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Abstract

Visual and audio modalities are two symbiotic modalities un-
derlying videos, which contain both common and comple-
mentary information. If they can be mined and fused suffi-
ciently, performances of related video tasks can be signifi-
cantly enhanced. However, due to the environmental inter-
ference or sensor fault, sometimes, only one modality ex-
ists while the other is abandoned or missing. By recover-
ing the missing modality from the existing one based on
the common information shared between them and the prior
information of the specific modality, great bonus will be
gained for various vision tasks. In this paper, we propose a
Cross-Modal Cycle Generative Adversarial Network (CMC-
GAN) to handle cross-modal visual-audio mutual generation.
Specifically, CMCGAN is composed of four kinds of subnet-
works: audio-to-visual, visual-to-audio, audio-to-audio and
visual-to-visual subnetworks respectively, which are orga-
nized in a cycle architecture. CMCGAN has several remark-
able advantages. Firstly, CMCGAN unifies visual-audio mu-
tual generation into a common framework by a joint corre-
sponding adversarial loss. Secondly, through introducing a
latent vector with Gaussian distribution, CMCGAN can han-
dle dimension and structure asymmetry over visual and audio
modalities effectively. Thirdly, CMCGAN can be trained end-
to-end to achieve better convenience. Benefiting from CMC-
GAN, we develop a dynamic multimodal classification net-
work to handle the modality missing problem. Abundant ex-
periments have been conducted and validate that CMCGAN
obtains the state-of-the-art cross-modal visual-audio gener-
ation results. Furthermore, it is shown that the generated
modality achieves comparable effects with those of original
modality, which demonstrates the effectiveness and advan-
tages of our proposed method.

Video mainly contains two symbiotic modalities, the vi-
sual and the audio ones. Information embedded in these two
modalities owns both common and complementary informa-
tion respectively. Common information can make the trans-
lation over visual and audio modalities be possible. Mean-
while, complementary information can be adopted as the
prior of one modality to facilitate the associative tasks. Thus,
sufficient utilization of these common and complementary
information will further boost the performances of related
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video tasks. However, due to the environmental disturbance
and sensor fault, one of the modality may be missing or dam-
aged, which will bring significant inconveniences such as
silent film and screen blurred. If we can restore the missing
modality from the remaining modality based on the cross-
modal prior, great bonus will be gained for various multime-
dia tasks and many traditional single-modal databases can
be reused in conjunction to gain better performance.

Generative Adversarial Networks (GANs) have gained
extraordinary popularity because of their ability in generat-
ing high-quality realistic samples, which is superior to other
generative models. Compared to numerous work focusing
on static information translation, such as image-to-image
(Isola et al. 2016; Zhu et al. 2017) and text-to-image (Reed
et al. 2016), few of methods concern dynamic visual-audio
modality conversion and generation. Chen et al. firstly de-
sign Conditional GANs for cross-modal visual-audio gen-
eration. Drawbacks of their work are that the mutual gen-
eration process relies on different models and it cannot be
trained end-to-end.

Inspired by (Isola et al. 2016; Zhu et al. 2017), we propose
Cross-Modal Cycle Generative Adversarial Network (CM-
CGAN) to achieve cross-modal visual-audio mutual gen-
eration. Compared to CycleGAN, CMCGAN introduces a
latent vector to handle dimension and structure asymmetry
among different modalities. Moreover, another two genera-
tion paths are coupled with CycleGAN to facilitate cross-
modal visual-audio translation and generation. Finally, a
joint corresponding adversarial loss is designed to unify the
visual-audio mutual generation in a common framework. In
addition, CMCGAN can be trained end-to-end to obtain bet-
ter convenience.

Benefiting from CMCGAN, a dynamic multimodal clas-
sification network is developed for double modalities. Once
only single modal as input, we will supplement the absent
one in the aid of CMCGAN and then perform the subsequent
classification task. In summary, we make the following con-
tributions:

• We propose a Cross-Modal Cycle Generative Adversar-
ial Network(CMCGAN) to simultaneously handle cross-
modal visual-audio mutual generation in the same model.

