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Abstract

Microservices are becoming the defacto design choice for
software architecture. It involves partitioning the software
components into finer modules such that the development can
happen independently. It also provides natural benefits when
deployed on the cloud since resources can be allocated dy-
namically to necessary components based on demand. There-
fore, enterprises as part of their journey to cloud, are increas-
ingly looking to refactor their monolith application into one
or more candidate microservices; wherein each service con-
tains a group of software entities (e.g., classes) that are re-
sponsible for a common functionality. Graphs are a natural
choice to represent a software system. Each software entity
can be represented as nodes and its dependencies with other
entities as links. Therefore, this problem of refactoring can
be viewed as a graph based clustering task. In this work, we
propose a novel method to adapt the recent advancements in
graph neural networks in the context of code to better under-
stand the software and apply them in the clustering task. In
that process, we also identify the outliers in the graph which
can be directly mapped to top refactor candidates in the soft-
ware. Our solution is able to improve state-of-the-art perfor-
mance compared to works from both software engineering
and existing graph representation based techniques.

1 Introduction
Microservices is an architectural style that structures an ap-
plication as a set of smaller services 1. These services are
built around business functionalities and follow “Single Re-
sponsibility Principle”2. This allows the team to develop
business functionalities independently. Also, they naturally
benefit from cloud deployment due to the support for differ-
ential and dynamic addition of resources like CPU, mem-
ory, disk space to specific services based on the demand.
However, there are lot of existing monolith applications cur-
rently in use that cannot fully tap these benefits due to their
architecture style. Monoliths package all the business func-
tionalities into a single deployable unit making them un-
suitable to fully leverage cloud benefits. Therefore, there
is a surge in enterprises wanting to refactor their monolith
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1https://www.martinfowler.com/articles/microservices.html
2https://www.infoq.com/articles/microservices-intro

applications into microservices. This is done by mapping
business functions onto the code structure and identifying
the functional boundaries such that there are less dependen-
cies across the services (Jin et al. 2019). In typical mono-
liths, there are classes (or programs) loaded with overlap-
ping functionalities. We refer to such classes as outliers or
refactorable candidates. They typically require top attention
from the developers for modification during refactoring to
make the microservices independent and deployable. But
identifying functional boundaries on the existing code is a
hard task (Gouigoux and Tamzalit 2017) and the effort gets
multiplied when done without the help of original develop-
ers, which is typically the case with legacy applications.

In the software engineering community, the problem is
often referred as software decomposition and several ap-
proaches (Fritzsch et al. 2018) have been proposed. The ap-
proaches range from process mining, genetic algorithms to
graph based clustering. Graphs are a natural way to represent
application implementation structure. The classes in the ap-
plication can be considered as nodes and its interaction with
the other classes can be considered as edges. Further, the
nodes can carry multiple features based on their type and
their invocation pattern. Figure 1 demonstrates the transla-
tion of an application into a graph. Therefore, the application
refactoring problem can be viewed as a graph based cluster-
ing task. In the past, many clustering techniques have been
applied on code (Shtern and Tzerpos 2012), but they often
consider only the structural features of the application i.e the
dependency of classes. Also, none of these approaches have
looked into attributed graph networks or attempted to mini-
mize the effect of outlier nodes during clustering.

Graph based mining tasks have received significant atten-
tion in recent years due to development of graph represen-
tation learning that maps the nodes of a graph to a vector
space (Perozzi, Al-Rfou, and Skiena 2014; Hamilton, Ying,
and Leskovec 2017). They have also been applied to a di-
verse set of applications such as social networks (Kipf and
Welling 2017), drug discovery (Gilmer et al. 2017), traffic
networks (Guo et al. 2019), etc. In this work, we propose a
novel graph neural network based solution to refactor mono-
lith applications into a desired number of microservices. The
main contributions of our paper are listed below.

1. We propose a novel way to translate the application im-
plementation structure to an attributed graph structure
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through static program analysis.

2. We introduce two types of outliers that reflect the top
refactoring program candidates.

3. We propose a novel graph neural network (GNN), re-
ferred as CO-GCN3 (Clustering and Outlier aware Graph
Convolution Network), that unifies node representation,
outlier node detection & dilution and node clustering in a
sing framework for refactoring monolith applications.

4. We improve the state-of-the-art performance with respect
to both software engineering and graph representation
based techniques to refactor four publicly available mono-
lith applications.

