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Abstract

Salient object detection is a fundamental yet challenging
problem in computer vision, aiming to highlight the most
visually distinctive objects or regions in an image. Recent
works benefit from the development of fully convolutional
neural networks (FCNs) and achieve great success by inte-
grating features from multiple layers of FCNs. However, the
integrated features tend to include non-salient regions (due
to low level features of the FCN) or lost details of salient
objects (due to high level features of the FCN) when pro-
ducing the saliency maps. In this paper, we develop a novel
deep saliency network equipped with recurrently aggregated
deep features (RADF) to more accurately detect salient ob-
jects from an image by fully exploiting the complementary
saliency information captured in different layers. The RADF
utilizes the multi-level features integrated from different lay-
ers of a FCN to recurrently refine the features at each layer,
suppressing the non-salient noise at low-level of the FCN and
increasing more salient details into features at high layers. We
perform experiments to evaluate the effectiveness of the pro-
posed network on 5 famous saliency detection benchmarks
and compare it with 15 state-of-the-art methods. Our method
ranks first in 4 of the 5 datasets and second in the left dataset.

Introduction

Salient object detection aims to identify the most visually
distinctive objects from an input image. By working as a pre-
processing step of many computer vision tasks, detecting
salient objects benefits lots of practical applications, such
as image and video compression (Guo and Zhang 2010),
content-aware image editing (Cheng et al. 2010), object
recognition (Wei et al. 2017), scene classification (Siagian
and Itti 2007), object re-targeting (Sun and Ling 2013),
and visual tracking (Hong et al. 2015). However, salient
object detection is a very challenging research problem as
many mutually affected factors contribute to the definition of
saliency regions, including image structure, object semantic
meaning and context information.

Traditional saliency detection methods employed hand-
crafted visual features (e.g, color, texture, and contrast) with
heuristic priors (Cheng et al. 2015; Jiang et al. 2013; Liu
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et al. 2011) to distinguish salient objects from background.
These hand-crafted features and priors are ineffective to cap-
ture the high level semantic knowledge, and are incapable of
producing satisfactory predictions. To improve the detection
accuracy, salient object detection algorithms (Li et al. 2016;
Li and Yu 2015; Zhao et al. 2015) based on fully convo-
lutional neural network (FCN) (Long, Shelhamer, and Dar-
rell 2015) have been proposed, aiming at leveraging the
deep features with more semantic information to generate
high-quality saliency maps. However, due to the pooling
operations, the outputs of these FCN-based methods, al-
beit containing richer high-level semantic information com-
pared with the results of hand-crafted feature based meth-
ods, lose much significant location information and hence
neglect many fine details. Hence, their results usually suf-
fer from poor localization of salient object boundaries. More
recently, several works (Liu and Han 2016; Li and Yu 2016;
Hou et al. 2017) utilized short connections to combine multi-
level features produced from deep convolutional neural net-
works in order to incorporate semantic information at high
levels and detail structures at low levels. However, their
salient results still tend to contain many non-salient objects
and simultaneously lose some parts (details) of salient ob-
ject when directly merging multiple level features in those
methods; see the 1st and 3rd rows of Figure 1.

In this paper, in order to address these challenges, we pro-
pose a novel deep saliency network to recurrently aggregate
deep features (RADF) for salient object detection by fully
exploiting the complementary information encoded in fea-
tures generated in different layers. Firstly, we combine the
features at multiple layers of a FCN and compress these
multi-level features into one (we call it multi-level integrated
features (MLIF)). Then the compressed MLIF are merged
with the features of each layer of the FCN using a convolu-
tional operation, which is capable of automatically selecting
the discriminative features and suppressing information of
non-salient regions. This convolution enables the MLIF to
refine the features at each layer, where non-salient regions
of low levels are reduced, and salient details at high levels
are enhanced. Moreover, we adopt a recurrent mechanism to
integrate the features at individual layers and the MLIF iter-
atively for a progressive refinement of both of them. Specif-
ically, we combine the refined features at each layer to gen-
erate a new MLIF, which are aggregated to each individual
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Figure 1: Visual comparisons of predicted saliency maps from different features. The 1st and 3rd rows in the middle show the
predicted saliency maps using the multi-level integrated features (MLIF) and features at each layer, while the 2nd and 4th rows
in the middle use our proposed method that recurrently aggregates deep features (RADF). (a) is the input images; (b) to (g)
represent the results from stage 1 (lowest layer) to stage 6 (highest layer); (h) is the final fusion results predicted by MLIF and
RADF; and (i) denotes the ground truths. From the results, we can observe that MLIF tends to detect extra non-salient regions
(Figure 1 (h) in the 1st row) or over suppress salient details (Figure 1 (h) in the 3rd row). Contrarily, the salient results (Figure 1
(h) in the 2nd and 4th rows) with our aggregated features are much closer to the ground truths.

