
Spatial Temporal Graph Convolutional Networks
for Skeleton-Based Action Recognition

Sijie Yan, Yuanjun Xiong, Dahua Lin
Department of Information Engineering, The Chinese University of Hong Kong

{ys016, dhlin}@ie.cuhk.edu.hk, bitxiong@gmail.com

Abstract

Dynamics of human body skeletons convey significant in-
formation for human action recognition. Conventional ap-
proaches for modeling skeletons usually rely on hand-crafted
parts or traversal rules, thus resulting in limited expressive
power and difficulties of generalization. In this work, we
propose a novel model of dynamic skeletons called Spatial-
Temporal Graph Convolutional Networks (ST-GCN), which
moves beyond the limitations of previous methods by au-
tomatically learning both the spatial and temporal patterns
from data. This formulation not only leads to greater expres-
sive power but also stronger generalization capability. On two
large datasets, Kinetics and NTU-RGBD, it achieves substan-
tial improvements over mainstream methods.

1 Introduction

Human action recognition has become an active research
area in recent years, as it plays a significant role in video
understanding. In general, human action can be recognized
from multiple modalities(Simonyan and Zisserman 2014;
Tran et al. 2015; Wang, Qiao, and Tang 2015; Wang et al.
2016; Zhao et al. 2017), such as appearance, depth, opti-
cal flows, and body skeletons (Du, Wang, and Wang 2015;
Liu et al. 2016). Among these modalities, dynamic human
skeletons usually convey significant information that is com-
plementary to others. However, the modeling of dynamic
skeletons has received relatively less attention than that of
appearance and optical flows. In this work, we systemati-
cally study this modality, with an aim to develop a princi-
pled and effective method to model dynamic skeletons and
leverage them for action recognition.

The dynamic skeleton modality can be naturally repre-
sented by a time series of human joint locations, in the form
of 2D or 3D coordinates. Human actions can then be recog-
nized by analyzing the motion patterns thereof. Earlier meth-
ods of using skeletons for action recognition simply employ
the joint coordinates at individual time steps to form feature
vectors, and apply temporal analysis thereon (Wang et al.
2012; Fernando et al. 2015). The capability of these methods
is limited as it does not explicitly exploit the spatial relation-
ships among the joints, which are crucial for understanding

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The spatial temporal graph of a skeleton sequence used
in this work where the proposed ST-GCN operate on. Blue dots
denote the body joints. The intra-body edges between body joints
are defined based on the natural connections in human bodies.
The inter-frame edges connect the same joints between consecu-
tive frames. Joint coordinates are used as inputs to the ST-GCN.

human actions. Recently, new methods that attempt to lever-
age the natural connections between joints have been devel-
oped (Shahroudy et al. 2016; Du, Wang, and Wang 2015).
These methods show encouraging improvement, which sug-
gests the significance of the connectivity. Yet, most existing
methods rely on hand-crafted parts or rules to analyze the
spatial patterns. As a result, the models devised for a spe-
cific application are difficult to be generalized to others.

To move beyond such limitations, we need a new method
that can automatically capture the patterns embedded in the
spatial configuration of the joints as well as their tempo-
ral dynamics. This is the strength of deep neural networks.
However, as mentioned, the skeletons are in the form of
graphs instead of a 2D or 3D grids, which makes it diffi-
cult to use proven models like convolutional networks. Re-
cently, Graph Neural networks (GCNs), which generalize
convolutional neural networks (CNNs) to graphs of arbi-
trary structures, have received increasing attention and suc-
cessfully been adopted in a number of applications, such as
image classification (Bruna et al. 2014), document classifi-
cation (Defferrard, Bresson, and Vandergheynst 2016), and
semi-supervised learning (Kipf and Welling 2017). How-
ever, much of the prior work along this line assumes a fixed

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

7444

graph as input. The application of GCNs to model dynamic
graphs over large-scale datasets, e.g. human skeleton se-
quences, is yet to be explored.

In this paper, we propose to design a generic represen-
tation of skeleton sequences for action recognition by ex-
tending graph neural networks to a spatial-temporal graph
model, called Spatial-Temporal Graph Convolutional Net-
works (ST-GCN). As illustrated in Figure 1 this model is
formulated on top of a sequence of skeleton graphs, where
each node corresponds to a joint of the human body. There
are two types of edges, namely the spatial edges that con-
form to the natural connectivity of joints and the temporal
edges that connect the same joints across consecutive time
steps. Multiple layers of spatial temporal graph convolution
are constructed thereon, which allow information to be inte-
grated along both the graph and the temporal dimension.

The hierarchical nature of ST-GCN eliminates the need of
hand-crafted part assignment or traversal rules. This not only
leads to greater expressive power and thus higher perfor-
mance (as shown in our experiments), but also makes it easy
to generalize to different contexts. Upon the generic GCN
formulation, we also study new strategies to design graph
convolution kernels, with inspirations from image models.

The major contributions of this work lie in three aspects:
1) We propose ST-GCN, a generic graph-based formulation
for modeling dynamic skeletons, which is the first that ap-
plies graph-based neural networks for this task. 2) We pro-
pose several principles in designing convolution kernels in
ST-GCN to meet the specific demands in skeleton model-
ing. 3) On two large scale datasets for skeleton-based action
recognition, the proposed model achieves superior perfor-
mance as compared to previous methods using hand-crafted
parts or traversal rules, with considerably less effort in man-
ual design.

