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Abstract

Visual relationship detection aims to capture interactions be-
tween pairs of objects in images. Relationships between ob-
jects and humans represent a particularly important subset
of this problem, with implications for challenges such as
understanding human behavior, and identifying affordances,
amongst others. In addressing this problem we first construct a
large-scale human-centric visual relationship detection dataset
(HCVRD), which provides many more types of relationship
annotations (nearly 10K categories) than the previous released
datasets. This large label space better reflects the reality of
human-object interactions, but gives rise to a long-tail distri-
bution problem, which in turn demands a zero-shot approach
to labels appearing only in the test set. This is the first time
this issue has been addressed. We propose a webly-supervised
approach to these problems and demonstrate that the proposed
model provides a strong baseline on our HCVRD dataset.

Introduction

The challenge in visual relationship detection (Li, Ouyang,
and Wang 2017; Liang, Lee, and P. Xing 2017; Lu et al.
2016) is to capture interactions between pairs of objects in an
image. In this paper, rather than detect interactions between
arbitrary objects, we focus on capturing the relationships
between a human and an object. Recognising human-object
relationships is a problem of significant practical import,
and a subtly different challenge to the more general case.
Humans have a far wider variety of modes of interaction than
general objects, and they have agency, meaning that more
can be drawn from human-object interactions than from other
interactions. For example, a human can interact with a bicycle
in multiple ways (such as carry, hold, ride, park, push efc. ),
but the relationships between bicycles and other objects are
far simpler. The human interactions also imply intent, and
possibly provide information about the past or future that is
typically lacking from object-object relationships. Previous
work (Chao et al. 2017; 2015) has similarly recognised that
human-object interactions of particular interest, and have
proposed several datasets.
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Figure 1: The long-tail label distribution of our HCVRD
dataset. We only show the top-2000 relationships because the
tail is too long. Three example images are also shown, with
our webly-supervised model detected results. The color of
human and objects in the phrases correspond to the color of
the bounding boxes. The arrows indicate the ‘location’ of the
relationship in the label distribution. As we can see, most of
the relationships lie in the tail. Some of them such as ‘girl
wearing blue visor’ is not even in the top-2000.

As in so many problems of practical interest, the label
space of realistic human-centric visual relationship detection
(HCVRD) exhibits a long tail distribution, meaning that there
are very few, to zero, training examples for the vast majority
of labels. This is a fundamental problem for the standard deep
learning approach, which relies on large numbers of exam-
ples for each class. If deep learning is to progress from easy,
and often artificially simplified problems for which copious
training data is available, datasets will need to better reflect
the practical reality of the majority of problems. The main
contribution of this paper is a large-scale human-centric vi-
sual relationship detection (HCVRD) dataset that accurately
depicts the long-tail label distribution of the problem, thus
necessitating zero-shot recognition.

We formulate the human-centric visual relationship de-
tection problem as that of detecting relationship triplets
(human, predicate, object) in the image, with bounding
boxes on the human subject and object. The HCVRD dataset
is constructed based on the Visual Genome (Krishna et al.
2017). Compared to previous human-object interaction works
(Chao et al. 2017; 2015), there are several differences. First,



we have more fine-grained labels. For the ‘human’ item in the
triplet, we are not satisfied only detecting a ‘human’ subject,
instead, we have four sub-categories which are man(adult),
woman(adult), boy and girl. This is valuable because the gen-
der and age can affect the way that a humans interact with
objects. For example, we are unlikely to find ‘a man holding
a Barbie’ but this relationship is more commonly seen for ‘a
girl’. Except for the ‘human’ type, our ‘predicate’ covers a
much wider range of ‘relationships’ than the ‘interactions’
in the previous setting. The dataset contains 9852 different
relationships, nearly 20 times more than the HICO dataset
(Chao et al. 2015). Such a large label space leads to a long-
tail label distribution, i.e. some labels appear less than 10
times. Additionally, we provide 18,471 zero-shot relation-
ships, i.e. relationships that never appear in the training split.
To the best of our knowledge, this is the biggest dataset with
these two forms of labels provided and that is labeled with
both human-centric visual relationships and corresponding
‘human’ and ‘object’ bounding boxes.

Motivated by above challenges, our second contribution
is developing methods for (i) automatically augmenting the
training set using weakly labeled data crawled from the web;
and (ii) performing zero-shot recognition by comparing the
query data to web-retrieved data. While not radically novel in
approach, our methods address the issues raised in long-tail
datasets and provide, we believe, a strong baseline for further
works based on our HCVRD dataset and similar data.