• We develop a joint adversarial loss to unify visual-audio
mutual generation, which makes it possible not only to
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distinguish training data from generated or sampling but
also to check whether image and sound pairs matching or
not.

• We develop a multimodal classification network for dif-
ferent modalities with dynamic loading.

Related Works

Our work closely draws on recent studies in generative
adversarial network (GAN), cross-domain translation and
cross-modal transfer.

Generative Adversarial Network

Generative Adversarial Network (GAN) (Goodfellow et al.
2014), has a wide applications and can be utilized to gen-
erate ”unseen” and fancy samples. To obtain better syn-
thetic results, numerous models have been proposed to im-
prove the performance of GAN. For example, Conditional
GAN (Mirza and Osindero 2014), Deep Convolutional GAN
(Radford, Metz, and Chintala 2015),Wasserstein GAN (Ar-
jovsky, Chintala, and Bottou 2017) and CycleGAN (Zhu et
al. 2017).

In this paper, we establish our cross-modal visual-audio
mutual generation model based on CycleGAN. Different
from CycleGAN, our model is performing cross-modal gen-
eration other than image-to-image generation.

Cross-Domain Translation

Cross-domain translation refers to exploring mapping rela-
tionship between two different domains. Based on condi-
tional GAN, Isola et al. develop a ”pix2pix” framework to
learn a mapping between paired input and output images
(Isola et al. 2016). Shared with similar ideas, other vari-
ous tasks have been established. For example, generating
images of outdoor scenes from attributes and semantic lay-
outs (Karacan et al. 2016) and generating photographs from
sketches (Sangkloy et al. 2016). Moreover, Zhu et al. de-
velop a CycleGAN (Zhu et al. 2017) to build mapping rela-
tionship across different image domains. Further, based on
CycleGAN, Lu et al. (Lu, Tai, and Tang 2017) propose a
Conditional CycleGAN, which is utilized to perform image-
to-image translation subjected to specific attribute condition.

Common properties of the above cross-domain translation
frameworks are that the domains they performing transla-
tions are from the same modality and share the similar di-
mension and structure. These methods can not be applied
to cross-modal generation effectively, which is because that
samples from different modalities are dimension and struc-
ture asymmetric.

If we want to take advantages of the promising cross-
domain translation capacity of the CycleGAN (Lu, Tai, and
Tang 2017), dimension and structure asymmetry across two
different modalities need to be handled. In our work, a la-
tent vector is introduced into CycleGAN to figure out this
problem.

Cross-Modal Transfer

Recently, various cross-modal transfer tasks have been de-
veloped. In (Owens et al. 2016), sound is utilized as a su-

pervisor to guide visual learning. While in (Aytar, Von-
drick, and Torralba 2016), Yusuf Aytar et al. adopt a vi-
sual network as a teacher. Knowledge learned from this
teacher network can be transferred to a student sound net-
work. In (Feng, Wang, and Li 2014; Pereira et al. 2014;
Rasiwasia et al. 2010; Wang et al. 2016), people focus on
cross-modal indexing and retrieval. Although these methods
attempt to build a joint representation and correlation over
cross-modalities’ data, samples retrieved via these methods
are in the database. They cannot deal with the ”unseen” sam-
ples effectively.

Taking inspiration from generating images from text cap-
tions (Reed et al. 2016), Lele Chen et al. first design
Conditional GANs for cross-modal visual-audio generation.
Specifically, they develop two separate networks, such as
I2S (image to sound) and S2I (sound to image) to per-
form visual→audio and audio→visual generation (Chen et
al. 2017) respectively. Although images/sounds can be gen-
erated from sounds/images by S2I/I2S, their whole cross-
modal visual-audio generation framework suffers from sev-
eral problems. For example, their visual-audio mutual gen-
eration are realized by two separate networks, which is in-
efficient. Further, each cross-modal generation path cannot
be trained end-to-end. Specifically, a classification network
is first trained to obtain discriminant information from one
modality. Then, based on the extracted discriminant fea-
tures, another modality is generated via I2S or S2I.