2 Related work

Neural Networks on Graphs. Generalizing neural net-
works to data with graph structures is an emerging topic
in deep learning research. The discussed neural network
architectures include both recurrent neural networks (Tai,
Socher, and Manning 2015; Van Oord, Kalchbrenner, and
Kavukcuoglu 2016) and convolutional neural networks
(CNNs) (Bruna et al. 2014; Henaff, Bruna, and LeCun 2015;
Duvenaud et al. 2015; Li et al. 2016; Defferrard, Bresson,
and Vandergheynst 2016). This work is more related to the
generalization of CNNs, or graph convolutional networks
(GCNs). The principle of constructing GCNs on graph gen-
erally follows two streams: 1) the spectral perspective,
where the locality of the graph convolution is considered
in the form of spectral analysis (Henaff, Bruna, and Le-
Cun 2015; Duvenaud et al. 2015; Li et al. 2016; Kipf and
Welling 2017); 2) the spatial perspective, where the convo-
lution filters are applied directly on the graph nodes and their
neighbors (Bruna et al. 2014; Niepert, Ahmed, and Kutzkov
2016). This work follows the spirit of the second stream. We
construct the CNN filters on the spatial domain, by limiting
the application of each filter to the 1-neighbor of each node.

Skeleton Based Action Recognition. Skeleton and joint
trajectories of human bodies are robust to illumination
change and scene variation, and they are easy to obtain ow-
ing to the highly accurate depth sensors or pose estimation
algorithms (Shotton et al. 2011; Cao et al. 2017a). There
is thus a broad array of skeleton based action recognition
approaches. The approaches can be categorized into hand-
crafted feature based methods and deep learning meth-
ods. The first type of approaches design several handcrafted
features to capture the dynamics of joint motion. These
could be covariance matrices of joint trajectories (Hussein
et al. 2013), relative positions of joints (Wang et al. 2012),
or rotations and translations between body parts (Vemu-
lapalli, Arrate, and Chellappa 2014). The recent success
of deep learning has lead to the surge of deep learning
based skeleton modeling methods. These works have been
using recurrent neural networks (Shahroudy et al. 2016;
Zhu et al. 2016; Liu et al. 2016; Zhang, Liu, and Xiao
2017) and temporal CNNs (Li et al. 2017; Ke et al. 2017;
Kim and Reiter 2017) to learn action recognition models in
an end-to-end manner. Among these approaches, many have
emphasized the importance of modeling the joints within
parts of human bodies. But these parts are usually explic-
itly assigned using domain knowledge. Our ST-GCN is the
first to apply graph CNNs to the task of skeleton based ac-
tion recognition. It differentiates from previous approaches
in that it can learn the part information implicitly by harness-
ing locality of graph convolution together with the temporal
dynamics. By eliminating the need for manual part assign-
ment, the model is easier to design and potent to learn better
action representations.

3 Spatial Temporal Graph ConvNet

When performing activities, human joints move in small lo-
cal groups, known as “body parts”. Existing approaches for
skeleton based action recognition have verified the effective-
ness of introducing body parts in the modeling (Shahroudy
et al. 2016; Liu et al. 2016; Zhang, Liu, and Xiao 2017).
We argue that the improvement is largely due to that parts
restrict the modeling of joints trajectories within “local re-
gions” compared with the whole skeleton, thus forming a hi-
erarchical representation of the skeleton sequences. In tasks
such as image object recognition, the hierarchical repre-
sentation and locality are usually achieved by the intrin-
sic properties of convolutional neural networks (Krizhevsky,
Sutskever, and Hinton 2012), rather than manually assign-
ing object parts. It motivates us to introduce the appealing
property of CNNs to skeleton based action recognition. The
result of this attempt is the ST-GCN model.

3.1 Pipeline Overview

Skeleton based data can be obtained from motion-capture
devices or pose estimation algorithms from videos. Usually
the data is a sequence of frames, each frame will have a set
of joint coordinates. Given the sequences of body joints in
the form of 2D or 3D coordinates, we construct a spatial
temporal graph with the joints as graph nodes and natural
connectivities in both human body structures and time as

7445

�������

	
��
��
���
�
�

���

����
�����

��
�
�
����������
�
�

��������
��

�������

Figure 2: We perform pose estimation on videos and construct spatial temporal graph on skeleton sequences. Multiple layers of
spatial-temporal graph convolution (ST-GCN) will be applied and gradually generate higher-level feature maps on the graph. It
will then be classified by the standard Softmax classifier to the corresponding action category.

graph edges. The input to the ST-GCN is therefore the joint
coordinate vectors on the graph nodes. This can be consid-
ered as an analog to image based CNNs where the input is
formed by pixel intensity vectors residing on the 2D image
grid. Multiple layers of spatial-temporal graph convolution
operations will be applied on the input data and generating
higher-level feature maps on the graph. It will then be classi-
fied by the standard Softmax classifier to the corresponding
action category. The whole model is trained in an end-to-
end manner with backpropagation. We will now go over the
components in the ST-GCN model.

3.2 Skeleton Graph Construction

A skeleton sequence is usually represented by 2D or 3D co-
ordinates of each human joint in each frame. Previous work
using convolution for skeleton action recognition (Kim and
Reiter 2017) concatenates coordinate vectors of all joints to
form a single feature vector per frame. In our work, we uti-
lize the spatial temporal graph to hierarchical representation
of the skeleton sequences. Particularly, we construct an undi-
rected spatial temporal graph G = (V,E) on a skeleton se-
quence with N joints and T frames featuring both intra-body
and inter-frame connection.