layer for next recurrent step. By harnessing RADF, we can art methods. We consistently achieve better performance
produce high quality features with both semantic and de- than all the 15 algorithms on 4 of the 5 datasets and rank
tailed information of salient regions while effectively sup- second in the left dataset. Overall, we set a new state-of-
pressing noise from non-salient regions and hence produce the-art performance on salient object detection.

more accurate prediction maps. In addition, we impose the

supervision signal to the network at each recurrent step, so Related Work

that the network can generate more useful information to-
wards to the salient regions. The whole network is trained in
an end-to-end manner.

In this section, we do not aim to be exhaustive, but will focus
on salient object detection methods. Early methods are based
on hand-crafted visual priors, including image contrast (Per-

To verify the effectiveness of the proposed RADF model, azzi et al. 2012; Jiang et al. 2013), color (Borji and Itti 2012;
we evaluate our network equipped with RADF on five fa- Mahadevan and Vasconcelos 2013), texture (Yan et al.
mous salient object detection benchmarks, and compare our 2013; Yang et al. 2013) and other kinds of relevant visual
results against 15 state-of-the-art methods. The experiment cues (Harel, Koch, and Perona 2007). More comprehensive
results demonstrate that our model quantitatively and qual- analysis of these hand-crafted feature based methods can be
itat.ively o.utperform.s others With respect to the accuracy of found in (Borji et al. 2015). However, these features have
salient object detection; see Figure 1 and Figure 3 for visual limited ability of feature representation, which is difficult to
compari.sons. Overall, the contributions of this work can be capture high-level semantic meaning of salient objects.
summarized as follows: Recently, fully convolutional neural network (Long, Shel-
o First, we find that simply integrating multi-level deep fea- hamer, and Darrell 2015) (FCN) based algorithms (Zhao et

tures are not enough for the salient object detection task al. 2015; Li et al. 2016; Wang et al. 2016; Luo et al. 2017;

and propose to more effectively leverage the complemen- Zhang et al. 2017b) have achieved remarkable performance

tary information encoded in the features generated in dif- on salient object detection due to strong feature representa-
ferent layers. tion ability. For example, Zhao et al. (Zhao et al. 2015) used

FCN to get the features of full image to model the global
context and the features of a part of image to model the lo-
cal context. Then they designed a multi-context framework
to integrate the global and local context for salient object de-
tection since these two kinds of context information are able
to determine the salient objects from different views. Wang
et al. (Wang et al. 2016) developed a recurrent fully convolu-
tional network to predict saliency maps based on the predic-
tion results of the last recurrent step and the original image.
Hence, the saliency map can be stage-wisely refined by the
e Third, we evaluate the proposed method on five famous deep network. Zhang et al. (Zhang et al. 2017b) learned deep

benchmark datasets and compare it with 15 state-of-the- uncertain convolutional features by a dropout technique that