To overcome shortcomings of the conventional cross-
modal visual-audio generation model (Chen et al. 2017), we
build a Cross-Modal Cycle Generative Adversarial Model
(CMCGAN) to perform cross-modal visual-audio genera-
tion. Our model unifies visual-to-audio and audio-to-visual
into a common framework by a joint corresponding adver-
sarial loss. Moreover, CMCGAN can be trained end-to-end.

Cross-Modal Cycle Generative Adversarial

Network

In this section, we depict our CMCGAN in detail. The over-
all diagram of CMCGAN is presented in Figure 1. CMC-
GAN is composed of two groups of generation paths. One
group of generation paths are from one modality to the
same modality (blue arrow streams), including visual-audio-
visual and audio-visual-audio. The other group of genera-
tion paths are from one modality to the other modality (red
arrow streams), including visual-visual-audio and audio-
audio-visual. Components under the same kind of rectangles
are sharing weights.

Four Subnetworks and Discriminator Network

Audio-to-Visual (A2V) subnetwork: The A2V subnet-
work is dubbed as: GA→V . The raw audio wave is first trans-
ferred to its Log-amplitude of Mel-Spectrum (LMS) rep-
resentation with size 128 × 44 and resized to 128 × 32.
LMS of audio sample is then passed through a sound en-
coder (EncoderA) with some continuous convolutional lay-
ers to obtain a feature map FA. FA is concatenated with a
latent vector Z to obtain the embedding vector EA. Finally,
EA is passed through an image decoder (DecoderV) with
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Figure 1: The overall framework of CMCGAN. Components under the same kind of rectangles are sharing weights. F indicates
feature map of the corresponding samples, Z denotes the Latent vector. Blue arrow streams indicate the generation paths visual-
audio-visual and audio-visual-audio. Red arrow streams denote the generation paths visual-visual-audio and audio-audio-visual.
F Image/F Sound indicates the generated image/sound from original sound/image. R Image/R Sound denotes the recovered
image/sound from original image/sound. FR Image/FR Sound indicates the generated image/sound from R Sound/R Image.
RF Image/RF Sound denotes the recovered image/sound from F Sound/R Image.

several continuous deconvolutional layers to generate a syn-
thetic image with size 128 × 128 × 3. Specifically, size of
the input sound LMS is 128× 32× 1 and size of the output
generated image is 128× 128× 3.

Visual-to-Audio (V2A) subnetwork: The V2A subnet-
work is dubbed as: GV→A. Organization of this subnet-
work is similar with that of A2V subnetwork, which con-
tains an image encoder (EncoderV) and a sound decoder
(DecoderA). This subnetwork takes an image as input and
outputs a sound LMS.

Audio-to-Audio (A2A) subnetwork: The A2A subnet-
work is dubbed as: GA→A. Organization of this subnet-
work is similar with that of A2V subnetwork, which con-
tains a sound encoder (EncoderA) and a sound decoder (De-
coderA). This subnetwork takes a sound LMS as input and
outputs a sound LMS.

Visual-to-Visual (V2V) subnetwork: The V2V subnet-
work is dubbed as: GV→V . Organization of this subnet-
work is similar with that of A2V subnetwork, which con-
tains an image encoder (EncoderV) and an image decoder
(DecoderV). This subnetwork takes an image as input and
outputs an image.

Four Generation paths: The generation path visual-
audio-visual is denoted as GV→A→V , which is formed by
concatenating GV→A and GA→V subnetworks sequentially.
GA→V→A , GV→V→A and GA→A→V share the similar
meaning.

Discriminator: The discriminator network is depicted as:
R

|φD(a)|×R
|ϕD(x)| �→ [0, 1]. An image x and a sound LMS

a are taken as input. They are separately passed through
several continuous convolutional layers to get correspond-
ing encoded feature maps EDV and EDA respectively. EDV

and EDA are then concatenated together to produce a scalar
probability s. s is adopted to judge whether this pair of im-
age and sound is real or not. Where φD and ϕD are the en-
coding functions of audio and image samples respectively.