2 Related Work
Fritzsc et al. (Fritzsch et al. 2018) presented a survey on ten
different approaches towards refactoring a monolith appli-
cation into microservices. Of these, only four works were
applied directly on application code and the rest used other
application artefacts such as logs, commit histories, UML
diagrams etc. However, all of these works have drawbacks
since they either (1) focus on only structural features; or (2)
propose partitions focusing more on technical layers which
is not desirable (Taibi and Lenarduzzi 2018); or (3) partition
only a subset of program files like EJBs in java. (Mazlami,
Cito, and Leitner 2017) proposed a graph based clustering
approach with a focus on version history. (Jin et al. 2019)
proposed hierarchical clustering of program files, but re-
quires access to the runtime behavior of application which is
practically difficult. Moreover, these approaches do not ex-
ploit the power of representation learning and graph neural
networks. Also, they do not recommend refactorable classes.

Graph representation learning (Hamilton, Ying, and
Leskovec 2017) shows promising results on multiple down-
stream graph mining tasks. Graph neural networks (Wu et al.
2020) apply neural network directly on graphs. In Graph
convolution networks introduced by (Kipf and Welling
2017), a localized first-order approximation of spectral
graph convolutions is proposed and experimented for semi-
supervised node classification. An unsupervised variant,
GCN autoencoder is proposed in (Kipf and Welling 2016).
GNNs are also proposed for supervised (Chen, Li, and Bruna
2019) and unsupervised community detection (Zhang et al.
2019) in graphs. Recently, a self-supervised learning based
GNN, Deep Graph Infomax (DGI) (Veličković et al. 2019) is
proposed for obtaining node representation using the princi-
ple of information maximization. Outlier nodes are present
in any real-world graph and are shown to have adverse ef-
fect on the embeddings of regular nodes in a graph (Liang
et al. 2018). Unsupervised algorithms to minimize the effect
of outliers in the framework of graph representation learning
are proposed recently (Bandyopadhyay, Lokesh, and Murty
2019; Bandyopadhyay et al. 2020; Bandyopadhyay, Vivek,
and Murty 2020). However, minimizing the effect of outliers
in the GNN framework has not been studied in the literature.

3Code available at: https://github.com/utkd/cogcn

Figure 1: Representation of a sample Java application as
graph: The method order() from class A invokes the method
set() from class B, establishing a direct relation between the
two classes. If we represent classes A and B as nodes in a
graph, we can define a directed edge, e(A,B) from A to B.

3 Methodology
Given a monolith application, we want to partition the
monolith into K clusters of classes, with K provided by a
subject matter expert (SME), where each cluster is a group
of classes that perform a well-defined functionality. The
clusters should exhibit high cohesion, i.e., have strong in-
teraction within the cluster and low coupling i.e., less inter-
action between clusters. We also want to identify the follow-
ing outlier classes from a monolith application (Bandyopad-
hyay, Lokesh, and Murty 2019) to be handled by an SME.
• Structural Outlier: A class which has high interaction

with classes from different clusters.
• Attribute Outlier: A class which has attributes, such as

usage patterns, similar to attributes from other clusters.

3.1 Converting Applications to Graph
We now describe our approach to represent an application
as a graph, given it’s source code. Consider a simple Java
application comprising of multiple classes as shown in Fig-
ure 1. Each class in the application can be represented as a
node in a graph. We denote the set of such nodes as V . We
establish a directed edge from node A to node B if there is
method in the class A that calls a method from class B. We
perform static analysis4 of the application code to identify
all such method calls between classes and obtain a set of
edges, E between the corresponding nodes. The edges are
unweighted and multiple method calls from class A to class
B are still represented by a single edge from A to B.

We now describe the process to generate the attribute ma-
trix, X , coressponding to the nodes V of the graph. Most
modern web applications expose multiple APIs that perform
various functions. These APIs (UI elements in the case of
a non web-based application) are referred to as EntryPoint
Specifications (Dietrich, Gauthier, and Krishnan 2018), or
simply, Entrypoints (EPs). The methods invoked through
these APIs are specially annotated as such and are called en-
trypoint methods in this work. Figure 1 shows an example of