e Second, we develop a FCN with a novel scheme to aggre-
gate the multi-level deep features to features of each layer
in a recurrent manner. We call it RADF. Such a scheme
can produce more distinguishing features containing both
semantic and detailed information of salient objects. In
addition, the proposed RADF, as a general strategy to ag-
gregate multiple level deep features, has potential to be
used in other computer vision applications such as object
detection and semantic segmentation.
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Figure 2: The schematic illustration of proposed RADF. An input image is sent to the convolutional neural network and a set of
feature maps with multiple scales are obtained. The feature maps with different scales are upsampled to the size of input image
and concatenated together as the multi-level integrated features (MLIF). Then MLIF is added to the features of each layer and
merged by a convolutional operation. This step is performed m iterations to alternatively refine MLIF and the features at each
layer. Moreover, the deep supervision mechanism is imposed at each step. Finally, output score maps at the last step are merged
together and 1*1 conv is used to generate the fusion score map. Best viewed in color.

randomly drops units of deep network during the training
process, aiming at incorporating uncertainties for improv-
ing generalization capability which is important for salient
object detection. Unfortunately, these methods just produce
saliency maps from the features at deep layers of FCN and
are difficult to handle low-level details of saliency regions.

To remedy the above issue, several efforts (Li and Yu
2016; Hou et al. 2017; Zhang et al. 2017a) focus on find-
ing an integration strategy of multi-level features to simul-
taneously encode high-level semantic information and low-
level detail information for high-quality saliency maps. Li at
al. (Li and Yu 2016) integrated the feature maps from multi-
ple layers with different resolutions to capture the semantic
properties and the visual contrast of salient objects. Hou et
al (Hou et al. 2017) aimed to help low-level features have the
knowledge of object localization information by integrating
the prediction maps of deep layers and the features of shal-
low layers. Zhang et al (Zhang et al. 2017a) concatenated
feature maps at multiple resolutions and predicted saliency
maps from the integrated features. All of them are aimed to
explore different combinations of features at multiple layers
to integrate salient visual cues from multiple views. How-
ever, not all the multi-level features are useful for salient ob-
ject detection. The rich multi-level features contain redun-
dant information that will cover useful features and intro-
duce undesirable information, so that the network is difficult
to effectively leverage the deep features of FCN to detect
salient objects accurately.

Method

The workflow of the proposed FCN equipped with RADF
is illustrated in Figure 2. Our network takes the whole im-
age as input and outputs the saliency map in an end-to-end
manner. It begins by utilizing the convolutional neural net-
work to generate a set of hierarchical features which encode
the detail and semantic information with different scales in a
pyramid. The features at different levels of this hierarchical
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pyramid represent the objects in the image and their con-
textual information from different views (Mahendran and
Vedaldi 2015), which are proved useful for salient object de-
tection (Hou et al. 2017). After getting the hierarchical fea-
ture maps, we enlarge them to the size of input image and
concatenate them together followed by a convolution layer
with 1*1 kernel to reduce channels of feature maps to a small
number. We denote these new features as the multi-level in-
tegrated features (MLIF), as they encompass the informa-
tion from features at multiple levels. Then, we aggregate the
generated MLIF with each layer by leveraging a convolu-
tion operation in order to refine the features at each layer
for better saliency representations. After that, we integrate
the newly generated features at each layer again and form
refined MLIF and add them back to each individual layer
to further refine them. We alternatively refine the MLIF and
features at each layer in a recurrent manner (e.g., m itera-
tions in Figure 2). Meanwhile, the deep supervision mech-
anism is also imposed to the network at each recurrent step
and at last we obtain the saliency prediction map by fusing
outputs from multiple layers, as shown in Figure 2.

In the following subsections, we will elaborate how to ef-
fectively integrate the multi-level features and recurrently
aggregate the MLIF and features at each layer in our RADF.

Integrating Multi-Level Features

One of the main advantage of convolutional neural network
is that its hierarchical structure, once well-trained, is capable
of producing well-organized features consisting of abundant
semantic and fine information (Kong et al. 2016). Note that
in our task salient objects in an image are determined by
various factors such as multi-scale contextual information,
the semantic meaning of the objects and their boundary de-
tails. In this regard, integrating multi-level features is able to
enhance the discrimination capability for salient object de-
tection, as while the deep layers can capture highly semantic
features tending to describe the attributes of salient objects
as a whole, the shallow layers are more effective to extract



subtly fine features to represent delicate structures. Both of
them are essential for accurate salient object detection.