Related work

Visual relationship detection (Li, Ouyang, and Wang 2017;
Liang, Lee, and P. Xing 2017; Lu et al. 2016) has attracted
a lot of attention, thanks to the fast development of visual
object detection (Deng et al. 2009), action recognition (Yao
et al. 2011; Wang et al. 2013) and related problems. Recently,
Lu et al. (Lu et al. 2016) propose a model that uses language
priors from semantic word embeddings to finetune the likeli-
hood of a predicted relationship. The recently released Visual
Genome dataset (Krishna et al. 2017) provides a large-scale
annotation of images containing objects, attributes and rela-
tionships. All these works are interested in the visual relation-
ships between arbitrary two objects in the image. Although
this direction is quite interesting and challenging, our focus
is different. We are more concerned specifically with human-
object interactions because of their particular importance in
understanding factors such as intention and affordances, as
well as the fact that, in practical terms, human-centric photos
account for a large portion of images on the Internet.

Our work is closely related to the studies of human-object
interactions (HOI), which mainly focus on learning the hu-
man actions on an object. Earlier methods, such as (Gupta,
Kembhavi, and Davis 2009; Yao and Fei-Fei 2010b; 2012;
Paisitkriangkrai, Shen, and van den Hengel 2014) develop
joint models of body pose configuration and object location
within the image. Yao and Fei-Fei (Yao and Fei-Fei 2010a)
learn spatial groupings of low-level (SIFT) features for rec-
ognizing human-object interactions. Delaitre et al. (Delaitre,
Sivic, and Laptev 2011) introduce a person-object interaction
feature representation based on spatial co-occurrences of in-
dividual body parts and objects while (Desai, Ramanan, and
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Fowlkes 2010; Hu et al. 2013) learn a discriminative model.

Chao et al. (Chao et al. 2015) introduce a Humans Inter-
acting with Common Objects (HICO) dataset which contains
117 actions and 80 objects. Each image in the dataset contains
only one label of {action, object) and there are 520 such pair
categories in total. Most recently, the HICO-DET (Chao et
al. 2017), an incremental version of the HICO dataset is pro-
posed. In the HICO-DET, the bounding boxes of the human
and the objects in an image are annotated. Gupta et al. (Gupta
and Malik 2015) provide a Verbs-COCO dataset which has
similar settings with HICO-DET, but there are only 26 action
categories. They allow for multiple persons in a single image,
but restrict that each person has only one type of action on
one object. Our HCVRD dataset has no such restrictions, thus,
we have at least one human in the image, and each human can
have multiple relationships with multiple objects. Moreover,
we do not restrict that the relationship between the human
and an object must be a verb or action; we provide a rich
set of predicates comprising more than 900 categories. Con-
sider we have 1,824 object categories, we finally have more
than 9000 relationship triplets (human, predicate, object) (it
is not necessary that a human must have relationships with
every object category). A such big label space leads to a
long-tailed distribution problem (see Figure 1) of the data, i.e.
some classes may have thousands of training examples while
some only have very few (less than 10).

Learning from web data (Xiao et al. 2015; Sukhbaatar and
Fergus 2015) is also a related research area. Chen ez al. (Chen
and Gupta 2015) propose to pretrain a CNN on simple exam-
ples and adapt it to harder images by leveraging the structure
of data and categories in a two-step manner. To better dealing
with label noise in Web images, Zhuang (Zhuang et al. 2017)
propose a random grouping and attention unified strategy to
effectively reduce the noise of web image annotations.

Our work is also related to the few and zero-shot learning.
The few-shot learning (Ravi and Larochelle 2017) problem
focuses on when training sets only contain few labeled exam-
ples while the zero-shot (Lampert, Nickisch, and Harmeling
2014) aims to recognise instances for which no examples
have ever been seen in training. A more comprehensive re-
view about the zero-shot learning can be found in (Xian,
Schiele, and Akata 2017). The learning from imbalanced
data (He and Garcia 2009) is also related to our work.

The HCVRD Dataset

Our dataset comprises two parts, publicly available sepa-
rately or together from Hiddenforblindreview. The main part
comprises a carefully curated set harvested from the large
Visual Genome dataset (Krishna et al. 2017). In addition
we have created a supplementary component of 788,160 im-
ages drawn from the top 100 image-search results for each
relationship triple.

Constructing HCVRD dataset

Our proposed human-centric visual relationship detection
(HCVRD) dataset is constructed based on the Visual Genome
dataset (Krishna et al. 2017), which provides detailed scene
annotations, such as objects, attributes and relationships (de-
fined as {sub, predicate, obj}). Since we are only interested
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Figure 2: Statistics of the HCVRD dataset, the distribution of the (a): number of different relationships for each identified person.

(b): number of relationships in each image. (c): human types.