In this graph, the node set V = {vti|t = 1, . . . , T, i =
1, . . . , N} includes the all the joints in a skeleton sequence.
As ST-GCN’s input, the feature vector on a node F (vti) con-
sists of coordinate vectors, as well as estimation confidence,
of the i-th joint on frame t. We construct the spatial tempo-
ral graph on the skeleton sequences in two steps. First, the
joints within one frame are connected with edges accord-
ing to the connectivity of human body structure, which is
illustrated in Fig. 1. Then each joint will be connected to
the same joint in the consecutive frame. The connections in
this setup are thus naturally defined without the manual part
assignment. This also enables the network architecture can
work on datasets with different number of joints or joint con-
nectivities. For example, on the Kinetics dataset, we use the
2D pose estimation results from the OpenPose (Cao et al.
2017b) toolbox which outputs 18 joints, while on the NTU-
RGB+D dataset (Shahroudy et al. 2016) we use 3D joint
tracking results as input, which produces 25 joints. The ST-
GCN can be defined on both situations and provide consis-
tent superior performance. An example of the constructed
spatial temporal graph is illustrated in Fig. 1.

Formally, the edge set E is composed of two subsets,
the first subset depicts the intra-skeleton connection at each
frame, denoted as ES = {vtivtj |(i, j) ∈ H}, where H is
the set of naturally connected human body joints. The sec-
ond subset contains the inter-frame edges, which connect the
same joints in consecutive frames as EF = {vtiv(t+1)i}.
Therefore all edges in EF for one particular joint i will rep-
resent its trajectory over time.

3.3 Spatial Graph Convolutional Neural Network

Before we dive into the full-fledged ST-GCN, we first look
at the graph CNN model within one single frame. In this
case, on a single frame at time τ , there will be N joint nodes
Vt, along with the skeleton edges ES(τ) = {vtivtj |t =
τ, (i, j) ∈ H}. Recall the definition of convolution opera-
tion on the 2D natural images or feature maps, which can
be both treated as 2D grids. The output feature map of a
convolution operation is again a 2D grid. With stride 1 and
appropriate padding, the output feature maps can have the
same size as the input feature maps. We will assume this
condition in the following discussion. Given a convolution
operator with the kernel size of K×K, and an input feature
map fin with the number of channels c. The output value for
a single channel at the spatial location x can be written as

fout(x) =

K∑
h=1

K∑
w=1

fin(p(x, h, w)) ·w(h,w), (1)

where the sampling function p : Z2×Z2 → Z2 enumer-
ates the neighbor of location x. In the case of image convolu-
tion, it can also be represented as p(x, h, w) = x+p′(h,w).
The weight function w : Z2 → R

c provides a weight vec-
tor in c-dimension real space for computing the inner prod-
uct with the sampled input feature vectors of dimension c.
Note that the weight function is irrelevant to the input loca-
tion x. Thus the filter weights are shared everywhere on the
input image. Standard convolution on the image domain is
therefore achieved by encoding a rectangular grid in p(x).
More detailed explanation and other applications of this for-
mulation can be found in (Dai et al. 2017).

The convolution operation on graphs is then defined by
extending the formulation above to the cases where the in-
put features map resides on a spatial graph Vt. That is, the

feature map f t
in : Vt → Rc has a vector on each node of

the graph. The next step of the extension is to redefine the
sampling function p and the weight function w.

Sampling function. On images, the sampling function
p(h,w) is defined on the neighboring pixels with respect
to the center location x. On graphs, we can similarly de-
fine the sampling function on the neighbor set B(vti) =
{vtj |d(vtj , vti) ≤ D} of a node vti. Here d(vtj , vti) de-
notes the minimum length of any path from vtj to vti. Thus
the sampling function p : B(vti) → V can be written as

p(vti, vtj) = vtj . (2)

In this work we use D = 1 for all cases, that is, the 1-
neighbor set of joint nodes. The higher number of D is left
for future works.

Weight function. Compared with the sampling function,
the weight function is trickier to define. In 2D convolution,
a rigid grid naturally exists around the center location. So
pixels within the neighbor can have a fixed spatial order. The
weight function can then be implemented by indexing a ten-
sor of (c,K,K) dimensions according to the spatial order.
For general graphs like the one we just constructed, there is
no such implicit arrangement. The solution to this problem
is first investigated in (Niepert, Ahmed, and Kutzkov 2016),
where the order is defined by a graph labeling process in the
neighbor graph around the root node. We follow this idea to
construct our weight function. Instead of giving every neigh-
bor node a unique labeling, we simplify the process by parti-
tioning the neighbor set B(vti) of a joint node vti into a fixed
number of K subsets, where each subset has a numeric label.
Thus we can have a mapping lti : B(vti) → {0, . . . ,K−1}
which maps a node in the neighborhood to its subset label.
The weight function w(vti, vtj) : B(vti) → Rc can be im-
plemented by indexing a tensor of (c,K) dimension or

w(vti, vtj) = w′(lti(vtj)). (3)

We will discuss several partitioning strategies in Sec. 3.4.

Spatial Graph Convolution. With the refined sampling
function and weight function, we now rewrite Eq. 1 in terms
of graph convolution as

fout(vti) =
∑

vtj∈B(vti)

1

Zti(vtj)
fin(p(vti, vtj)) ·w(vti, vtj),

(4)

where the normalizing term Zti(vtj) =| {vtk|lti(vtk) =
lti(vtj)} | equals the cardinality of the corresponding subset.
This term is added to balance the contributions of different
subsets to the output. Substituting Eq. 2 and Eq. 3 into Eq. 4,
we arrive at

fout(vti) =
∑

vtj∈B(vti)

1

Zti(vtj)
fin(vtj) ·w(lti(vtj)). (5)

It is worth noting this formulation can resemble the standard
2D convolution if we treat a image as a regular 2D grid. For
example, to resemble a 3×3 convolution operation, we have
a neighbor of 9 pixels in the 3 × 3 grid centered on a pixel.
The neighbor set should then be partitioned into 9 subsets,
each having one pixel.