We aim to fully exploit the complementary information
encoded in multi-level deep features for better salient object
detection. Bearing this idea in mind, we propose to integrate
features at all stages (a stage includes several layers of fea-
ture maps with the same resolution and here we harness the
feature map of the last layer in the stage as the feature map
of the whole stage) and enlarge them to the size of the input
image. Specifically, we firstly apply 1*1 convolution to re-
duce the dimensions (channels) of feature maps at each stage
and up-sample these feature maps to the size of input image.
After that, we concatenate all the enlarged feature maps fol-
lowed by a convolution operation to merge the features from
different stages and reduce the feature dimensions (as shown
in Figure 2). The MLIF is defined as:

MLIF = o(W % Cat(Fy, Fy, ..., F,) +b), (1)

where the F; is the enlarged feature map at ¢-th stage and n
is the total number of stages; C'at is the concatenation opera-
tion across channels; * represents convolution operation; W
and b are the weights and bias of the convolution, which can
be learned from the training data; o is the activation function
and we use ReLU (Krizhevsky, Sutskever, and Hinton 2012)
in our implementation.

Recurrently Aggregating Deep Features

Although multi-level integrated features (MLIF in Eq. 1)
have encoded lots of fruitful saliency cues from different
levels of FCN, directly using MLIF to predict salient ob-
jects cannot guarantee satisfactory results. The predicated
saliency maps may still include many non-salient regions
and lose parts of saliency regions, as illustrated in Fig-
ure 1. This is because the generated MLIF, albeit includ-
ing features extracted from different levels, also incorporates
a lot of non-salient details from shallow layers and some
wrong semantic information irrelevant to saliency regions
from deeper layers. Not only would this information pro-
vide wrong guidance for saliency map generation, but also it
will weaken the useful information originally containing in
individual layers. In this regard, some researchers propose
to further post-process the MLIF to refine the prediction re-
sults (Li et al. 2016; Wang et al. 2016).

In this paper, we propose a novel method to leverage the
complementary advantages of the MLIF and features in in-
dividual layers to achieve better prediction results than exist-
ing methods only depending on the MLIF. To achieve this,
we propose a deep saliency network to recurrently aggregate
the MLIF to each individual layer. In our recurrent aggrega-
tion process, the MLIF can work as a fruitful feature pool to
refine the features of individual layers and then the refined
features in individual layers are integrated together again to
generate refined MLIF in order to progressively push more
saliency information back and reduce non-salient cues in the
feature pool. Specifically, as the features at shallow layers
are responsible for discovering the fine detail information
but lack of semantic information of salient regions, the MLIF
can be used as a guidance to help them gradually suppress
details that are not located in the semantic saliency regions
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while capturing more details in semantic saliency regions
based on semantic information integrated in the MLIF. On
the other hand, as features at deep layers are responsible
for capturing cues of the whole salient objects and some-
how lack of salient details due to the relatively larger re-
ceptive fields than shallow layers, the MLIF can serve as
an enhancer to help them complement more salient bound-
ary details based on the meticulous features integrated in
the MLIF. By refining the MLIF and features of individual
layers recurrently, our network can learn to select more dis-
criminative multi-level features targeting for salient object
detection and progressively refine the results.

Specifically, after getting the MLIF, we aggregate it to the
feature maps of all stages. Then a convolutional operation is
used to select the useful multi-level information with respect
to the features of each individual layer as well as reduce the
number of feature channels to the original number before
aggregation. At the j-th recurrent step of our network, we

compute features (denoted as Ff ) for each stage 7 as:
F) = o(W/ « Cat(FU™", MLIF7) + b)),

i 2)
where Fi(j -b represents the features for each stage ¢ at (-
1)-th step; the initial value F is the initial features at i-th
stage generated by the FCN network. The MLIF’ (see Equa-

tion 1 for its definition) is the obtained multi-level integrated
features at the j-th step by taking Fi(] U ag input, and we
compute the MLIF' (MLIF at the first iteration) using Equa-
tion 1 with F as the input features at i-th stage. The * de-
notes the convolution operation; note that the convolutional
weights W/ and bias b} can be automatically optimized to
achieve distinguishing features of ¢-th stage at j-th recurrent
step during the end-to-end training procedures. Meanwhile,
reducing the feature channels to a unified number promotes
the consistent feature aggregation, making recurrently ag-
gregating multi-level information possible.