4https://github.com/soot-oss/soot
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such methods annotated with @API. We refer to the classes
containing such entrypoint methods as entrypoint classes.
Each entrypoint class can thus be associated with multiple
Entrypoints. Starting from an entrypoint method, we can fol-
low the call sequence of methods through the application,
keeping track of all classes invoked during the execution
trace of that Entrypoint. If P is the set of Entrypoints in an
application, we can define a matrix EP |V |×|P |, such that
EP (i, p) = 1 if class i is present in the execution trace of
entrypoint p, else 0. Additionally, we define C |V |×|V | such
thatC(i, j) is the number of Entrypoint execution traces that
contain both classes i and j. If a class is not invoked in an ex-
ecution trace for any Entrypoint, we remove the correspond-
ing node from the graph. Finally, classes may also inherit
from other classes or Interfaces. In Figure 1, class A inher-
its from class Base. Although this establishes a dependency
between the classes, it does not involve direct method in-
vocation. Hence, we do not include this dependency as an
edge in the graph, but as a node attribute. Therefore, we set
In(i, j) = In(j, i) = 1 if classes i and j are related via an
inheritance relationship and 0 otherwise. The attribute ma-
trixX is the concatenation ofEP ,C and Inmatrices. Thus,
X ∈ R|V |×F where F = |P |+2|V |. Each constituent of X
is row-normalized individually. The application can thus be
represented as a graph G = (V,E,X).

3.2 Proposed Graph Neural Network
Given the graph G, we want to develop a graph neural net-
work which can jointly (i) derive vector representations (em-
beddings) of the nodes, (ii) minimize the effect of outlier
nodes in the embeddings of other regular nodes, (iii) obtain
communities in the graph. Let us use A ∈ R|V |×|V | to de-
note the adjacency matrix of G, where Aij is the weight of
the edge eij if it exists, otherwise Aij = 0. We use a 2-
layered graph convolution encoder (Kipf and Welling 2017)
to obtain representation of each node as shown below:

Z = f(X,A) = ReLU(Â ReLU(ÂXW (0))W (1)) (1)

where each row of Z ∈ R|V |×F ′
contains the correspond-

ing node representation. We compute Ã = A + I , where
I ∈ R|V |×|V | is the identity matrix and the degree diag-
onal matrix D̃ii with D̃ii =

∑
j∈V

Ãij , ∀i ∈ V . We set

Â = D̃−
1
2 ÃD̃−

1
2 . W (0) and W (1) are the trainable param-

eter matrices of GCN encoder. Traditionally, these param-
eters are trained on a node classification or link prediction
loss (Kipf and Welling 2016) in a graph.

However, our objective in the work is to consider and min-
imize the effect of outlier nodes in the framework of graph
convolution. We also want to do this in an unsupervised way
as obtaining ground truth class labels and outlier information
are extremely difficult for monolith applications. Towards
this, we use the following GCN based decoder to map the
F ′ dimensional node embeddings to the input feature space.

X̂ = f(Z,A) = ReLU(Â ReLU(ÂZW (2))W (3)) (2)

Here, X̂ ∈ RF , W (2) and W (3) are the trainable param-
eters of the decoder. Let us use W = {W (0), · · · ,W (3)}

to denote the parameters of the encoder and decoder com-
bined. In the ideal world scenario when there is no outlier
node present in a graph, one can train the parameters of the
GCN autoencoder by directly minimizing some reconstruc-
tion loss. But as mentioned in Section 1, the presence of out-
liers in monolith applications is prevalent and if not handled
properly, they can adversely affect the embeddings of reg-
ular regular nodes in a graph (Bandyopadhyay et al. 2020).
To address them, we use the framework of multi-task learn-
ing where we design two loss components to detect struc-
tural and attribute outliers respectively. We denote structural
and attribute outlierness (positive scalars) by Osi and Oai
respectively, for each node i ∈ V .

First, we ensure that presence of an edge should be pre-
served by the similarity of the two corresponding node em-
beddings in the vector space for the regular nodes. However,
structural outliers being inconsistent in their link structure,
do not necessarily follow this assumption. Hence, we design
the following loss component which needs to be minimized
with respect to the parameters of GCN and structural out-
lierness of the nodes:

Lstr =
∑
i∈V

log
( 1

Osi

)
||Ai: − ZZTi: ||22 (3)

Here, Ai: is the ith row of the adjacency matrix and Zi: is
the ith row (embedding of node i) of the node representa-
tion matrix. Clearly, higher the value of Osi, i.e., higher the
outlierness of node i, less will be the value of log

(
1
Osi

)
.

Consequently, contribution of the structural outlier nodes in
this loss component will be less. We also assume that to-
tal structural outlierness in a graph is bounded. So we set∑
i∈V

Osi = 1. Without such a bound, the optimization in

Equation 3 would reach to a degenerate solution with each
Osi assigned to +∞ at the infimum. We also tried replacing
1 with a hyperparameter µ as the bound, but that does not
have much impact on the quality of the final solution.