Spatial Temporal Modeling. Having formulated spatial
graph CNN, we now advance to the task of modeling the
spatial temporal dynamics within skeleton sequence. Recall
that in the construction of the graph, the temporal aspect of
the graph is constructed by connecting the same joints across
consecutive frames. This enable us to define a very simple
strategy to extend the spatial graph CNN to the spatial tem-
poral domain. That is, we extend the concept of neighbor-
hood to also include temporally connected joints as

B(vti) = {vqj |d(vtj , vti) ≤ K, |q − t| ≤ �Γ/2�}. (6)

The parameter Γ controls the temporal range to be included
in the neighbor graph and can thus be called the temporal
kernel size. To complete the convolution operation on the
spatial temporal graph, we also need the sampling function,
which is the same as the spatial only case, and the weight
function, or in particular, the labeling map lST . Because the
temporal axis is well-ordered, we directly modify the label
map lST for a spatial temporal neighborhood rooted at vti to
be

lST (vqj) = lti(vtj) + (q − t+ �Γ/2�)×K, (7)

where lti(vtj) is the label map for the single frame case at
vti. In this way, we have a well-defined convolution opera-
tion on the constructed spatial temporal graphs.

3.4 Partition Strategies.

Given the high-level formulation of spatial temporal graph
convolution, it is important to design a partitioning strategy
to implement the label map l. In this work we explore several
partition strategies. For simplicity, we only discuss the cases
in a single frame because they can be naturally extended to
the spatial-temporal domain using Eq. 7.

Uni-labeling. The simplest and most straight forward par-
tition strategy is to have subset, which is the whole neighbor
set itself. In this strategy, feature vectors on every neigh-
boring node will have a inner product with the same weight
vector. Actually, this strategy resembles the propagation rule
introduced in (Kipf and Welling 2017). It has an obvious
drawback that in the single frame case, using this strategy
is equivalent to computing the inner product between the
weight vector and the average feature vector of all neigh-
boring nodes. This is suboptimal for skeleton sequence clas-
sification as the local differential properties could be lost in
this operation. Formally, we have K = 1 and lti(vtj) =
0, ∀i, j ∈ V .

Distance partitioning. Another natural partitioning strat-
egy is to partition the neighbor set according to the nodes’
distance d(·, vti) to the root node vti. In this work, because

7447

��� ��� ��� �	�

�

�
�

�

� �

�

Figure 3: The proposed partitioning strategies for constructing convolution operations. From left to right: (a) An example frame
of input skeleton. Body joints are drawn with blue dots. The receptive fields of a filter with D = 1 are drawn with red dashed
circles. (b) Uni-labeling partitioning strategy, where all nodes in a neighborhood has the same label (green). (c) Distance
partitioning. The two subsets are the root node itself with distance 0 (green) and other neighboring points with distance 1.
(blue). (d) Spatial configuration partitioning. The nodes are labeled according to their distances to the skeleton gravity center
(black cross) compared with that of the root node (green). Centripetal nodes have shorter distances (blue), while centrifugal
nodes have longer distances (yellow) than the root node.

we set D = 1, the neighbor set will then be separated into
two subsets, where d = 0 refers to the root node itself and
remaining neighbor nodes are in the d = 1 subset. Thus we
will have two different weight vectors and they are capable
of modeling local differential properties such as the relative
translation between joints. Formally, we have K = 2 and
lti(vtj) = d(vtj , vti) .

Spatial configuration partitioning. Since the body skele-
ton is spatially localized, we can still utilize this specific spa-
tial configuration in the partitioning process. We design a
strategy to divide the neighbor set into three subsets: 1) the
root node itself; 2)centripetal group: the neighboring nodes
that are closer to the gravity center of the skeleton than the
root node; 3) otherwise the centrifugal group. Here the av-
erage coordinate of all joints in the skeleton at a frame is
treated as its gravity center. This strategy is inspired by the
fact that motions of body parts can be broadly categorized
as concentric and eccentric motions. Formally, we have

lti(vtj) =

⎧⎨
⎩
0 if rj = ri
1 if rj < ri
2 if rj > ri

(8)

where ri is the average distance from gravity center to joint
i over all frames in the training set.

Visualization of the three partitioning strategies is shown
in Fig. 3. We will empirically examine the proposed por-
tioning strategies on skeleton based action recognition ex-
periments. It is expected that a more advanced partitioning
strategy will lead to better modeling capacity and recogni-
tion performance.

3.5 Learnable edge importance weighting.

Although joints move in group when people are perform-
ing actions, one joint could appear in multiple body parts.
These appearances, however, should have different impor-
tance in modeling the dynamics of these parts. In this sense,
we add a learnable mask M on every layer of spatial tempo-
ral graph convolution. The mask will scale the contributions

of a node’s feature to its neighboring nodes based on the
learned importance weight of each spatial graph edge in ES .
Empirically we find adding this mask can further improve
the recognition performance of ST-GCN. It is also possible
to have a data dependent attention map for this sake. We
leave this to future works.

3.6 Implementing ST-GCN

The implementation of graph-based convolution is not as
straightforward as 2D or 3D convolution. Here we provide
details on implementing ST-GCN for skeleton based action
recognition.