In addition, we apply deeply supervised mechanism (Xie
and Tu 2015) to impose the supervision signal to the last
layer of each stage at each recurrent step in order to enhance
the capability of the proposed network to find salient fea-
tures during the feature aggregation process. With the help
of deeply supervision, we are able to get multiple predic-
tion results for better prediction. Let P/ denote the predicted
score map at the ¢-th stage during the j-th step. Then, the
fused score map is generated (denoted as Py) by adding a
convolution layer on score maps predicted from n layers,
and the definition of P is given by:

where m is last recurrent step; C'at() is used to concatenate
the score maps; Wy and by are the weight and bias of the
convolution layer on the concatenated score maps to learn
the relationship among these score maps, respectively.

Experiments

In this section, we describe the training and testing strategies
of our RADF, introduce the benchmark datasets and eval-
uation metrics used by the research society on salient ob-
ject detection, and conduct experiments on salient datasets



Table 1: The F-measure and MAE of different settings on five saliency detection datasets. “RADF-D” denotes the network using
DenseNet to replace VGG part of our model. “RADF-i” is the network only using features of each individual layer. “RADF-m”
denotes the network only using multi-level features. “RADF1” and “RADF2” are our networks aggregating multi-level features
and features at individual layers once and twice respectively. “RADF2-s” denotes weights shared in recurrent steps.

Method ECSSD HKU-IS PASCAL-S SOD DUT-OMRON

s MAE | Fjs MAE | Fjs MAE | Fjs MAE | Fjs MAE
RADF-D 0.886 | 0.068 | 0.865 | 0.060 | 0.781 | 0.126 | 0.788 | 0.148 | 0.729 | 0.086
RADF-i 0013 | 0.054 | 0908 | 0.041 | 0826 |0.105 | 0827 |0.129 |0.763 |0.072
RADF-m 0917 | 0053 | 0907 | 0046 | 0.828 | 0.107 | 0.829 | 0.131 | 0.772 | 0.066
RADFI 0923 | 0050 | 0913 | 0041 | 0828 |0.106 | 0831 |0.129 |0.787 | 0.063
RADF2 0924 [ 0.049 | 0914 |0.039 | 0.832 |0.102 | 0.835 | 0.125 | 0.789 | 0.060
RADF2-s 0923 | 0.049 | 09011 | 0043 | 0830 |0.105 | 0829 | 0.131 | 0.793 | 0.062

to evaluate the effectiveness of proposed network equipped
with RADF.

Training and Testing Strategies

We choose the VGG (Simonyan and Zisserman 2014) net-
work to produce the feature extraction layers, and we use
convl_2, conv2_2, conv3_3, conv4_3, conv5_3 and pool5 of
the VGG network to represent the features of each individ-
ual layer. Moreover, we add two more convolutional layers
to further enhance the discrimination capability of feature
maps at each stage. Other implementation details can be
found in our public codes.

Training During the training process, cross-entropy loss
is used for each output of this network. The total loss L; is
defined as the loss summation of all predicted score maps:

L= wlLi+uwlLy,

i=1 j=1

“

where w; and L7 represent the weight and loss of i-th stage
at j-th step; n and m denote the total stages of the network
and the maximum steps, respectively; and wy and Ly are
the weight and loss for the fusion layer, respectively. In our
experiment, we empirically set all the weights to 1.