Next, to preserve the impact of node attributes in the
node representations, we want the reconstructed attributes
in Equation 2 from the GCN decoder to match the initial
node attributes for most of the regular nodes in the graph.
However for attribute outliers, as their node attributes are
significantly different from the attributes of their respective
neighboring nodes, we reduce their contribution in the at-
tribute reconstruction loss as follows:

Latt =
∑
i∈V

log
( 1

Oai

)
||Xi: − X̂i:||22 (4)

Here, X and X̂ are the given and reconstructed node fea-
ture matrices. Similar to the case of structural outlierness,
nodes with more attribute outlierness score Oai would have
less impact in Equation 4 and consequently the optimizer
will be able to focus more on the regular nodes of the graph.
Again, we assume that Oai > 0, ∀i ∈ V and

∑
i∈V

Oai = 1.

Minimizing the loss components in Equations 3 and 4
with respect to the parameters of GCN and outlier scores
would be able to provide unsupervised node embeddings.
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This will also detect the outlier nodes while minimize their
negative impact on the other nodes of the graph. However
as discussed in Section 1, our main goal in this work is to
separate microservices within a monolith application. This
needs discovering clusters of nodes (or communities) in the
graph. One can potentially obtain the node embeddings first
and then use a clustering algorithm (for example, k-means++
(Arthur and Vassilvitskii 2006)) as a post-processing step.
But such a decoupled approach often leads to a suboptimal
solution as shown in (Yang et al. 2017). Hence, we integrate
node embedding, outlier detection and node clustering in a
joint framework of graph neural network. To achieve this,
we use the following loss to cluster the nodes in the graph,
assuming their embeddings are already given.

Lclus =
N∑
i=1

K∑
k=1

Mik||Zi: − Ck||22 (5)

where M ∈ {0, 1}|V |×K is the binary cluster assignment
matrix. We assume to know the number of clusters K.
Mik = 1 if node i belongs to kth cluster and Mik = 0

otherwise. Ck ∈ RF ′
is the center of each cluster in the em-

bedding space. Equation 5 needs to be minimized with re-
spect to M and C = [C1 · · ·CK ]T to obtain the clustering.
We call this method CO-GCN (Clustering and Outlier aware
Graph Convolution Network) and the joint loss function is:

min
W,O,M,C

Ltotal = α1Lstr + α2Latt + α3Lclus (6)

such that,
∑
i∈V

Osi =
∑
i∈V

Oai = 1 (7)

M ∈ {0, 1}|V |×K , Osi, Oai > 0 ∀i ∈ V (8)

3.3 Optimization Procedure
The nature of the optimization problem in Eq. 6 is different
with respect to different variables. We use alternate mini-
mization technique, where we minimize the objective only
with respect to one set of variables, keeping others fixed.

Parameters of GCN The set W contains all the parame-
ters of the GCN encoder and decoder as described in Section
3. We use standard ADAM optimization technique (Kingma
and Ba 2014) to minimize the total loss w.r.t. W , keeping
other variables fixed. We use an initial learning rate of 0.01
and exponential decay rate of 0.95 every 100 iterations.

Outliers One can show that optimization in Equation 6 is
convex with respect to each outlier variable when all other
variables are fixed. This is because 0 < Osi, Oai ≤ 1, ∀i and
log(·) is a concave function and thus, − log(·) is convex. Fi-
nally, L2 norms in both Equations 3 and 4 are non-negative.
We aim to find the closed form update rules for the outlier
terms to speed up the optimization process.

Taking the Lagrangian of Eq. 6 with respect to the con-
straint

∑
i∈V

Osi = 1, we get (after ignoring terms that do not

include Osi),
∂

∂Osi

∑
j∈V

log
( 1

Osj

)
||Aj: − ZZTj: ||22 + λ(

∑
j∈V

Osj − 1)

λ ∈ R is the Lagrangian constant. Equating the partial
derivative w.r.t. Osi to 0:

− ||Ai: − ZZ
T
i: ||22

Osi
+ λ = 0, ⇒ Osi =

||Ai: − ZZTi: ||22
λ

But,
N∑
j=1

Oji = 1 implies
∑
j∈V

||Aj:−ZZT
j: ||

2
2

λ = 1. Hence,

Osi =
||Ai: − ZZTi: ||22∑

j∈V
||Aj: − ZZTj: ||22

(9)

The final update rule for structural outliers turns out to be
quite intuitive. Our goal while deriving the loss in Equation
3 was to approximate adjacency structure of the graph by the
similarity in the embedding space with outliers being dis-
counted. The structural outlierness of a node in Equation 10
is proportional to the difference between the two after every
iteration. In other words, if some node is not able to pre-
serve its adjacency structure in the embedding space, it is
more prone to be a structural outlier.

