNs Figure
5 shows the results on in-silico datasets. 3DCEMA performs
the best both on AUPRC and AUROC over the simulated
datasets of GSD, which is the GRN used for training. On
HSC datasets, PIDC, PPCOR and 3DCEMA are the three
algorithms that perform best, while GRISLI, SCINGE and
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mESC 200 mESC 400 mESC 1000
AUPRC AUROC k-Precision AUPRC AUROC k-Precision AUPRC AUROC k-Precision

GRISLI 0.0951 0.5138 0.0977 0.1299 0.5062 0.1141 - - 0.0614
GRNVBEM 0.0992 0.4998 0.0989 0.1337 0.5011 0.1327 - - 0.0654

LEAP 0.0556 0.2056 0.0176 0.0829 0.2528 0.0347 - - 0.0168
PIDC 0.0885 0.4331 0.0944 0.1230 0.4228 0.1155 - - 0.0690

PPCOR 0.0960 0.5068 0.0955 0.1311 0.4995 0.1317 - - 0.0782
SCINGE 0.0967 0.5089 0.1164 0.1340 0.5031 0.2027 - - 0.1238
CNNC 0.1964 0.6945 0.2580 0.2670 0.7162 0.3166 - - 0.1483

3DCEMA 0.3427 0.8281 0.3787 0.3059 0.7720 0.3392 - - 0.3681
mHSC-E 200 mHSC-E 400 mHSC-E 1000

AUPRC AUROC k-Precision AUPRC AUROC k-Precision AUPRC AUROC k-Precision
GRISLI 0.0439 0.5014 0.0448 0.0441 0.5126 0.0463 - - 0.0252

GRNVBEM 0.0441 0.5000 0.0330 0.0435 0.5000 0.0452 - - 0.0248
LEAP 0.0231 0.0793 0.0122 0.0231 0.1046 0.0090 - - 0.0248
PIDC 0.0329 0.3815 0.0142 0.0321 0.3813 0.0104 - - 0.0179

PPCOR 0.0420 0.4921 0.0330 0.0419 0.4944 0.0405 - - 0.0265
SCINGE 0.0472 0.5119 0.0590 0.0870 0.5374 0.1523 - - 0.0729
CNNC 0.0771 0.5357 0.1958 0.3732 0.8983 0.3920 - - 0.1121

3DCEMA 0.2682 0.8776 0.3491 0.4010 0.8302 0.4505 - - 0.2395

Table 1: Results on scRNA-seq datasets.

3DCEMA are the top three algorithms on mCAD datasets.
Although mCAD and HSC differ from GSD significantly
in both regulation types and network topology, by learning
regulation patterns from GSD, 3DCEMA is still capable of
the inference task on HSC and mCAD, showing itself be-
ing transferable across datasets with different GRN proper-
ties. By contrast, PIDC and PPCOR have poor performances
on mCAD though they are among the top three algorithms
on HSC; GRISLI and SCINGE performs badly on HSC de-
spite that they predict well on mCAD. Therefore, 3DCEMA
shows strong prediction stability across all datasets, though
its performances are not the best on HSC and mCAD due to
limited training materials caused by small g.

Experiments on ScRNA-seq Datasets
Settings For the large scRNA-seq datasets, the ground-
truth regulation edges are listed without specifying activa-
tion or inhibition. Therefore we change 3DCEMA into a bi-
nary classifier with label 1, 0 representing regulations and
no regulations. We compute a new ’gene’ called ’AVG’ to
represent the average expressions of all genes. For a given
pair x, y, 3D matrices are built with three dimensions of x,
y and ’AVG’. We choose 200, 400, 1000 genes from mESC
and mHSC-E to build 6 datasets. In each dataset, genes are
divided into two sets without intersection, with one for train-
ing and the other for testing. In the training phase, the pro-
portions of class 0 and 1 are set to 0.8 and 0.2. In the testing
process, the last layer outputs are used as the predicted edge
weights. Apart from AUPRC and AUROC, we adopt the pre-
cision of the top-k confidence edges, with k equal to the
number of regulations in the ground-truth GRNs. AUPRC
and AUROC are not calculated on datasets with 1000 genes
due to high computational cost.

3DCEMA Recalls More Regulations Significantly Ta-
ble 1 shows the results on scRNA-seq datasets. Our algo-
rithms outperforms all the competitive methods including
the deep learning method CNNC. We observed that the 6

algorithms from BEELINE performs poorly on all datasets,
mainly because of the sparsity of the two GRNs. Deep learn-
ing methods of CNNC and 3DCEMA, however, learn the
regulation patterns of co-expression matrices from the train-
ing sets which are sub-graphs of the sparse GRNs, and
achieve higher top-k precision on the testing sets.

Between the two deep learning methods, 3DCEMA shows
better performance, especially on datasets with 1000 genes.
That is because in 3DCEMA, ’AVG’ serves as a reference
of average gene expressions and noises, which is especially
useful when g is large. While as to CNNC, noises will dis-
turb the co-expression histogram of x and y and affect the
final prediction results. By using a third dimension for com-
parison, 3DCEMA can avoid this disturbance.

Among the top-k edges inferred by 3DCEMA on scRNA-
seq data, we find regulations absent from the ground-truth
database, but appear in other sources such as RegNetwork
database (Liu et al. 2015). This indicates that 3DCEMA
would serve as a capable tool for inferring potential regu-
lations other than recalling existing ones, and would signifi-
cantly increase the chances for researchers to find real regu-
lations with high confidence.

Summary

We proposed a deep learning method called 3D co-
expression matrix analysis (3DCEMA), which uses 3D con-
volutional neural network to predict gene regulations by
classifying 3D co-expression matrices of gene triplets. The
unique labels and the third reference genes help to allevi-
ate the influence of noises and zeros on prediction tasks.
Techniques that increase scalability enables 3DCEMA to
process scRNA-seq data with large gene and cell numbers.
3DCEMA outperforms other existing algorithms both in sta-
bility and accuracy, and could serve as a reliable tool that
enables researchers to recognize gene regulations more effi-
ciently.
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