Network Architectures Image/sound encoder has seven
continuous convolutional layers. Each layer is followed by a
batch normalization layer (BN) and a Relu layer. The num-
bers of kernels for all convolutional layers in image/sound
encoder are 3/1-64-128-256-512-512-256-64 respectively.
Image/sound decoder has seven continuous deconvolutional
layers. Each deconvolutional layer is followed by a batch
normalization layer (BN) and a Leaky Relu layer. The num-
bers of kernels for all deconvolutional layers in image/sound
decoder are 256-512-512-256-128-64-3/1 accordingly. In
addition, the image/sound classifier has the similar architec-
ture with that of image/sound encoder, except a fully con-
nected layer is attached in the final. The detailed structure of
image/sound classifier is presented as 3/1-64-128-256-512-
512-256-64-fc(13) and the fc indicates the fully connected
layer. The kernel size and the stride for each convolutional
or deconvolutional layer is 5 and 2 respectively.

Joint Corresponding Adversarial Loss To unify visual-
audio mutual generation into a common framework, we de-
velop a joint corresponding adversarial strategy and our dis-
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criminator aims at maximizing the following loss term LD:

LDw = log(Srvra) +
1

2
∗ (log(1− Srvwa) + log(1− Swvra))

LDf = log(Srvra) +
1

2
∗ (log(1− Srvfa) + log(1− Sfvra))

LD = LDw + LDf

(1)

where LDw is utilized to justify whether the image-sound
pair is from the same instrument category or not, LDf is
adopted to justify whether the image-sound pair is sampled
from generated or real sets. Specifically, Srvra is the scalar
probability for the true pair of image and sound, Srvwa de-
notes the scalar probability for the pair of real image and
wrong sound that sampled from wrong category of instru-
ments, Srvfa indicates the scalar probability for the pair
of real image and fake sound generated by real image or
real sound. Swvra/Sfvra shares the similar meaning with
Srvwa/Srvfa respectively.

Meanwhile, the loss of our generator is formulated as:

LG = log(Srvfa) + log(Sfvra) (2)

Consistency Loss We also restrict our model to the fol-
lowing consistency loss, expecting to generate plausible im-
ages and sound LMS.

LCons = Ll1(GA→V→A, GT s) + Ll1(GV→A→V , GT i)

+Ll1(GA→A→V , GT i) + Ll1(GV→V→A, GT s)
(3)

where Ll1 indicates the l1 loss, subscripts of G denote the
generation paths from corresponding input to output, GT s
and GT i represent the ground truth sound and image sam-
ples respectively.

Our cross-modal visual-audio generation training algo-
rithm is presented in Algorithm 1.

Experiments

Dataset and Implementation Details

To validate the performance of CMCGAN for cross-modal
visual-audio mutual generation, Sub-URMP (University of
Rochester Musical Performance) dataset (Li et al. 2016;
Chen et al. 2017) is adopted. This dataset contains 13 mu-
sic instrument categories. For each category, different music
pieces are played by 1 to 5 persons. In detail, there are total
17,555 sound-image pairs in Sub-URMP dataset.

Network parameters are learned by SGD algorithm for
discriminators and Adam for generators. The batch size is
set to 64 and momentum as 0.9. The learning rate in our ex-
periments is 0.001. We stop our training procedure at 200
epochs. The size of Gaussian latent vector is 100.

Performance Evaluations

In this section, several experiments are designed to evaluate
the performance of our model CMCGAN.

Algorithm 1 CMCGAN training algorithm for cross-modal
visual-audio generation.
Input: minibatch images x, minibatch sounds LMS a,

minibatch images x̂ that mismatched with x, minibatch
sounds LMS â that mismatched with a, latent vector z,
number of training batch steps S, number of generator
loss training steps K.