Similar to above, update rule for attribute outlier at each
iteration can be derived to the following.

Oai =
||Xi: − X̂i:||22∑

j∈V
||Xj: − X̂j:||22

(10)

Because of the convexity of total loss in Equation 6 w.r.t.
individual outlier scores, derivations of the update rules for
outlier scores ensure the following lemma.
Lemma 1 Keeping all other variables fixed, the total loss in
Equation 6 decreases after every update of the outlier scores
by Equations 10 and 9 until it reaches to a stationary point.

Clustering Parameters The total loss of CO-GCN also
involves clustering parameters M and C. While all other
variables to be fixed, cluster assignment matrix M can be
obtained as:

M(i, k) =

 1, if k = argmin
k′∈{1,··· ,K}

||Zi − Ck′ ||22

0, Otherwise
(11)

In the next step, kth row of cluster center matrix C can be
obtained as (Arthur and Vassilvitskii 2006):

Ck =
1

Nk

∑
i∈Ck

Zi: (12)

where Ck = {i ∈ V | Mik = 1} is the k-th cluster and
Nk = |Ck| is the size of k-th cluster.

3.4 Pre-training, Algorithm and Analysis
To run CO-GCN, we first pre-train the GCN encoder and
decoder by minimizing Lstr and Latt in Equations 3 and 4
respectively, initializing Osi, Oai ∀i ∈ V to uniform values.
We also use k-means++ (Arthur and Vassilvitskii 2006) to
initialize the cluster assignment and cluster center matrices.
Then over iterations, we sequentially solve Ltotal by alter-
nating minimization technique described in Section 3.3 with
respect to different variables. Overall procedure of CO-GCN
is presented in Algorithm 1.
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Algorithm 1 CO-GCN
Input: Class dependencies and Entrypoint definitions

1: Convert the application to a graph representation as defined in
Section 3.1 and obtain the V , E and X

2: Initialize outlier scores Osi and Oai uniformly ∀i ∈ V .
3: Pre-train the GCN encoder and decoder
4: Use k-means++ to initialize the cluster assignments and cluster

centers
5: for T iterations do
6: Update outlier scores O by Eq. 10 and 9.
7: Update cluster assignment and centers by Eq. 11 and 12
8: Update the parameters by GCN encoder and decoder by

minimizing Eq. 6 using ADAM.
9: end for

Output: Cluster assignment matrix M , Cluster center matrix
C and the outlier scores O

Dataset Description Lang # Class C.Size
DayTrader Trading App Java 111 8
PBW Plant Store Java 36 6
Acme-Air Airline App Java 38 4
DietApp DietTracker C# 32 5

Table 1: Details about the monolith applications studied

Time Complexity Time taken by GCN encoder and de-
coder is O(|E|FF ′). Updating each value of outlier score
takes O(NF ′) and the total time to update all outlier scores
is O(N2F ′). Updating the parameters of cluster assignment
and cluster center matrices takes O(NF ′K) time. Thus,
each iteration of CO-GCN takes O(|E|FF ′ + N2F ′ +
NF ′K). The outlier update rules although expensive, con-
verge quickly because of the closed-form solution and the-
oretical guarantee (Lemma 1). Also, for most real-world
monolith applications, number of classes is not very large
(in 1000s). So the quadratic dependency of the runtime on
the number of classes is not a bottleneck. However, one can
try negative sampling approaches (Goldberg and Levy 2014)
to approximate the similarity between the embeddings in the
outlier update rules for other applications if needed.

4 Experimental Evaluation
4.1 Datasets (Monolith Applications) Used
To study the effectiveness of our approach, we chose four
publicly-available web-based monolith applications namely
Daytrader 5, Plantsbywebsphere 6, Acme-Air7, Diet App8.
They vary in programming languages, technologies, objec-
tives and complexity in terms of lines of code, function sizes
etc. Details of the monoliths are provided in Table 1.

4.2 Metrics
To evaluate the quality of the clusters identified as microser-
vice candidates, we define four metrics. The first two aim to

5https://github.com/WASdev/sample.daytrader7
6https://github.com/WASdev/sample.plantsbywebsphere
7https://github.com/acmeair/acmeair
8https://github.com/SebastianBienert/DietApp/

capture the structural quality of the clusters recommended
as microservices and are the primary metrics in the evalu-
ation. The other two metrics define additional properties of
the clusters that are desirable.

