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Abstract

Deep neural network (DNN) architecture based models have
high expressive power and learning capacity. However, they
are essentially a black box method since it is not easy to math-
ematically formulate the functions that are learned within
its many layers of representation. Realizing this, many re-
searchers have started to design methods to exploit the draw-
backs of deep learning based algorithms questioning their ro-
bustness and exposing their singularities. In this paper, we
attempt to unravel three aspects related to the robustness of
DNNs for face recognition: (i) assessing the impact of deep
architectures for face recognition in terms of vulnerabilities
to attacks inspired by commonly observed distortions in the
real world that are well handled by shallow learning methods
along with learning based adversaries; (ii) detecting the sin-
gularities by characterizing abnormal filter response behav-
ior in the hidden layers of deep networks; and (iii) making
corrections to the processing pipeline to alleviate the prob-
lem. Our experimental evaluation using multiple open-source
DNN-based face recognition networks, including OpenFace
and VGG-Face, and two publicly available databases (MEDS
and PaSC) demonstrates that the performance of deep learn-
ing based face recognition algorithms can suffer greatly in
the presence of such distortions. The proposed method is also
compared with existing detection algorithms and the results
show that it is able to detect the attacks with very high accu-
racy by suitably designing a classifier using the response of
the hidden layers in the network. Finally, we present several
effective countermeasures to mitigate the impact of adversar-
ial attacks and improve the overall robustness of DNN-based
face recognition.

Introduction
Deep learning paradigm has seen significant proliferation in
face recognition due to the convenience of obtaining large
training data, availability of inexpensive computing power
and memory, and utilization of cameras at multiple places.
Several algorithms such as DeepFace (Taigman, Y. and
Yang, M. and Ranzato, M. and Wolf, L. 2014), DeepID (Sun,
Wang, and Tang 2015), FaceNet (Schroff, Kalenichenko,
and Philbin 2015), and Liu et al. (2015) are successful ex-
amples of the coalesce of deep learning and face recognition.
However, it is also known that machine learning algorithms
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Figure 1: We show that deep learning based OpenFace (OF)
and VGG-Face can be deceived even by image processing
operations that mimic real world distortions.

are susceptible to adversaries which can cause the classifier
to yield incorrect results. Most of the time these adversaries
are unintentional and are in the form of outliers. Recently, it
has been shown that fooling images can be generated in such
a manner where humans can correctly classify the images
but deep learning algorithms misclassify them (Goodfellow,
Shlens, and Szegedy 2015), (Nguyen, Yosinski, and Clune
2015). As shown in Table 1, such images can be generated
via evolutionary algorithms (Nguyen, Yosinski, and Clune
2015) or adversarial sample crafting using the fast gradi-
ent sign method (Goodfellow, Shlens, and Szegedy 2015).
Sharif et al. (2016) explored threat models by creating per-
turbed eye-glasses to fool face recognition algorithms. An
adversarial attack on face recognition is not acceptable as
face biometric gets used in many high security applications
such as passports, visa, and other law enforcement docu-
ments.

It is our assertion that it is not required to attack the sys-
tem with sophisticated learning based attacks; and attacks
such as adding random noise or horizontal and vertical black
grid lines in the face image cause reduction in face verifica-
tion accuracies. Samples images in Figure 1 show a glimpse
of the effect of image processing operations on two state-of-
the-art deep learning based face recognition algorithms. To
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Table 1: Literature review of adversarial attack generation and detection algorithms.

Adversary Authors Description

Generation

Szegedy et al., 2013 L-BFGS: L(x+ ρ, l) + λ||ρ||2 s.t. xi + ρi ∈ [bmin, bmax]
Goodfellow, Shlens, and Szegedy, 2015 FGSM: x0 + ε ∗ (�xL(x0, l0)
Kurakin, Goodfellow, and Bengio, 2016 I-FGSM: xk+1 = xk + ε ∗ (�xL(x0, l0)
Papernot et al., 2016 Saliency Map: l0 distance optmization
Moosavi-Dezfooli, Fawzi, and Frossard, 2016 DeepFool: for each class, l �= l0,minimize d(l, l0)
Carlini and Wagner, 2017 C & W: lp distance metric optimization
Moosavi-Dezfooli et al., 2017 Universal: Distribution based perturbation
Rauber, Brendel, and Bethge, 2017 Blackbox: Uniform, Gaussian, Salt and Pepper, Gaussian Blur, Contrast