In order to accelerate the training process and reduce the
over-fitting problem, the parameters of the feature extraction
layers (as shown in Figure 2) are initialized from the well-
trained VGG network (Simonyan and Zisserman 2014).
Other layers are initialized by random noise. Stochastic gra-
dient descent (SGD) is used to optimize the whole network
with the momentum of 0.9 and the weight decay of 0.0005.
We set the learning rate as le-8 and it reduces by a factor of
0.1 at 7k iterations. Learning stops after 10k iterations. Our
network equipped with RADF is trained on the MSRA 10K
dataset (Cheng et al. 2015) which is widely used for training
the salient object detection models (Lee, Tai, and Kim 2016;
Zhang et al. 2017a). In addition, images of this dataset are
randomly rotated, resized and horizontally flipped for data
argumentation, and our model is trained on 4 GPUs with a
mini-batch size of 4.

Inference In testing, for each input image, our network
produces several output score maps, since we add a supervi-
sion signal to each stage and each recurrent steps. The final
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prediction map Py;,q; is obtained by averaging all the score

maps (P denotes the score map at i-th stage and j-th step)
as well as the fusion score map Py:

Ptinat = Mean (P}, ..., P, Py). (35)

After getting the final prediction map, we apply the fully
connected conditional field (CRF) (Kridhenbiihl and Koltun
2011) to improve the spatial coherence of the prediction map
by considering the relationships of neighborhood pixels.

Datasets and Evaluation Metrics

We employ a benchmark dataset to train the proposed model
and perform experiments to validate its effectiveness on five
widely-used datasets.

Benchmark Datasets Our training dataset (MSRA10K
dataset (Cheng et al. 2015)) has 10,000 images with high-
quality pixel-wise annotations, and most of them contain
only one salient object.

ECSSD (Yan et al. 2013) This dataset consists of 1,000
natural images with many semantically meaningful and
complex structures.

HKU-IS (Li and Yu 2015) It includes 4, 447 images. Most
of the images have low contrast, or more than one salient
object.

PASCAL-S (Li et al. 2014) This dataset has 850 challeng-
ing images with several objects, which are carefully selected
from the PASCAL VOC dataset (Everingham et al. 2010).

SOD (Martin et al. 2001; Movahedi and Elder 2010) It is
composed of 300 images selected from the BSDS dataset.
This dataset is challenging, since most of images possess
multiple objects either with low contrast or touching the im-
age boundary.

DUT-OMRON (Yang et al. 2013) This dataset contains
5,168 high-quality images. Each image has one or more
salient objects, and thus saliency detection on this dataset
is very difficult and challenging. Since images of DUT-
OMRON has controversial saliency annotations among dif-
ferent human observers, none of existing methods achieves
a high accuracy of detecting salient objects on this dataset.

Evaluation Metrics To quantitatively evaluate the per-
formance of different saliency models, two widely-used
metrics are employed: F-measure and mean absolute er-
ror (MAE). A better performance has a larger F-measure



Table 2: Comparison with the state-of-the-arts. The top three results are highlighted in red, green, and blue, respectively.