1: for each i ∈ [1, S] do
2: Sample a minibatch image x and sound a
3: Forward x, a and z through network
4: Sample a minibatch mismatched image x̂ and sound

â
5: Forward (image, sound), (generated image, sound),

(wrong image, sound), (image, generated sound) and
(image, wrong sound) pairs through discriminator
separately

6: Compute discriminator loss LD (Equation 1)
7: Update D
8: for each j ∈ [1,K] do
9: Compute generator loss LG (Equation 2)

10: Compute consistency loss LCons (Equation 3)
11: Update G
12: end for
13: end for

Evaluate the Performances of CMCGAN and Conven-
tional Cross-Modal Visual-Audio Generation Models
To validate the superiority of our model CMCGAN, recent
benchmark models S2IC and I2S (Chen et al. 2017) are
utilized as comparisons. S2IC/I2S indicates generating im-
age/sound from the corresponding sound/image separately.
Comparison results are presented in Figure 2.

Figure 2 reveals that CMCGAN can obtain better cross-
modal generated images and sounds when compared to S2IC
and I2S models respectively. Specifically, images generated
by our model have less noise and sounds LMS are more sim-
ilar to the ground-truth ones.

To further validate the performance of our model, we
also evaluate the classification accuracies of generated im-
ages/sounds of CMCGAN and S2IC/I2S (Chen et al. 2017)
respectively. Comparison results are displayed in Table 1.

From Table 1, we can see that CMCGAN exceeds
S2IC/I2S in a large extent, which further verifies the superi-
ority of our model.

It is interesting to give manual judgments. We collect
observers from our lab (21 people) to see the satisfac-
tory and acceptable rate of generated modalities. The met-
rics are: image/sound average satisfactory rate (I-AST/S-
AST) and image/sound average acceptable rate (I-AAT/S-
AAT). We compare our model and the existing model as:
I-AST/S-AST: 0.714/0.619 vs. 0.429/0.190, I-AAT/S-AAT:
0.952/0.857 vs. 0.619/0.381 respectively. It further illus-
trates the advantages of our approach.

Evaluate the Performances of Models with or with-
out Attached Cross-Modal Generation Path Besides the
generation paths which have the same input and output
modality (visual-audio-visual and audio-visual-audio), two
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Figure 2: Cross-modal generated images and sounds based on different models. GT indicates ground truth.

Models (Sound-to-Image) S2IC CMCGAN
Training Accuracy 0.8737 0.9105
Testing Accuracy 0.7556 0.7661

Models (Image-to-Sound) I2S CMCGAN
Training Accuracy - 0.8109
Testing Accuracy 0.1117 0.5189

Table 1: The classification accuracies for generated images
and sounds based on different models.

extra paths which have the different input and output modal-
ities (visual-visual-audio and audio-audio-visual), are at-
tached in our model CMCGAN to perform cross-modal
visual-audio mutual generation. To validate the effectiveness
of our attached cross-modal generation paths, we compare
CMCGAN with model LCGAN. LCGAN shares the similar
structure with CMCGAN but has no cross-modal generation
paths. Among them, audio-visual-audio indicates first gen-
erating the fake image (F Image) from the original sound,
then recovering the sound (RF Sound) from the fake image.
visual-audio-visual has the similar meaning. Comparison re-
sults are shown in Figure 3.

Figure 3 reveals that fake sound and image (F Sound and
F Image) generated by LCGAN perform worst, which val-
idates that directly transferring from one modality to the
other is inappropriate. On the other hand, recovered image
and sound (RF Image and RF Sound) from fake sound and
image by LCGAN perform best, which may be because that
the intermediate samples F Sound and F Image carry infor-
mation from original image and sound in some extent. More-
over, our model achieves comparable cross-modal gener-
ated results with RF Image and RF Sound from LCGAN re-
spectively, which validates the effectiveness of our attached
cross-modal generation path.