Detection

Grosse et al., 2017 Statistical test for attack and genuine data distribution
Gong, Wang, and Ku; Metzen et al., 2017 Neural network based classification
Feinman et al., 2017 Randomized network using Dropout at both training and testing
Bhagoji, Cullina, and Mittal, 2017 PCA based dimensionality reduction algorithm
Liang et al., 2017 Quantization and smoothing based image processing
Lu, Issaranon, and Forsyth, 2017 Quantize ReLU output for discrete code + RBF SVM
Das et al., 2017 JPEG compression to reduce the effect of adversary

the best of our knowledge, this is the first reported research
on finding singularities in deep learning based face recog-
nition engines along with detection and mitigation of such
attacks. We believe that being able to not only automatically
detect but also correct adversarial samples at runtime is a
crucial ability for a deep network that is deployed for real
world applications. With this research, we aim to present a
new perspective on potential attacks as well as a different
methodology to limit their performance impact beyond sim-
ply including adversarial samples in the training data.

The objective of this paper is three-fold: (i) We demon-
strate that the performance of deep learning based face
recognition algorithms can be significantly affected due to
adversarial attacks - both image processing based adversar-
ial attacks and adversarial samples generated in context to
the recognition architecture. (ii) The first key step in tak-
ing countermeasures against such adversarial attacks is to be
able to reliably determine which images contain such distor-
tions. We propose and evaluate a methodology for automatic
detection of such attacks using the response from hidden
layers of the DNN. (iii) Once identified, the distorted im-
ages may be rejected for further processing or rectified using
appropriate preprocessing techniques to prevent degradation
in performance. To address this challenge without increas-
ing the failure to process rate (by rejecting the samples), the
third contribution of this research is a novel technique of se-
lective dropout in the DNN to mitigate these adversarial at-
tacks. While we have showcased results with multiple deep
face networks in this paper, we have used VGG to report the
detection and mitigation results for DeepFool and Univer-
sal adversarial perturbations since it is the only network for
which the authors have provided pre-computed models.

Adversarial Attacks on Deep Learning based
Face Recognition

In this section, we discuss the proposed adversarial distor-
tions that are able to degrade the performance of deep learn-
ing face recognition algorithms. Let x be the input to a deep
learning based face recognition algorithm and l be the out-
put class label (in case of identification, it is an identity label

and for verification, it is same or different). An adversarial
attack function a(·), when applied to the input face image,
falsely changes the predicted identity label. In other words,
if a(x) = l′ where, l �= l′, then a is a successful adver-
sarial attack on the network. While adversarial learning has
been used in literature to showcase that the function a(·) can
be obtained via optimization based on network gradients,
in this research, we explore a different approach. We eval-
uate the robustness of deep learning based face recognition
in the presence of image processing based distortions. Based
on the information required in their design, these distortions
can be considered at image-level or face-level. We propose
two image-level distortions: (a) grid based occlusion, and (b)
most significant bit based noise, along with three face-level
distortions: (a) forehead and brow occlusion, (b) eye region
occlusion, and (c) beard-like occlusion.

Image-level Distortions
Distortions that are not specific to faces and can be applied to
an image of any object are categorized as image-level distor-
tions. In this research, we have utilized two such distortions,
grid based occlusion and most significant bit change based
noise addition. Figure 2(b) and 2(c) present sample outputs
of image-level distortions.