Method ECSSD HKU-IS PASCAL-S SOD DUT-OMRON
F; [MAE| F; |MAE | F; [MAE| F; | MAE| F; | MAE
MR (Yang et al. 2013) 0.736 | 0.189 | 0.715 | 0.174 | 0.666 | 0.223 | 0.619 | 0.273 | 0.610 | 0.187
wCtr* (Zhu et al. 2014) 0.716 | 0.171 | 0.726 | 0.141 | 0.659 | 0.201 | 0.632 | 0.245 | 0.630 | 0.144
BSCA (Qin et al. 2015) 0.758 | 0.183 | 0.723 | 0.174 | 0.666 | 0.224 | 0.634 | 0.266 | 0.616 | 0.191
MC (Zhao et al. 2015) 0.822 | 0.106 | 0.798 | 0.102 | 0.740 | 0.145 | 0.688 | 0.197 | 0.703 | 0.088
LEGS (Wang etal. 2015) | 0.827 | 0.118 | 0.770 | 0.118 | 0.756 | 0.157 | 0.707 | 0.215 | 0.669 | 0.133
MDF (Li and Yu 2015) 0.831 | 0.108 | 0.860 | 0.129 | 0.759 | 0.142 | 0.785 | 0.155 | 0.694 | 0.092
ELD (Lee, Tai, and Kim 2016) | 0.867 | 0.080 | 0.844 | 0.071 | 0.771 | 0.121 | 0.760 | 0.154 | 0.719 | 0.091
DS (Li et al. 2016) 0882 | 0.123 | - - [ 0758 [ 0.162 | 0.781 | 0.150 | 0.745 | 0.120
FPN (Lin et al. 2016) 0.895 | 0.062 | 0.896 | 0.044 | 0.793 | 0.114 | 0.808 | 0.126 | 0.730 | 0.084
DeepLab (Chen etal. 2016) | 0.904 | 0.053 | 0.890 | 0.041 | 0.812 | 0.108 | 0.810 | 0.128 | 0.765 | 0.068
RFCN (Wang etal. 2016) | 0.898 | 0.097 | 0.895 | 0.079 | 0.827 | 0.118 | 0.805 | 0.161 | 0.747 | 0.095
DCL (Li and Yu 2016) 0.898 | 0.071 | 0.904 | 0.049 | 0.822 | 0.108 | 0.832 | 0.126 | 0.757 | 0.080
DHSNet (Liu and Han 2016) | 0.907 | 0.059 | 0.892 | 0.052 | 0.827 | 0.096 | 0.823 | 0.127 | - -
NLDF (Luo et al. 2017) 0.905 | 0.063 | 0.902 | 0.048 | 0.831 | 0.099 | 0.810 | 0.143 | 0.753 | 0.080
UCF (Zhang etal. 2017b) | 0.910 | 0.078 | 0.886 | 0.073 | 0.821 | 0.120 | 0.800 | 0.164 | 0.735 | 0.131
DSS (Hou et al. 2017) 0016 | 0.053 | 0.911 | 0.040 | 0.829 | 0.102 | 0.842 | 0.118 | 0.771 | 0.066
Amulet (Zhang et al. 2017a) | 0.913 | 0.059 | 0.887 | 0.053 | 0.828 | 0.095 | 0.801 | 0.146 | 0.737 | 0.083
RADF (ours) 0.924 | 0.049 | 0.914 | 0.039 | 0.832 | 0.102 | 0.835 | 0.125 | 0.789 | 0.060

value and a smaller MAE value; see (Achanta et al. 2009;
Hou et al. 2017) for the detailed definitions. To have fair
comparisons, we apply the implementations of (Hou et al.
2017) to compute these two metrics.

Ablation Analysis

We perform ablation experiments to evaluate the effective-
ness of the proposed RADF. These ablation experiments are
implemented on the five datasets mentioned above. Here, we
set two baselines. These two baselines have similar struc-
tures with our RADF, but one (RADF-i) just predicts the
saliency map based on the features of each layer without
employing the MLIF and another one (RADF-m) uses the
multi-level integrated features to predict the saliency maps
directly. For our RADF, we set different number of steps
to aggregate the deep features between MLIF and features
of each layer, which is used to verify the importance of re-
current aggregation. Moreover, we compare our model with
shared weights in the two recurrent steps (RADF2-s), and
another with a DenseNet (Huang et al. 2017) (161 layers) to
replace the VGG part of our model (RADF-D) by re-training
it for saliency detection.

As shown in Table 1, the two baselines obtain compa-
rable performances while our RADF achieves an obvious
improvement compared with these two baselines, demon-
strating that by taking the complementary advantaged of
MLIF and the features in each individual layer, the pro-
posed RADF can effectively beef up the discrimination ca-
pability of the saliency detection network. Moreover, the
“RADF2” outperforms “RADF1” on all datasets, corrobo-
rating both the MLIF and the features in each individual
layer can be gradually refined under the proposed recur-
rent aggregation scheme. And the “RADF2” with separated
weights has slightly better results. By comparing “RADF-
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D and “RADF2”, we can observe that our results are better
than that of RADF-D for all the 5 benchmark datasets of
saliency detection. The reason is that the feature map reso-
lutions of DenseNet are smaller than VGG network with the
limited memory, resulting in losing detail information.