1. Modularity: Modularity is a commonly used metric to
evaluate the quality of clusters in a graph (Newman and
Girvan 2004)(Newman 2006). It measures the fraction of
edges of the graph between members of the same clus-
ter relative to that of the same partition members but ran-
domly generated graph edges. Higher values of Modular-
ity indicate a stronger community structure.

2. Structural Modularity: An alternate measure of struc-
tural soundness of a cluster that is more suited to software
applications is defined in (Jin et al. 2019). Structural Mod-
ularity, (SM) is defined as

SM =
1

K

K∑
k=1

uk
N2
k

− 1

K(K − 1)/2

K∑
k1 6=k2

σk1,k2
2(Nk1Nk2)

and uk is the number of edges that lie completely within a
cluster k, σk1,k2 is the number of edges between cluster k1
and cluster k2. Nk1 and Nk2 are the number of members
in clusters k1 and k2 respectively.

3. Non-Extreme Distribution(NED): It is desired that a mi-
croservice may not have too many or too few classes. We
therefore measure how evenly distributed the sizes of the
recommended clusters are as

NED =

∑K
k=1,k not extreme nk

|V |
nk is the number of classes in cluster k and V is the set
of classes. k is not extreme if it’s size is within bounds
of {5, 20}. NED captures the architectural soundness of
the clusters (Wu, Hassan, and Holt 2005)(Bittencourt and
Guerrero 2009). For better interpretability, we measure
1−NED and lower values are favorable.

4. Interface Number(IFN): As defined in (Jin et al. 2019),
this is the average number of published interfaces of a
microservices partitioning.

IFN =
1

K

K∑
k=1

ifnk, ifnk = |Ik|

where Ik is the number of published interfaces in the mi-
croservice k and K is the number of such micorservices.
We define a published interface as any class in the mi-
croservice that is referenced by another class from a dif-
ferent microservice. Lower values of IFN are preferred.

4.3 Experimental Setup and Baselines
For each application in Table 1, we generate the adjacency
matrix, A and the feature matrix, X . The CO-GCN encoder
comprises of two layers with dimensionality 64 and 32. The
decoder consists of one layer of size 64 followed by another
of the appropriate feature dimension. We pretrain for 250
iterations and set T = 500 in Algorithm 1. The final val-
ues of M(i, k) are used as the cluster assignments from our
algorithm. We set {α1, α2, α3} = {0.1, 0.1, 0.8} in Eq. 6.
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Figure 2: Comparison of the CO-GCN method with the baselines across the four applications on the (a) Structural Modularity
(b) Modularity (c) 1-NED and (d) IFN metrics. The CO-GCN method clearly outperforms the baselines considered.

We evaluate our approach against multiple unsupervised
baselines for learning node representations: Deepwalk (Per-
ozzi, Al-Rfou, and Skiena 2014), Node2vec (Grover and
Leskovec 2016), ONE (Bandyopadhyay, Lokesh, and Murty
2019) GCN (Kipf and Welling 2016) and DGI (Veličković
et al. 2019). Among these, ONE accounts for the effects
of outliers in learning node embeddings. For all our exper-
iments, we set the size of the node embeddings to be 32.
We use k-means++ algorithm on the embeddings generated
by these baselines to obtain clusters. K is carefully chosen
based on online sources and SME inputs.In contrast to these
representation learning based baselines, the method of (Ma-
zlami, Cito, and Leitner 2017) is a state-of-the-art approach
for extracting microservices from a monolith application.
This leverages Semantic Coupling (SC) information with
graph partitioning to identify clusters. We also use it as a
baseline. Since the implementation for the SC method does
not support .Net applications, we do not use it for DietApp.

4.4 Results on Separating Micro Services
Figure 2 shows the metrics values on all four application for
the evaluated methods. The three attributed graph neural net-
work based methods (GCN, DGI and CO-GCN) outperform
the rest of the methods by a significant margin. The CO-
GCN method consistently achieves better modularity and
structural modularity scores which clearly validates the in-
clusion of outlier and clustering objectives in the training.
The CO-GCN method also achieves better NED and IFN
scores in most cases. Another interesting observation is the
negative scores for many of the baseline methods. This im-

Figure 3: Clusters and top 5 outliers identified for the PBW
application, with manual labels about their functionality.