Grid based Occlusion For the grid based occlusion
(termed as Grids) distortion, we select a number of points
P = {p1, p2, ..., pn} along the upper (y = 0) and left
(x = 0) boundaries of the image according to a parameter
ρgrids. The parameter ρgrids determines the number of grids
that are used to distort each image with higher values re-
sulting in a denser grid, i.e., more grid lines. For each point
pi = (xi, yi), we select a point on the opposite boundary of
the image, p′i = (x′

i, y
′
i), with the condition if yi = 0, then

y′i = H and if xi = 0 then x′
i = W , where, W ×H is the

size of the input image. Once a set of pairs corresponding to
points P and P ′ have been selected for the image, one pixel
wide line segments are created to connect each pair, and each
pixel lying on these lines is set to 0 grayscale value.

Most Significant Bit based Noise For the most signifi-
cant bit based noise (xMSB) distortion, we select three sets

6830



Figure 2: Sample images representing the (b) grid based oc-
clusion (Grids), (c) most significant bit based noise (xMSB),
(d) forehead and brow occlusion (FHBO), (e) eye region oc-
clusion (ERO), and (f) beard-like occlusion (Dhamecha et
al. 2014) (Beard) distortions when applied to the (a) original
images. (g) is the Universal perturbed (Moosavi-Dezfooli et
al. 2017) images of PaSC and MEDS databases.

of pixels X1,X2,X3 from the image stochastically such that
|Xi| = φi × W × H , where W × H is the size of the in-
put image. The parameter φi denotes the fraction of pixels
where the ith most significant bit is flipped. The higher the
value of φi, the more pixels are distorted in the ith most sig-
nificant bit. For each Pj ∈ Xi, ∀i ∈ [1, 3], we perform the
following operation:

Pkj = Pkj ⊕ 1 (1)

where, Pkj denotes the kth most significant bit of the jth

pixel in the set and ⊕ denotes the bitwise XOR operation. It
is to be noted that the sets Xi are not mutually exclusive and
may overlap. Therefore, the total number of pixels affected
by the noise is at most |X1+X2+X3| but may also be lower
depending on the stochastic selection.

Face-level Distortions
Face-level distortions specifically require face-specific in-
formation, e.g. location of facial landmarks. The three face-
level region based occlusion distortions are applied after per-
forming automatic face and facial landmark detection. In
this research, we have utilized the open source DLIB library
(King 2009) to obtain the facial landmarks. Once facial land-
marks are identified, they are used along with their bound-
aries for masking. To obscure the eye region, a singular oc-
clusion band is drawn on the face image as follows:

I{x, y} = 0, ∀x ∈ [0,W ], y ∈
[
ye− deye

ψ
, ye+

deye
ψ

]
(2)

Here, ye =
(
yle+yre

2

)
, and (xle, yle) and (xre, yre) are the

locations of the left eye center and the right eye center,
respectively. The inter-eye distance deye is calculated as:
xre − xle and ψ is a parameter that determines the width
of the occlusion band. Similar to the eye region occlusion

Table 2: Characteristics of the databases used for adversarial
attack generation and detection.

Database Subjects Images
PaSC (Beveridge et al. 2013) 293 4,688
MEDS-II (Founds et al. 2011) 518 858

(ERO), the forehead and brow occlusion (FHBO) is created
where facial landmarks on forehead and brow regions are
used to create a mask. For the beard-like occlusion, outer fa-
cial landmarks along with nose and mouth coordinates are
utilized to create the mask as combinations of individually
occluded regions. Figure 2 (d), (e), and (f) illustrate the sam-
ples of face-level distortions.

Learning based Adversaries
Along with the proposed image-level and face-level dis-
tortions, we also analyze the effect of adversarial samples
generated using two existing adversarial models: DeepFool
(Moosavi-Dezfooli, Fawzi, and Frossard 2016) and Uni-
versal Adversarial Perturbations (Moosavi-Dezfooli et al.
2017).

Adversarial Distortions: Results and Analysis
In this section, we first provide a brief overview of the deep
face recognition networks, databases, and respective exper-
imental protocols that are used to conduct the face verifi-
cation evaluations. We attempt to assess how the deep net-
works perform in the presence of different kinds of proposed
distortions to emphasize the need for addressing such at-
tacks.