Comparison with the State-of-the-arts

We further extensively compare the results of our method
with 15 state-of-the-art methods for salient object detection
(see the first column of Table 2 for compared methods),
a semantic segmentation algorithm (DeepLab (Chen et al.
2016)), and an object detector ( FPN (Lin et al. 2016) ).
Among these salient object detection algorithms, MR (Yang
et al. 2013), wCtr* (Zhu et al. 2014) and BSCA (Qin et
al. 2015) are based on hand-crafted features while others
are deep learning based methods. For DeepLab (Chen et al.
2016) and FPN (Lin et al. 2016), we re-train their models
to detect salient objects. For a fair comparison, we obtain
the saliency results of our competitors by using either the
saliency maps provided by the authors, or the implementa-
tions with recommended parameter setting.

Quantitative Comparison Table 2 reports the results of
F-measure and MAE of different methods. It is observed
that our method consistently outperforms others on almost
all the five datasets in terms of both two metrics, indicat-
ing the advantages of our methods over existing approaches.
Looking into the quantitative results in Table 2, we make the
following observations. (1) Our RADF achieves a great im-
provement on both metrics (F-measure and MAE) on two
relatively larger datasets (ECSSD and DUT-OMRON) with
complex salient structures and/or controversial salient re-
gions. It proves that our method is capable of generating
more distinguishing features to tackle these challenging re-
gions that previous methods cannot well dealt with. Follow-
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Figure 3: Visual comparison of saliency maps. Note that “GT” stands for “Ground truth”. Apparently, our method (RADF) can
produce more accurate saliency maps than others. More comparisons can be found at this paper’s website.

ing visual comparisons further demonstrate this point. (2)
While a lot of previous methods, including DCL, DHSNet,
DSS and Amulet, aimed to use the multi-level features to im-
prove the detection accuracy, they neglect that the integrated
multi-level features may contain many non-salient regions
from shallow layers and lose some salient details when in-
tegrating the semantic information from deeper layers. The
proposed RADF alleviate these shortcomings by recurrently
aggregating MLIF and the features of each layer, hence we
achieve superior performances in both metrics than these
methods. (3) Although our method is not the best on the
SOD datasets, it is still very competitive with a 2nd rank.
Note that this dataset is relative small compared to other
datasets (Zhang et al. 2017a), with just 300 images. (4) Our
RADEF is just trained on MSRA 10k dataset, but it still out-
performs other methods (e.g., RFCN and MDF) that are pre-
trained on PASCAL-S or HKU-IS, indicating a good gen-
eralization capability of the proposed RADF, which is es-
sential for saliency detection models. (5) Our method also
achieves superior performance than the re-trained seman-
tic segmentation algorithm (DeepLab) and object detector
(FPN) for saliency detection.

Visual Comparison We further provide some typical
saliency maps of different methods to intuitively demon-
strate advantages of the proposed RADF over other methods,
as shown in Figure 3. From these results, we can observe that
our RADF is more effective to detect the saliency regions ac-
curately, and obtain more clean backgrounds (less false pos-
itive) for input images. In most of these examples, especially
those challenging ones, our method achieves much better re-
sults than others, demonstrating the effectiveness and robust-
ness of the proposed RADF.
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Conclusion

In this paper, we propose a novel FCN with recurrently ag-
gregated deep features for salient object detection. In order
to take full advantages of the complementary information
encoded in the features captured from different layers of
the FCN, we employ multi-level features to progressively
refine the features of each layer. During the recurrent ag-
gregation procedure, non-salient noise in low layer features
are gradually reduced and the saliency details in high layer
features are continuously enhanced. As a result, we can gen-
erate more discriminative features for more accurate salient
object detection. In addition, the supervision signal is im-
posed into the layers of each stage in each recurrent step.
Extensive experiments corroborate the effectiveness of the
proposed network with RADF. The proposed feature aggre-
gation scheme is general enough and has great potential to
be used in other applications such as instance detection and
semantic segmentation.
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