Evaluate the Performances of Models with or without
Latent Vectors in SubNetworks’ Encoder To validate
the effects of latent vectors in handling dimension and struc-
ture asymmetry across visual and audio modalities, we com-
pare CMCGAN with NLCMCGAN. NLCMCGAN shares
the same structure with CMCGAN, expect that latent vec-

tors are not integrated into its subnetworks.
Comparison results are displayed in Figure 4. Specifi-

cally, CMCGAN-i indicates encoders/decoders of subnet-
works in CMCGAN have i convolutional/deconvolutional
layers. NLCMCGAN-i shares the similar meaning with
CMCGAN-i.

Figure 4 demonstrates the generated images of CMCGAN
contain more plausible pixel distributions and the generated
sounds LMS of CMCGAN are more similar with the ground
truth ones when compared to those of NLCMCGAN. More-
over, the more convolutional and deconvolutional layers the
CMCGAN subnetworks have, the more reasonable pixel dis-
tributions for the generated images and the more similar
sound LMS for the generated sound LMS respectively.

These results validate that latent vector is effective for
handling dimension and structure asymmetry across differ-
ent modalities. Further, the more abstract the features are ex-
tracted, the smaller gaps the two symbiotic modalities suffer.

Evaluate the Performances of Models with Different Ad-
versarial Losses Our joint corresponding adversarial loss
is adopted to optimize image/sound and sound/image match-
ing in addition to the image and sound realism. We be-
lieve that this joint corresponding adversarial loss may in-
troduce additional information to the corresponding genera-
tors, which will further enhance the qualities of generated
image and sound. To verify the effectiveness of our joint
corresponding adversarial loss function, another model with
standard adversarial loss is applied as a comparison. Stan-
dard adversarial loss refers to optimize the image and sound
realism. Comparison results are shown in Figure 5. Due to
space constraint, we only present the comparison results of
the generated images.

Figure 5 demonstrates that images generated by model
with standard adversarial loss seem suffer more severe alias-
ing effects, while our model with joint corresponding adver-
sarial loss obtains better generated images.

Dynamic Multimodal Classification Network

Model Benefiting from cross-modal visual-audio genera-
tion, we develop a dynamic multimodal classification net-
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Figure 3: Cross-modal generated images and sounds based on various generation paths. GT means ground truth. F Image is the
generated image from sound. RF sound is the recovered sound from F Image. F Sound and RF Image have similar meanings.
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Figure 4: Cross-modal generated images and sounds based on models with different convolutional and deconvolutional layers.

work for different input modalities, which is displayed in
Figure 6. If we have both image and sound samples, they are

concatenated directly and sent to the subsequent classifica-
tion network (solid arrows). If one of the modalities is lost,
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Figure 5: Generated images based on models with different loss. First row shows the generated images from model with standard
adversarial loss. Second row displays the generated images from model with joint corresponding adversarial loss.

Models V A V-A GV-A GA-V
Acc 0.9531 0.8863 0.9741 0.9804 0.9861

Table 2: The classification accuracies of different models.

it is generated from the other modality via CMCGAN, then
the original and the generated modalities are concatenated
together and sent to the subsequent classification network
(dotted line/dotted arrows).

Results To verify the effectiveness of our dynamic mul-
timodal classification network, we compare the classifica-
tion accuracies of models with different inputs. They are
V model (input only has image), A model (input only has
sound), V-A model (input have both image and sound), GA-
V model (input have image and generated sound) and GV-
A model (input have sound and generated image). Among
them, V-A, V-GA and GV-A models are executed via dy-
namic multimodal classification network. Comparison re-
sults are shown in Table 2.

Table 2 reveals that V-A model is superior to V and A
models, which indicates the sufficient utilization of both vi-
sual and audio information underlying videos can boost the
performance of specific tasks (such as classification). In ad-
dition, performances of GV-A and GA-V models are com-
parable or even better than that of V-A model, which denotes
cross-modal generation can handle modality absent problem
effectively. Moreover, GV-A and GA-V models surpass V-A
model may due to the generated image/sound is more similar
with those from training dataset other than testing dataset,
which lead to better classification accuracies.

Image

Generated 
Sound

Sound

Generated 
Image

Visual-to-Audio

Audio-to-Visual

 Classifiacation Network

Figure 6: Dynamic multimodal classification network.