Databases
We use two publicly available face databases for our ex-
periments, namely, the Point and Shoot Challenge (PaSC)
database (Beveridge et al. 2013) and the Multiple En-
counters Dataset (MEDS) (Founds et al. 2011). The PaSC
database contains still-to-still and video-to-video matching
protocols. We use the frontal subset of the still-to-still proto-
col which contains 4,688 images pertaining to 293 individ-
uals which are divided into equal size target and query sets.
Each image in the target set is matched to each image in the
query set and the resulting 2344× 2344 score matrix is used
to determine the verification performance.

The MEDS-II database contains a total of 1,309 faces
pertaining to 518 individuals. Similar to the case of PaSC,
we utilize the metadata provided with the MEDS release 2
database to obtain a subset of 858 frontal face images from
the database. Each of these images is matched to every other
image and the resulting 858 × 858 score matrix is utilized
to evaluate the verification performance. For evaluating per-
formance under the effect of distortions, we randomly se-
lect 50% of the total images from each database and corrupt
them with the proposed distortions separately. These dis-
torted sets of images are utilized to compute the new score
matrices for each case.
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Table 3: Verification performance of existing face recognition algorithms in the presence of different distortions on the PaSC
and MEDS databases. All values indicate genuine accept rate (%) at 1% false accept rate.

System MEDS PaSC
Original Grids xMSB FHBO ERO Beard Original Grids xMSB FHBO ERO Beard

COTS 24.1 20.9 14.5 19.0 0.0 24.8 40.3 24.3 19.1 13.0 0 6.2
OpenFace 66.7 49.5 43.8 47.9 16.4 48.2 39.4 10.1 10.1 14.9 6.5 22.6
VGG-Face 78.4 50.3 45.0 25.7 10.9 47.7 54.3 3.2 1.3 15.2 8.8 24.0
LightCNN 89.3 80.1 71.5 62.8 26.7 70.7 60.1 24.6 29.5 31.9 24.4 38.1
L-CSSE 89.1 81.9 83.4 55.8 27.3 70.5 61.2 43.1 36.9 29.4 39.1 39.8

Existing Networks and Systems
In this research, we utilize the OpenFace (Amos et
al.), VGG-Face (Parkhi, Vedaldi, and Zisserman 2015),
LightCNN (Wu et al. 2015), and L-CSSE (Majumdar, Singh,
and Vatsa 2017) networks to gauge the performance of deep
face recognition algorithms in the presence of the afore-
mentioned distortions. The OpenFace library is an open
source implementation of FaceNet (Schroff, Kalenichenko,
and Philbin 2015) and is openly available to all members of
the research community for modification and experimental
usage. The VGG deep face network is a deep convolutional
neural network (CNN) with 11 convolutional blocks where
each convolution layer is followed by non-linearities such as
ReLU and max pooling. LightCNN is another publicly avail-
able deep network architecture for face recognition that is a
CNN with maxout activations in each convolutional layer
and achieves good results with just five convolutional lay-
ers. L-CSSE is a supervised autoencoder formulation that
utilizes a class sparsity based supervision penalty in the loss
function to improve the classification capabilities of autoen-
coder based deep networks. In order to assess the relative
performance of deep face recognition with a non-deep learn-
ing based approach, we compare the performance of these
deep learning based algorithms with a commercial-off-the-
shelf (COTS) matcher. No fine-tuning is performed for any
of these algorithms before evaluating their performance on
the test databases.

Results and Analysis
Table 3 summarizes the effect of image processing based ad-
versarial distortions on OpenFace, VGG-Face, LightCNN,
L-CSSE, and COTS. On the PaSC database, as shown in Ta-
ble 3, while OpenFace and COTS perform comparably to
each other at about 1% false accept rate (FAR), OpenFace
performs better than the COTS algorithm at all further op-
erating points when no distortions are present. However, we
observe a sharp drop in OpenFace performance when any
distortion is introduced in the data. For instance, with grids
attack, at 1% FAR, the GAR of OpenFace drops by 29.3%
and of VGG by 28.1%, whereas the performance of COTS
only drops by 16% which is about half the drop compared to
what OpenFace and VGG-Face experience. We notice a sim-
ilar scenario in the presence of noise attack where the perfor-
mance of OpenFace and VGG drops down by about 29% as
opposed to the loss of 21.2% observed by COTS. In cases of
LightCNN and L-CSSE, they both have shown higher per-
formance with original images; however, as shown in Table
3, similar level of drops are observed. It is to be noted that