We adopt a similar implementation of graph convolution
as in (Kipf and Welling 2017). The intra-body connections
of joints within a single frame are represented by an adja-
cency matrix A and an identity matrix I representing self-
connections. In the single frame case, ST-GCN with the first
partitioning strategy can be implemented with the following
formula (Kipf and Welling 2017)

fout = Λ− 1
2 (A+ I)Λ− 1

2 finW, (9)

where Λii =
∑

j(A
ij + Iij). Here the weight vectors of

multiple output channels are stacked to form the weight ma-
trix W. In practice, under the spatial temporal cases, we can
represent the input feature map as a tensor of (C, V, T) di-
mensions. The graph convolution is implemented by per-
forming a 1 × Γ standard 2D convolution and multiplies
the resulting tensor with the normalized adjacency matrix
Λ− 1

2 (A+ I)Λ− 1
2 on the second dimension.

For partitioning strategies with multiple subsets, i.e., dis-
tance partitioning and spatial configuration partitioning, we
again utilize this implementation. But note now the adja-
cency matrix is dismantile into several matrixes Aj where
A + I =

∑
j Aj . For example in the distance partitioning

strategy, A0 = I and A1 = A. The Eq. 9 is transformed
into

fout =
∑
j

Λ
− 1

2
j AjΛ

− 1
2

j finWj , (10)

where similarly Λii
j =

∑
k(A

ik
j)+α. Here we set α = 0.001

to avoid empty rows in Aj .
It is straightforward to implement the learnable edge im-

portance weighting. For each adjacency matrix, we accom-
pany it with a learnable weight matrix M. And we substi-
tute the matrix A + I in Eq. 9 and Aj in Aj in Eq. 10 with
(A + I) ⊗ M and Aj ⊗ M, respectively. Here ⊗ denotes
element-wise product between two matrixes. The mask M
is initialized as an all-one matrix.

Network architecture and training. Since the ST-GCN
share weights on different nodes, it is significant to keep the
scale of input data consistent on different joints. In our ex-
periments, we first feed input skeletons to a batch normal-
ization layer to normalize data. The ST-GCN model is com-
posed of 9 layers of spatial temporal graph convolution op-
erators (ST-GCN units). The first three layers have 64 chan-
nels for output. The follow three layers have 128 channels
for output. And the last three layers have 256 channels for
output. These layers have 9 temporal kernel size. The Resnet
mechanism is applied on each ST-GCN unit. And we ran-
domly dropout the features at 0.5 probability after each ST-
GCN unit to avoid overfitting. The strides of the 4-th and
the 7-th temporal convolution layers are set to 2 as pooling
layer. After that, a global pooling was performed on the re-
sulting tensor to get a 256 dimension feature vector for each
sequence. Finally, we feed them to a SoftMax classifier. The
models are learned using stochastic gradient descent with a
learning rate of 0.01. We decay the learning rate by 0.1 after
every 10 epochs. To avoid overfitting, we perform two kinds
of augmentation when training on the Kinetics dataset (Kay
et al. 2017). First, to simulate the camera movement, we
perform random affine transformations on the skeleton se-
quences of all frames. Particularly, from the first frame to the
last frame, we select a few fixed angle, translation and scal-
ing factors as candidates and then randomly sampled two
combinations of three factors to generate an affine transfor-
mation. This transformation is interpolated for intermediate
frames to generate a effect as if we smoothly move the view
point during playback. We name this augmentation as ran-
dom moving. Second, we randomly sample fragments from
the original skeleton sequences in training and use all frames
in the test. Global pooling at the top of the network enables
the network to handle the input sequences with indefinite
length.

4 Experiments

In this section we evaluate the performance of ST-GCN
in skeleton based action recognition experiments. We ex-
periment on two large-scale action recognition datasets
with vastly different properties: Kinetics human ac-
tion dataset (Kinetics) (Kay et al. 2017) is by far the
largest unconstrained action recognition dataset, and NTU-
RGB+D (Shahroudy et al. 2016) the largest in-house cap-
tured action recognition dataset. In particular, we first per-
form detailed ablation study on the Kinetics dataset to ex-
amine the contributions of the proposed model components
to the recognition performance. Then we compare the recog-

nition results of ST-GCN with other state-of-the-art methods
and other input modalities. To verify whether the experience
we gained on in the unconstrained setting is universal, we
experiment with the constraint setting on NTU-RGB+D and
compare ST-GCN with other state-of-the-art approaches.
All experiments were conducted on Pytorch deep learning
framework with 8 TITANX GPUs. The code and models of
ST-GCN are made publicly available1.

4.1 Dataset & Evaluation Metrics

Kinetics. Deepmind Kinetics human action dataset (Kay
et al. 2017) contains around 300, 000 video clips retrieved
from YouTube. The videos cover as many as 400 human ac-
tion classes, ranging from daily activities, sports scenes, to
complex actions with interactions. Each clip in Kinetics lasts
around 10 seconds with FPS of 30, or 300 frames in total.

This Kinetics dataset provides only raw video clips with-
out skeleton data. In this work we are focusing on skeleton
based action recognition, so we use the estimated joint loca-
tions in the pixel coordinate system as our input and discard
the raw RGB frames. To obtain the joint locations, we first
resize all videos to the resolution of 340 × 256. Then we
use the public available OpenPose (Cao et al. 2017b) tool-
box to estimate the location of 18 joints on every frame of
the clips. The toolbox gives 2D coordinates (X,Y) in the
pixel coordinate system and confidence scores C for the 18
human joints. We thus represent each joint with a tuple of
(X,Y,C) and a skeleton frame is recorded as an array of
18 tuples. For the multi-person cases, we select the people
with the highest average joint confidence in each clip. In this
way, one clip with T frames is transformed into a skeleton
sequence of these tuples. In practice, we represent the clips
with tensors of (18, 3, T) dimensions. For simplicity, we pad
every clip by replaying the sequence from the start to have
T = 300. We will release the estimated joint locations on
Kinetics for reproducing the results.