Discussions

Cross-modal visual-audio generation refers to restoring one
modality from the other, which has attracted extensive at-
tentions due to its potential capacity in handling modality
absent problem. Although high-order information represen-
tation shared by visual and audio modalities may make their
mutual generation be possible, information mapped from
image to sound or its inversed is often expanded irrationally
owing to dimension and struction discrepancies of different
modalities. To solve this problem, a common Gaussian latent
vector is combined with the high-level abstraction informa-
tion of the source sample, which can refine the texture de-
tails of images and high frequency of sounds. Based on the
same high-order feature representation, even a small pertur-
bation of the Gaussian latent variable can be amplified into
a significant image/sound difference. That is the generaliza-
tion capabilities that we need to fit by our CMCGAN. With
the extraction of modal features more abstract, CMCGAN
tends to own more abundant and reasonable information for
restoring missing modality.

Compared to standard adversarial loss, the joint corre-
sponding adversarial loss in CMCGAN can provide extra
image-sound mutual matching information in addition to
image and sound realism to corresponding generators. These
extra matching information will provide a finer constraint
for image and sound generation, thus avoiding the informa-
tion aliasing resulting from limit prior introduced by stan-
dard adversarial loss. Further, joint corresponding adversar-
ial loss can unify visual-audio mutual generation into a com-
mon framework through mutual matching strategies.

Besides the group of generation paths that have same
input and output modality (visual-audio-visual and audio-
visual-audio), our model CMCGAN attaches another group
of generation paths that conducting cross-modal visual-
audio generation (visual-visual-audio and audio-audio-
visual). The former kind of generation paths achieve promis-
ing generated image and sound, which is because that infor-
mation underlying them is transferred from one modality to
the same modality in some extent. Through sharing weights
with the former generation paths at corresponding compo-
nents, knowledge learned from them can be transferred to
our cross-modal visual-audio generation paths, resulting in
better cross-modal image and sound generation.

In addition to common information, two symbiotic
modalities also contain complementary information. Fus-
ing these complementary information will further enhance
the related video tasks (here, we verify the classification
task). However, due to environment inference or sensor
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fault, sometimes, only one modality exists while the other is
abandoned or missing. Benefiting from cross-modal visual-
audio mutual generation, our dynamic multimodal classifi-
cation network can handle modality absent problem effec-
tively. When one modality is missing, our dynamic multi-
modal classification network first generates it from the other
modality through CMCGAN. Then, this modality and the
generated one are fused together and fed to the subsequent
classifier. Experimental results validate that the model with
generated modality can obtain comparable or even better
classification accuracy compared to the model with origi-
nal modality. Reasons are that cross-modal generated image
and sound via our CMCGAN can capture the promising dis-
criminant information underlying original data. Moreover,
the superiority of our model with generated data may due to
the reason that the generated image/sound are more similar
with those from training dataset, other than testing dataset.

Finally, the performance seems better in some particular
genre of music. Based on our analysis on the experimen-
tal results, we can see our method gives better results when
the training samples and the test samples have small vari-
ance, and vice versa. The advantage of our approach is that it
can capture the essence of the cross-modal visual-audio mu-
tual information to generate reasonable results even when
the training samples and the test samples have significant
gaps.

Conclusions

This paper proposes a CMCGAN model for cross-modal
visual-audio mutual generation. Through introducing la-
tent vectors, CMCGAN can handle dimension and struc-
ture asymmetry across two different modalities effectively.
By developing a joint corresponding adversarial loss, CMC-
GAN can unify visual-audio mutual generation into a com-
mon framework and introduce more prior information for
better cross-modal generation. Further, CMCGAN can be
trained end-to-end to obtain better convenience. Numerous
experiments have been conducted and our model CMC-
GAN achieves the state-of-art cross-modal generated im-
ages/sounds. Moreover, taking benefits from cross-modal
visual-audio generation, we develop a dynamic multimodal
classification network, which can deal with modality absent
problem effectively.
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