Figure 3: Bar graph showing the effect of perturbation on
the VGG-Face model. Verification accuracy is reported at
1% GAR.

for xMSB and grid attack, L-CSSE is able to achieve rela-
tively better performance because L-CSSE is a supervised
version of autoencoder which can handle noise better. Over-
all, deep learning based algorithms experience higher per-
formance drop as opposed to the non-deep learning based
COTS. In the case of occlusions, however, deep learning
based algorithms suffer less as compared to COTS. It is our
assessment that the COTS algorithm fails to perform accu-
rate recognition with the highly limited facial region avail-
able in the low-resolution PaSC images in the presence of
occlusions. Similar performance trends are observed on the
MEDS database on which for original images, deep learning
based algorithms outperform the COTS matcher with a GAR
of 60-89% at 1% FAR respectively as opposed to 24.1% by
COTS. The accuracy of deep learning algorithms drops sig-
nificantly more than the accuracy of COTS.

We next performed a similar analysis with learning based
adversaries on the PaSC database. The results of VGGFace
model with original and perturbed images are shown in Fig-
ure 3. It is interesting to observe that the drop in accuracy
obtained by simple image processing operations is equiva-
lent to the reduction achieved by learned adversaries. This
clearly shows that deep models are not resilient to even sim-
ple perturbations and therefore, it is very important to devise
effective strategies for detection and mitigation of attacks.

Detection and Mitigation of Adversarial
Attacks

As we can see in the previous section, adversarial attacks
can substantially reduce the performance of usually accurate
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Figure 4: Flow chart for the proposed detection and mitiga-
tion methodology.

deep neural network based face recognition methods. There-
fore, it is essential to address such singularities in order to
make face recognition algorithms more robust and useful in
real world applications. In this section, we propose novel
methodologies for detecting and mitigating adversarial at-
tacks. First, we provide a brief overview of a deep network
followed by the proposed algorithms and their correspond-
ing results.

Each layer in a deep neural network essentially learns a
function or representation of the input data. The final feature
computed by a deep network is derived from all of the inter-
mediate representations in the hidden layers. In an ideal sce-
nario, the internal representation at any given layer for an in-
put image should not change drastically with minor changes
to the input image. However, that is not the case in practice
as proven by the existence of adversarial examples. The fi-
nal features obtained for a distorted and undistorted image
are measurably different from one another since these fea-
tures map to different classes. Therefore, it is implied that
the intermediate representations also vary for such cases. It
is our assertion that the internal representations computed at
each layer are different for distorted images as compared to
undistorted images. Therefore, in order to detect whether an
incoming image is perturbed in an adversarial manner, we
decide that it is distorted if its layer-wise internal represen-
tations deviate substantially from the corresponding mean
representations. The overall flow of the detection and miti-
gation algorithms is summarized in Figure 4.

Network Analysis and Detection
In order to develop adversarial attack detection mechanism,
we first analyze the filter responses in CNN architecture.
Network visualization showcases the filter responses for a
distorted image at selected intermediate layers which may
demonstrate sensitivity towards noisy data. We observe that
the deep network based representation is more sensitive to
the input and while that sensitivity results in a more expres-
sive representation that offers higher performance in case of
undistorted data, it also compromises the robustness towards
noise such as the proposed distortions. Since each layer in
a deep network learns increasingly more complicated func-
tions of the input data based on the functions learned by the
previous layer, any noise in the input data is also encoded
in the features; thus leading to a higher reduction in the
discriminative capacity of the final learned representation.
Similar conclusions can also be drawn from the results of

other existing adversarial attacks on deep networks, where
the addition of a noise pattern leads to spurious classifica-
tion (Goodfellow, Shlens, and Szegedy 2015).