We evaluate the recognition performance by top-1 and
top-5 classification accuracy as recommended by the dataset
authors (Kay et al. 2017). The dataset provides a training set
of 240, 000 clips and a validation set of 20, 000. We train the
compared models on the training set and report the accura-
cies on the validation set.

NTU-RGB+D: NTU-RGB+D (Shahroudy et al. 2016) is
currently the largest dataset with 3D joints annotations for
human action recognition task. This dataset contains 56, 000
action clips in 60 action classes. These clips are all per-
formed by 40 volunteers captured in a constrained lab envi-
ronment, with three camera views recorded simultaneously.
The provided annotations give 3D joint locations (X,Y, Z)
in the camera coordinate system, detected by the Kinect
depth sensors. There are 25 joints for each subject in the
skeleton sequences. Each clip is guaranteed to have at most
2 subjects.

The authors of this dataset recommend two benchmarks:
1) cross-subject (X-Sub) benchmark with 39, 889 and
16, 390 clips for training and evaluation. In this setting the
training clips come from one subset of actors and the models

1https://github.com/yysijie/st-gcn

7449

Top-1 Top-5
Baseline TCN 25.1% 46.7%

Local Convolution 22.0% 43.2%
Uni-labeling 19.3% 37.4%

Distance partitioning* 23.9% 44.9%
Distance Partitioning 29.1% 51.3%
Spatial Configuration 29.9% 52.2%

ST-GCN + Imp. 30.7% 52.8%

Table 1: Ablation study on the Kinetics dataset. The “ST-
GCN+Imp.” is used in comparison with other state-of-the-
art methods. For meaning of each setting please refer to
Sec.4.2.

are evaluated on clips from the remaining actors; 2) cross-
view(X-View) benchmark 37, 462 and 18, 817 clips. Train-
ing clips in this setting come from the camera views 2 and
3, and the evaluation clips are all from the camera view 1.
We follow this convention and report the top-1 recognition
accuracy on both benchmarks.

4.2 Ablation Study

We examine the effectiveness of the proposed components
in ST-GCN in this section by action recognition experiments
on the Kinetics dataset (Kay et al. 2017).

Spatial temporal graph convolution. First, we evaluate
the necessity of using spatial temporal graph convolution
operation. We use a baseline network architecture (Kim and
Reiter 2017) where all spatial temporal convolutions are re-
placed by only temporal convolution. That is, we concate-
nate all input joint locations to form the input features at
each frame t. The temporal convolution will then operate on
this input and convolves over time. We call this model “base-
line TCN”. This kind of recognition models is known to
work well on constraint dataset such as NTU-RGB+D (Kim
and Reiter 2017). Seen from Table 1, models with spa-
tial temporal graph convolution, with reasonable partition-
ing strategies, consistently outperform the baseline model on
Kinetics. Actually, this temporal convolution is equivalent to
spatial temporal graph convolution with unshared weights
on a fully connected joint graph. So the major difference be-
tween the baseline model and ST-GCN models are the sparse
natural connections and shared weights in convolution oper-
ation. Additionally, we evaluate an intermediate model be-
tween the baseline model and ST-GCN, referred as “local
convolution”. In this model we use the sparse joint graph as
ST-GCN, but use convolution filters with unshared weights.
We believe the better performance of ST-GCN based models
could justify the power of the spatial temporal graph convo-
lution in skeleton based action recognition.

Partition strategies In this work we present three parti-
tioning strategies: 1) uni-labeling; 2) distance partitioning;
and 3) spatial configuration partitioning. We evaluate the
performance of ST-GCN with these partitioning strategies.
The results are summarized in Table 1. We observe that par-
titioning with multiple subsets is generally much better than

uni-labeling. This is in accordance with the obvious prob-
lem of uni-labeling that it is equivalent to simply averag-
ing features before the convolution operation. Given this ob-
servation, we experiment with an intermediate between the
distance partitioning and uni-labeling, referred to as “dis-
tance partitioning*”. In this setting we bind the weights of
the two subsets in distance partitioning to be different only
by a scaling factor −1, or w0 = −w1. This setting still
achieves better performance than uni-labeling, which again
demonstrate the importance of the partitioning with multiple
subsets. Among multi-subset partitioning strategies, the spa-
tial configuration partitioning achieves better performance.
This corroborates our motivation in designing this strategy,
which takes into consideration the concentric and eccentric
motion patterns. Based on these observations, we use the
spatial configuration partitioning strategy in the following
experiments.

Learnable edge importance weighting. Another compo-
nent in ST-GCN is the learnable edge importance weight-
ing. We experiment with adding this component on the ST-
GCN model with spatial configuration partitioning. This is
referred to as “ST-GCN+Imp.” in Table 1. Given the high
performing vanilla ST-GCN, this component is still able to
raise the recognition performance by more than 1 percent.
Recall this component is inspired that joints in different parts
have different importance, it is verified that the ST-GCN
model can now learn to express the joint importance and
improve the recognition performance. Based on this obser-
vation, we always use this component with ST-GCN in com-
parison with other state-of-the-art models.

4.3 Comparison with State of the Arts

To verify the performance of ST-GCN in both uncon-
strained and constraint environment, we perform experi-
ments on Kinetics dataset (Kay et al. 2017) and NTU-
RGB+D dataset(Shahroudy et al. 2016), respectively.