plies that are many inter-cluster edges for the clusters recom-
mended by these methods, hinting at the fact that monolith
applications may have several high-traffic nodes and assign-
ing them to appropriate clusters is difficult, but critical. Fig-
ure 3 shows the identified clusters for the PBW application
and our manual annotations to highlight the functionalities

77



Figure 4: Results from the ablation study on the structural
modularity and modularity metrics across the applications

offered. We can notice the clear distinction of functionalities

4.5 Detecting Outliers
The values of Osi and Oai at the end of training represent
the final outlier scores of each node. The ranked list of out-
lier nodes represents the top candidates for refactoring as
part of microservices decomposition. Figure 3 highlights the
combined top 5 outliers detected (across structural and at-
tribute outlier scores) for PBW application by our approach.
Among the baselines, we report outlier detection results only
for GCN and DGI as they performed good for obtaining
microservices. As GCN and DGI do not output outliers di-
rectly, we use Isolation forest (Liu, Ting, and Zhou 2008) on
the embeddings generated by them to detect outliers.

To study the goodness of the outliers, we performed a
qualitative study with five software engineers who have min-
imum seven years industrial experience. We randomly pre-
sented them with two out of the four monoliths and shared
their code repositories. We asked them to rank the top five
refactor candidate classes and compared them with the out-
liers identified by GCN, DGI and CO-GCN. On an average,
the top five outliers provided by the annotators overlapped
with our approach by 60%, GCN by 45% and DGI by 55%.
We can conclude that the outliers identified by our approach
are more relevant. The low overlap numbers indicate the
highly difficult and subjective nature of this task.

4.6 Ablation and Sensitivity Analysis
We perform another set of experiments to measure the use-
fulness of individual components of CO-GCN.

1. We remove the clustering objective from Ltotal., i.e., set
α3 = 0 in Equation 6. Comparing the performance of
this variant with CO-GCN shows marginal contribution
of integrating the clustering loss. We denote this variant
as CO-GCN~(C). We use k-means++ on the node embed-
dings generated by this approach to obtain the clusters.

2. We remove the effect of theOsi andOai on Lstr and Latt
respectively, by removing the log(·) terms. This is equiv-
alent to traditional link and attribute reconstruction, with
the clustering loss Lclus. The goal is to evaluate the use-
fulness of minimizing the effect of outliers for identifying
good clusters. We denote this variant as CO-GCN~(O).

Figure 5: Sensitivity analysis on embedding size

The results of the ablation study are shown in Figure 4. In
general, incorporating outlier scores and the clustering ob-
jective does result in higher modularity and structural mod-
ularity scores. However, the degree to which these compo-
nents contribute to the overall clustering quality vary for
each application and the metric used. For instance, in the
Daytrader application, removing the clustering objective re-
duces structural modularity significantly, but has no effect
on modularity. Conversely, removing the outlier information
reduces the modularity score, but has negligible effect on
structural modularity. This effect is also visible in the other
applications. Interestingly, removing the outlier information
leads to improved modularity for PBW, but this is balanced
by a reduced structural modularity score. We can still con-
clude that including the outlier scores and clustering loss in
the training objective improves cluster quality in general.

Finally, we also evaluate the effect of the node embed-
dings size on the modularity and structural modularity val-
ues for each application. We experiment with embedding
sizes in {8, 16, 32, 64}. The results are presented in Figure 5.
We notice the modularity scores do not have any significant
variation with a change in node embedding size. There is
relatively more variation in the structural modularity scores
with change in embedding sizes and once again, this varia-
tion is application dependent. There is not enough evidence
to make any substantial claims, but in general, the perfor-
mance seems to be better at higher embedding sizes.

5 Conclusion
We introduced the traditional software engineering problem
of monolith to microservices decomposition as a clustering
task leveraging graph representation learning. We showed
how the application implementation structure can be trans-
lated into an attributed graph network. We then proposed a
multi-objective Graph Convolution Network (GCN) based
novel framework to not just generate candidate microser-
vices, but also identified the outliers in the graph which can
be considered as the important refactor classes for the ar-
chitect to focus on. Our approach improved state of the art
on multiple metrics from both graph and software engineer-
ing literature and performed well in human evaluation for
the outlier detection. In future, we want to extend this work
to automatically identify the number of microservices and
expand to procedural programming languages like COBOL.

78



Acknowledgements
We would like to thank Giriprasad Sridhara, Amith Singhee,
Shivali Agarwal, Raunak Sinha from IBM India Research
Labs and Yasu Kastuno, Ai Ishida, Aki Tozawa, Fumiko
Satoh from IBM Tokyo Research Labs for their insightful
suggestions during this work and valuable feedback towards
improving the paper.