To counteract the impact of such attacks and ensure prac-
tical applicability of deep face recognition, the networks
must either be made more robust towards noise at a layer
level during training or it must be ensured that any input is
preprocessed to filter out any such distortion prior to com-
puting its deep representation for recognition.

In order to detect distortions we compare the pattern of
the intermediate representations for undistorted images with
distorted images at each layer. The differences in these pat-
terns are used to train a classifier that can categorize an
unseen input as an undistorted/distorted image. In this re-
search, we use the VGG-Face (Parkhi, Vedaldi, and Zisser-
man 2015) and LightCNN (Wu et al. 2015) networks to
devise and evaluate our detection methodology. From the
50,248 frontal face images in the CMU Multi-PIE database
(Gross et al. 2010), 40,000 are randomly selected and used
to compute a set of layer-wise mean representations, μ, as
follows:

μi =
1

Ntrain
ΣNtrain

j=1 φi (Ij) (3)

where, Ij is the jth image in the training set, Ntrain is the to-
tal number of training images, μi is the mean representation
for the ith layer of the network, and φi(Ij) denotes the rep-
resentation obtained at the ith layer of the network when Ij
is the input. Once μ is computed, the intermediate represen-
tations computed for an arbitrary image I can be compared
with the layer-wise means as follows:

Ψi(I, μ) = Σλi
z

|φi(I)z − μiz|
|φi(I)z|+ |μiz| (4)

where, Ψi(I, μ) denotes the Canberra distance between
φi(I) and μi, λi denotes the length of the feature repre-
sentation computed at the ith layer of the network, and μiz

denotes the zth element of μi. If the number of interme-
diate layers in the network is Nlayers, we obtain Nlayers

distances for each image I . These distances are used as fea-
tures to train a Support Vector Machine (SVM) (Suykens
and Vandewalle 1999) for two-class classification (original
and perturbed/attacked are two classes).

Mitigation: Selective Dropout
An ideal automated solution should not only automatically
detect but also mitigate the effect of an adversarial attack so
as to maintain as high performance as possible. Therefore,
the next step in defending against adversarial attack is mit-
igation. This can be achieved by discarding or preprocess-
ing (e.g. denoising) the affected regions. In order to accom-
plish these objectives, we again utilize the characteristics of
the output produced in the intermediate layers of the net-
work. We select 10,000 images from the Multi-PIE database
that are partitioned into 5 mutually exclusive and exhaus-
tive subsets of 2,000 images each. Each subset is processed
using a different distortion. The set of 10,000 distorted im-
ages thus obtained contains 2,000 images pertaining to each
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of the five proposed distortions. We use a smaller separate
Multi-PIE subset of 1,680 faces (5 per subject) for training
the algorithm on DeepFool and Universal perturbations. Us-
ing this data, we compute a filter-wise score per layer that
estimates the particular filter’s sensitivity towards distortion
as follows:

εij = ΣNdis

k=1 ‖φij(Ik)− φij(I
′
k)‖ (5)

where, Ndis is the number of distorted images in the train-
ing set, εij denotes the score and φij(·) denotes the response
of the jth filter in the ith layer, Ik is the kth distorted im-
age in the dataset, and I

′
k is the undistorted version of Ik.

Once these values are computed, the top η layers are selected
based on the aggregated ε values for each layer. These are the
layers identified to contain the most filters that are adversely
affected by the distortions in data. For each of the selected
η layers, the top κ fraction of affected filters are disabled
by modifying the weights pertaining to 0 before computing
the features. We also apply a median filter of size 5 × 5 for
denoising the image before extracting the features. We term
this approach as selective dropout. It is aimed at increasing
the network’s robustness towards noisy data by removing the
most problematic filters from the pipeline. We determine the
values of parameters η and κ via grid search optimization on
the training data with verification performance as the crite-
rion.