Kinetics. On Kinetics, we compare with three character-
istic approaches for skeleton based action recognition. The
first is the feature encoding approach on hand-crafted fea-
tures (Fernando et al. 2015), referred to as “Feature Encod-
ing” in Table 2. We also implemented two deep learning
based approaches on Kinetics, i.e. Deep LSTM (Shahroudy
et al. 2016) and Temporal ConvNet (Kim and Reiter 2017).
We compare the approaches’ recognition performance in
terms of top-1 and top-5 accuracies. In Table 2, ST-GCN is
able to outperform previous representative approaches. For
references, we list the performance of using RGB frames
and optical flow for recognition as reported in (Kay et al.
2017).

NTU-RGB+D. The NTU-RGB+D dataset is captured in a
constraint environment, which allows for methods that re-
quire well stabilized skeleton sequences to work well. We
also compare our ST-GCN model with the previous state-of-
the-art methods on this dataset. Due to the constraint nature
of this dataset, we do not use any data augmentation when

7450

Top-1 Top-5
RGB(Kay et al. 2017) 57.0% 77.3%

Optical Flow (Kay et al. 2017) 49.5% 71.9%
Feature Enc. (Fernando et al. 2015) 14.9% 25.8%

Deep LSTM (Shahroudy et al. 2016) 16.4% 35.3%
Temporal Conv. (Kim and Reiter 2017) 20.3% 40.0%

ST-GCN 30.7% 52.8%

Table 2: Action recognition performance for skeleton based
models on the Kinetics dataset. On top of the table we list
the performance of frame based methods.

X-Sub X-View
Lie Group (Veeriah, Zhuang, and Qi 2015) 50.1% 52.8%

H-RNN (Du, Wang, and Wang 2015) 59.1% 64.0%
Deep LSTM (Shahroudy et al. 2016) 60.7% 67.3%
PA-LSTM (Shahroudy et al. 2016) 62.9% 70.3%

ST-LSTM+TS (Liu et al. 2016) 69.2% 77.7%
Temporal Conv (Kim and Reiter 2017). 74.3% 83.1%

C-CNN + MTLN (Ke et al. 2017) 79.6% 84.8%
ST-GCN 81.5% 88.3%

Table 3: Skeleton based action recognition performance on
NTU-RGB+D datasets. We report the accuracies on both
the cross-subject (X-Sub) and cross-view (X-View) bench-
marks.

training ST-GCN models. We follow the standard prac-
tice in literature to report cross-subject (X-Sub) and cross-
view (X-View) recognition performance in terms of top-
1 classification accuracies. The compared methods include
Lie Group (Veeriah, Zhuang, and Qi 2015), Hierarchical
RNN (Du, Wang, and Wang 2015), Deep LSTM (Shahroudy
et al. 2016), Part-Aware LSTM (PA-LSTM) (Shahroudy et
al. 2016), Spatial Temporal LSTM with Trust Gates (ST-
LSTM+TS) (Liu et al. 2016), Temporal Convolutional Neu-
ral Networks (Temporal Conv.) (Kim and Reiter 2017), and
Clips CNN + Multi-task learning (C-CNN+MTLN) (Ke et
al. 2017). Our ST-GCN model, with rather simple architec-
ture and no data augmentation as used in (Kim and Reiter
2017; Ke et al. 2017), is able to outperform previous state-
of-the-art approaches on this dataset.

Discussion. The two datasets in experiments have very
different natures. On Kinetics the input is 2D skeletons de-
tected with deep neural networks (Cao et al. 2017a), while
on NTU-RGB+D the input is from Kinect depth sensor. On
NTU-RGB+D the cameras are fixed, while on Kinetics the
videos are usually shot by hand-held devices, leading to
large camera motion. The fact that the proposed ST-GCN
can work well on both datasets demonstrates the effective-
ness of the proposed spatial temporal graph convolution op-
eration and the resultant ST-GCN model.

We also notice that on Kinetics the accuracies of skele-
ton based methods are inferior to video frame based mod-
els (Kay et al. 2017). We argue that this is due to a lot of ac-
tion classes in Kinetics requires recognizing the objects and
scenes that the actors are interacting with. To verify this, we
select a subset of 30 classes strongly related with body mo-
tions, named as “Kinetics-Motion” and list the mean class

Method RGB CNN Flow CNN ST-GCN
Accuracy 70.4% 72.8% 72.4%

Table 4: Mean class accuracies on the “Kinetics Motion”
subset of the Kinetics dataset. This subset contains 30 ac-
tion classes in Kinetics which are strongly related to body
motions.

RGB TSN Flow TSN ST-GCN Acc(%)
Single � 70.3
Model � 51.0

� 30.7
Ensemble � � 71.1

Model � � 71.2
� � � 71.7

Table 5: Class accuracies on the Kinects dataset. Although
our skeleton based model ST-GCN can not achieve the ac-
curacy of the state of the art model performed on RGB and
optical flow modalities, it can provide stronger complemen-
tary information than optical flow based model.

accuracies of skeleton and frame based models (Kay et al.
2017) on this subset in Table 4. We can see that on this sub-
set the performance gap is much smaller. We also explore
using ST-GCN to capture motion information in two-stream
style action recognition. As shown as in Fig. 5, our skele-
ton based model ST-GCN can also provide complementary
information to RGB and optical flow models. We train the
standard TSN (Wang et al. 2016) models on Kinetics with
RGB and optical flow models. Adding ST-GCN to the RGB
model leads to 0.9% increase, even better than optical flows
(0.8%). Combining RGB, optical flow, and ST-GCN further
raises the performance to 71.7%. These results clearly show
that the skeletons can provide complementary information
when leveraged effectively (e.g. using ST-GCN).