Ethical Impact
We believe this work doesn’t have any direct societal or eth-
ical impact.

References
Arthur, D.; and Vassilvitskii, S. 2006. k-means++: The ad-
vantages of careful seeding. Technical report, Stanford.

Bandyopadhyay, S.; Lokesh, N.; and Murty, M. N. 2019.
Outlier aware network embedding for attributed networks.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 12–19.

Bandyopadhyay, S.; Lokesh, N.; Vivek, S. V.; and Murty,
M. 2020. Outlier Resistant Unsupervised Deep Architec-
tures for Attributed Network Embedding. In Proceedings of
the 13th International Conference on Web Search and Data
Mining, 25–33.

Bandyopadhyay, S.; Vivek, S. V.; and Murty, M. N. 2020. In-
tegrating Network Embedding and Community Outlier De-
tection via Multiclass Graph Description. In ECAI 2020
- 24th European Conference on Artificial Intelligence, 29
August-8 September 2020, Santiago de Compostela, Spain,
976–983. IOS Press. doi:10.3233/FAIA200191.

Bittencourt, R. A.; and Guerrero, D. D. S. 2009. Comparison
of graph clustering algorithms for recovering software archi-
tecture module views. In 2009 13th European Conference on
Software Maintenance and Reengineering, 251–254. IEEE.

Chen, Z.; Li, L.; and Bruna, J. 2019. Supervised Commu-
nity Detection with Line Graph Neural Networks. In In-
ternational Conference on Learning Representations. URL
https://openreview.net/forum?id=H1g0Z3A9Fm.

Dietrich, J.; Gauthier, F.; and Krishnan, P. 2018. Driver Gen-
eration for Java EE Web Applications. In 2018 25th Aus-
tralasian Software Engineering Conference (ASWEC), 121–
125. IEEE.

Fritzsch, J.; Bogner, J.; Zimmermann, A.; and Wagner, S.
2018. From Monolith to Microservices: A Classification of
Refactoring Approaches. CoRR abs/1807.10059. URL http:
//arxiv.org/abs/1807.10059.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for Quantum
chemistry. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, 1263–1272.

Goldberg, Y.; and Levy, O. 2014. word2vec Explained: de-
riving Mikolov et al.’s negative-sampling word-embedding
method. arXiv preprint arXiv:1402.3722 .

Gouigoux, J.-P.; and Tamzalit, D. 2017. From monolith to
microservices: Lessons learned on an industrial migration
to a web oriented architecture. In 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW),
62–65. IEEE.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855–864.
Guo, S.; Lin, Y.; Feng, N.; Song, C.; and Wan, H. 2019. At-
tention based spatial-temporal graph convolutional networks
for traffic flow forecasting. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, 922–929.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Represen-
tation learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584 .
Jin, W.; Liu, T.; Cai, Y.; Kazman, R.; Mo, R.; and Zheng,
Q. 2019. Service candidate identification from monolithic
systems based on execution traces. IEEE Transactions on
Software Engineering .
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .
Kipf, T. N.; and Welling, M. 2016. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308 .
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In 5th In-
ternational Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. URL https://openreview.net/
forum?id=SJU4ayYgl.
Liang, J.; Jacobs, P.; Sun, J.; and Parthasarathy, S. 2018.
Semi-supervised embedding in attributed networks with out-
liers. In Proceedings of the 2018 SIAM International Con-
ference on Data Mining, 153–161. SIAM.
Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. Isolation
forest. In 2008 Eighth IEEE International Conference on
Data Mining, 413–422. IEEE.
Mazlami, G.; Cito, J.; and Leitner, P. 2017. Extraction
of Microservices from Monolithic Software Architectures.
In 2017 IEEE International Conference on Web Services
(ICWS), 524–531.
Newman, M. E. 2006. Modularity and community structure
in networks. Proceedings of the national academy of sci-
ences 103(23): 8577–8582.
Newman, M. E.; and Girvan, M. 2004. Finding and evalu-
ating community structure in networks. Physical review E
69(2): 026113.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710.
Shtern, M.; and Tzerpos, V. 2012. Clustering Methodologies
for Software Engineering. Adv. Soft. Eng. 2012. ISSN 1687-
8655. doi:10.1155/2012/792024. URL https://doi.org/10.
1155/2012/792024.

79



Taibi, D.; and Lenarduzzi, V. 2018. On the Definition of
Microservice Bad Smells. IEEE Software 35(3): 56–62.
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