Experimental Protocol
For training the detection model, we use the remain-
ing 10,000 frontal face images from the CMU Multi-PIE
database as undistorted samples. We generate 10,000 dis-
torted samples using all five distortions with 2,000 images
per distortion that are also randomly selected from the CMU
Multi-PIE database. We use the same training data for uni-
versal perturbations with 10,000 distorted and 10,000 undis-
torted samples. For DeepFool, we use a subset of 1,680 face
images from the CMU Multi-PIE database with 5 images
from each of the 336 subjects with both distorted and undis-
torted versions for training the detection algorithm. Since
the VGG-Face network has 20 intermediate layers, we ob-
tain a feature vector of size 20 distances for each image. We
perform a grid search based parameter optimization using
the 20, 000 × 20 training matrix to optimize and learn the
SVM model. For DeepFool, the size of the training data is
3, 360×20. Once the model is learned, any given test image
is characterized by the distance vector and processed by the
SVM. The score given by the model for the image to belong
to the distorted class is used as a distance metric. We observe
that the metric thus obtained is able to classify distorted im-
ages on unseen databases. The mitigation algorithm is eval-
uated with both LightCNN and VGG-Face networks on both
the PaSC and MEDS databases with the same experimental
protocol as used in obtaining the verification results.

Results and Analysis
First, we present the results of the proposed algorithm in
detecting whether an image contains adversarial distortions
or not using the VGG and LightCNN networks. We choose

these two as the model definition and weights are publicly
available. Table 4 presents the results of adversarial attack
detection. Each distortion based subset comprises of a 50%
split of distorted and undistorted faces. These are the same
sets that have been used for evaluating the performance of
the three face recognition systems. As mentioned previously,
the model is trained on a separate database which does not
have any overlap with the test set.

The proposed detection algorithm performs almost per-
fectly for the PaSC database with the VGG network
and maintains accuracies of 80-90% with the LightCNN
network. The lowest performance is observed on the
MEDS database (classification accuracy of 68.4% with
the LightCNN network). The lower accuracies with the
LightCNN can be attributed to the smaller network depth
which results in smaller size features to be utilized by the
detection algorithm. It is to be noted that the proposed al-
gorithm maintains high true positive rates even at very low
false positive rates across all distortions on both databases
which is desirable when the cost of accepting a distorted im-
age is much higher than a false reject for the system. Be-
sides exceptionally poor quality images that are naturally
quite distorted, we observe that high or low illumination re-
sults in false rejects by the algorithm, i.e., falsely detected
as distorted. This shows the scope of further improvement
and refinement in the detection methodology. This is also an-
other reason for lower performance with the MEDS database
which has more extreme illumination cases as compared to
PaSC. We also test using the Viola Jones face detector (Vi-
ola and Jones 2004) and find that, on average, approximately
60% of the distorted faces pass face detection. Therefore, the
distorted face images cannot be differentiated from undis-
torted faces on the basis of failing face detection. We attempt
to reduce the feature dimensionality to deduce the most im-
portant features using sequential feature selection based on
classification loss by an SVM model learned on a given sub-
set of features. For the VGG-Face based model, using just
the top 6 features for detection, we obtain an average ac-
curacy of 81.7% on MEDS and 96.9% on PaSC database
across all distortions. If we use only one most discriminative
feature to perform detection, we obtain 79.3% accuracy on
MEDS and 95.8% on PaSC on average across all distortions.
This signifies that comparing the representations computed
by the network in its intermediate layers indeed produces a
good indicator of the existence of distortions in a given im-
age.

In addition to the proposed adversarial attacks, we
have also evaluated the efficacy of the proposed detection
methodology on two existing attacks that utilize network ar-
chitecture information for adversarial perturbation genera-
tion, i.e., DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard
2016) and Universal adversarial perturbations (Moosavi-
Dezfooli et al. 2017). We have also compared the perfor-
mance of the proposed detection algorithm with two recent
adversarial detection techniques based on adaptive noise re-
duction (Liang et al. 2017) and Bayesian uncertainty (Fein-
man et al. 2017). Same training data and protocol was used
to train and test all three detection approaches. The results
of detection are presented in Table 4 and Figure 5. We ob-
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Table 4: Performance (accuracy %) of the proposed detection methodology (using LightCNN and VGG-Face as the target
networks) compared to two existing detection algorithms. Grids = grid based occlusion, xMSB = most significant bit based
noise, FHBO = forehead and brow occlusion, ERO = eye region occlusion, and Beard = beard like occlusion.