5 Conclusion

In this paper, we present a novel model for skeleton based
action recognition, the spatial temporal graph convolutional
networks (ST-GCN). The model constructed a set of spatial
temporal graph convolutions on the skeleton sequences. On
two challenging large-scale datasets, the proposed ST-GCN
outperforms the previous state-of-the-art skeleton based
model. In addition, ST-GCN can capture motion information
in dynamic skelenton sentences which is complementary to
RGB modality. The combination of skelenton based model
and frame based model further improves the performence
in action recognition. The flexibility of ST-GCN model also
opens up many possible directions for future works. For ex-
ample, how to incorporate contextual information, such as
scenes, objects, and interactions into ST-GCN becomes a
natural question.

Acknowledgement This work is partially supported by
the Big Data Collaboration Research grant from SenseTime
Group (CUHK Agreement No. TS1610626), and the Early
Career Scheme (ECS) of Hong Kong (No. 24204215).

7451

References

Bruna, J.; Zaremba, W.; Szlam, A.; and Lecun, Y. 2014.
Spectral networks and locally connected networks on
graphs. In ICLR.
Cao, Z.; Simon, T.; Wei, S.-E.; and Sheikh, Y. 2017a. Re-
altime multi-person 2d pose estimation using part affinity
fields. In CVPR.
Cao, Z.; Simon, T.; Wei, S.-E.; and Sheikh, Y. 2017b. Re-
altime multi-person 2d pose estimation using part affinity
fields. In CVPR.
Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and
Wei, Y. 2017. Deformable convolutional networks. In
arXiv:1703.06211.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NIPS.
Du, Y.; Wang, W.; and Wang, L. 2015. Hierarchical recur-
rent neural network for skeleton based action recognition. In
CVPR, 1110–1118.
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell,
R.; Hirzel, T.; Aspuru-Guzik, A.; and Adams, R. P. 2015.
Convolutional networks on graphs for learning molecular
fingerprints. In NIPS.
Fernando, B.; Gavves, E.; Oramas, J. M.; Ghodrati, A.; and
Tuytelaars, T. 2015. Modeling video evolution for action
recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 5378–5387.
Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep
convolutional networks on graph-structured data. In
arXiv:1506.05163.
Hussein, M. E.; Torki, M.; Gowayyed, M. A.; and El-Saban,
M. 2013. Human action recognition using a temporal hi-
erarchy of covariance descriptors on 3d joint locations. In
IJCAI.
Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.;
Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev,
P.; et al. 2017. The kinetics human action video dataset. In
arXiv:1705.06950.
Ke, Q.; Bennamoun, M.; An, S.; Sohel, F.; and Boussaid, F.
2017. A new representation of skeleton sequences for 3d
action recognition. In CVPR.
Kim, T. S., and Reiter, A. 2017. Interpretable 3d human
action analysis with temporal convolutional networks. In
BNMW CVPRW.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR 2017.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS.
Li, Y.; Zemel, R.; Brockschmidt, M.; and Tarlow, D. 2016.
Gated graph sequence neural networks. In ICLR.
Li, C.; Zhong, Q.; Xie, D.; and Pu, S. 2017. Skeleton-based
action recognition with convolutional neural networks. In
arXiv:1704.07595.

Liu, J.; Shahroudy, A.; Xu, D.; and Wang, G. 2016. Spatio-
temporal lstm with trust gates for 3d human action recogni-
tion. In ECCV, 816–833. Springer.
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In International
Conference on Machine Learning.
Shahroudy, A.; Liu, J.; Ng, T.-T.; and Wang, G. 2016. Ntu
rgb+ d: A large scale dataset for 3d human activity analysis.
In CVPR, 1010–1019.
Shotton, J.; Sharp, T.; Kipman, A.; Fitzgibbon, A.; Finoc-
chio, M.; Blake, A.; Cook, M.; and Moore, R. 2011. Real-
time human pose recognition in parts from single depth im-
ages. In CVPR.
Simonyan, K., and Zisserman, A. 2014. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, 568–576.
Tai, K. S.; Socher, R.; and Manning, C. D. 2015. Im-
proved semantic representations from tree-structured long
short-term memory networks. In ACL.
Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri,
M. 2015. Learning spatiotemporal features with 3d convo-
lutional networks. In Proceedings of the IEEE international
conference on computer vision, 4489–4497.
Van Oord, A.; Kalchbrenner, N.; and Kavukcuoglu, K. 2016.
Pixel recurrent neural networks. In ICML.
Veeriah, V.; Zhuang, N.; and Qi, G.-J. 2015. Differential
recurrent neural networks for action recognition. In CVPR,
4041–4049.
Vemulapalli, R.; Arrate, F.; and Chellappa, R. 2014. Human
action recognition by representing 3d skeletons as points in
a lie group. In CVPR, 588–595.
Wang, J.; Liu, Z.; Wu, Y.; and Yuan, J. 2012. Mining ac-
tionlet ensemble for action recognition with depth cameras.
In CVPR. IEEE.
Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.;
and Val Gool, L. 2016. Temporal segment networks: To-
wards good practices for deep action recognition. In ECCV.
Wang, L.; Qiao, Y.; and Tang, X. 2015. Action recogni-
tion with trajectory-pooled deep-convolutional descriptors.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 4305–4314.
Zhang, S.; Liu, X.; and Xiao, J. 2017. On geometric features
for skeleton-based action recognition using multilayer lstm
networks. In WACV. IEEE.
Zhao, Y.; Xiong, Y.; Wang, L.; Wu, Z.; Tang, X.; and Lin,
D. 2017. Temporal action detection with structured segment
networks. In ICCV.
Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; Xie,
X.; et al. 2016. Co-occurrence feature learning for skele-
ton based action recognition using regularized deep lstm net-
works. In AAAI.

7452