Distortion MEDS PaSC
LightCNN VGG (Liang et al. 2017) (Feinman et al. 2017) LightCNN VGG (Liang et al. 2017) (Feinman et al. 2017)

Beard 92.2 86.8 81.2 80.9 89.5 99.8 83.4 85.1
ERO 91.9 86.0 80.4 80.0 90.6 99.7 84.9 84.6

FHBO 92.9 84.4 79.8 79.6 81.7 99.8 78.3 77.8
Grids 68.4 84.4 62.1 62.4 89.7 99.9 85.1 85.7
xMSB 92.9 85.4 80.2 80.9 93.2 99.8 88.2 87.9

Figure 5: Summarizing the results of the proposed and ex-
isting detection algorithms on the PaSC (Left) and MEDS
(Right) databases.

serve that the proposed methodology is at least 11% bet-
ter at detecting DNN architecture based adversarial attacks
as compared to the existing algorithms for all cases except
for detecting DeepFool perturbed images from the MEDS
database where it still outperforms the other approaches by
more than 3%. We believe that this is due to the fact that
MEDS has overall higher image quality as compared to
PaSC and even the impact of these near imperceptible per-
turbations (DeepFool and Universal) on verification perfor-
mance is minimal for the database. Therefore, it is harder to
distinguish original images from perturbed images for these
distortions for all the tested detection algorithms. Finally,
cross-attack experiments are also performed, i.e. train on one
attack and test on other attack. In our cross-database exper-
iments, the proposed algorithm outperforms existing algo-
rithms by at least 4%.

Table 5 present the results of the mitigation algorithm.
Mitigation is a two-step process to enable better perfor-
mance and computational efficiency. Figure 3 shows the ef-
fect of DeepFool and Universal adversary on the verifica-
tion performance using VGG-Face model. First, using the
proposed detection algorithm we perform selective mitiga-
tion of only those images that are considered adversarial by
the learned model. Face verification results after applying
the proposed mitigation algorithm on the MEDS and PaSC
databases are presented in Table 5. We can observe that the
mitigation model is able to improve the verification perfor-
mance on both the databases with either network and bring
it closer to the original. Thus, we see that even discarding
a certain fraction of the intermediate network output, that is
the most affected by adversarial distortions, results in better
recognition than incorporating them into the obtained fea-

Table 5: Mitigation Results (GAR (%) at 1% FAR) on the
MEDS and PaSC databases.

Algorithm Database Original Distorted Corrected

LCNN PaSC 60.5 25.9 36.2
MEDS 89.3 41.6 61.3

VGGFace PaSC 54.3 14.6 24.8
MEDS 78.4 30.5 40.6

ture vector.

Conclusion and Future Research Directions
To summarize, our work has three main contributions: (i)
a framework to evaluate robustness of deep learning based
face recognition engines, (ii) a scheme to detect adversar-
ial attacks on the system; and (iii) methods to mitigate ad-
versarial attacks when detected. Playing the role of an ex-
pert level adversary, we propose five classes of image dis-
tortions in the evaluation experiment. Using an open source
implementation of FaceNet, i.e., OpenFace, and the recently
proposed VGG-Face, LightCNN, and L-CSSE networks, we
conduct a series of experiments on the publicly available
PaSC and MEDS databases. We observe a substantial loss
in the performance of the deep learning based systems when
compared with a non-deep learning based COTS matcher
for the same evaluation data. In order to detect the attacks,
we propose a network activation analysis based method in
the hidden layers of the network. When an attack is reported
by this stage, we invoke mitigation methods described in the
paper to show that we can recover from the attacks in many
situations. In the future, we will build more complex mitiga-
tion frameworks to restore to a normal level of performance.
It is our assertion that with these findings, future research
can be aimed at correcting such adversarial samples and in-
corporating various other kinds of countermeasures in deep
neural networks to further increase their robustness.
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