Datasets #relationships (no zero-shot) | #predicates | #objects | #images | #zero-shot relationships
Verbs-COCO (Gupta and Malik 2015) - 26 80 10346 -
Stanford 40 actions (Yao et al. 2011) 40 35 28 9532 -
MPII Human Pose (Andriluka et al. 2014) 410 - 66 40522 -
HICO-DET (Chao et al. 2017) 520 117 80 47774 -
Ours 9852 927 1824 52855 18471

Table 1: Comparison of the existing human-object interaction detection datasets.

in the relationships involving human subjects, the first step
is to extract all the human-related relationships from the 2.3
million relationships pool in the Visual Genome (Krishna
et al. 2017). This is done automatically by searching all the
relationships that their ‘subject’ include a ‘human’ concept
(we use the WordNet (Leacock and Chodorow 1998) to de-
fine a ‘human’ concept vocabulary including human, person,
people, man, male, woman, boy, girl efc. .)

It is worth noting that there are some relationships that
only appear once in the dataset. We annotate a ‘zero-shot’ tag
on those labels so that they can test under the zero-shot set-
ting. This is one of the significant differences with previous
human-object interaction dataset, such as the HICO (Chao
et al. 2017). The zero-shot setting can verify the generaliza-
tion ability of an algorithm, i.e. the ability to detect unseen
relationships in the training set.

The collected relationships are still noisy and should be
carefully processed. We first manually correct the annotations
that contain misspellings and noisy characters (e.g. comma).
We then eliminate the attribute predicates (such as “has”, “is”,
“are”) because these predicates are too abstract and may lead
to a weak discriminative model. We further normalize the
predicates by eliminating the tense using a lexical analysis
toolkit (Bird, Klein, and Loper 2009) and finally have 927
predicate categories, which cover a wide range of types, such
as action, spatial, preposition, comparative and verb and so
on. We then merge some semantically similar objects by
using the GloVe (Pennington, Socher, and Manning 2014)
(i.e. two words are merged if their similarity calculated based
on the Global Vector words representation is bigger than a
threshold) and normalize (singularization and eliminate the
article) the remaining object names while keeping their fine-
grained attributes (e.g. black shirt, yellow shirt). Furthermore,
we manually divide the ‘human’ subject into four more fine-
grained classes according to the image content, which are
man(adult), woman(adult), boy and girl. This is a valuable
setting because the gender and age can affect the way that
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the human interacts with objects.

Dataset Statistics

Table 1 provides summary statistics about our proposed
HCVRD dataset, compared with some human-object inter-
actions dataset. In the following part, we highlight several
interesting aspects of the data.

We finally have 52,855 images with 1,824 object categories
and 927 predicates. In total, the dataset contains 256,550
relationships instances with 9,852 non zero-shot relationship
types and 18,471 zero-shot relationships types. There are on
average 10.63 predicates per object category. We use 31,586
images for training and construct two test splits. The first test
split contains 10,000 images where all the relationships occur
in the training set. Another test split includes all the zero-
shot relationships, i.e. relationships in this split are never
occurred in the training split. The distribution of human-
object relationships in our dataset (see Figure 1) highlight
the long-tail effect of infrequent relationships. Specifically,
there are 370 relationships that appear more than 100 times
and 7,474 relationships appear fewer than 10 times.

Figure 2 (a) shows a distribution of the number of differ-
ent relationship instances that occurred on a person. Unlike
past datasets where each person only can have one relation-
ship, each people in the HCVRD dataset has on average 2.62
relationships with other objects. Figure 2 (b) shows the dis-
tribution of number of relationship instances in each image.
Our HCVRD dataset has a large number of images with more
than one relationship instance. On average there are 6.13 re-
lationship instances annotated per image. Figure 2 (c) shows
the distribution of human types (such as man, woman, boy
and girl) in our dataset.

Supplementary web data

In addition to the curated main dataset described above we
have collected a supplementary set of 788,160 images which
are also available for download, and which we use in our
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Figure 3: The framework of the proposed model. The model consists of (a):a feature extraction module, (b): an object detection
module, (c) a webly-supervised metric learning module. The three modules can be jointly trained in an end-to-end manner.

model for metric learning, to provide a baseline for recogni-
tion in long-tailed data. To collect these images we automati-
cally crawl using Google Images as the source of candidates.
We treat all the 9,852 relationships as the query list and pro-
cess each category independently, taking the top 100 images
returned as representing that relationship class.

For most basic categories commonly appearing in the vi-
sual world, the top results returned by Google image search
are quite clean so that we can directly learn useful visual
representations from them. However some returned images
may have wildly different content from the query triple, and
this can adversely affect training of the model. To mitigate
this issue, we employ the weakly-supervised noise robust
approach of (Zhuang et al. 2017) to filter the noisy images
fully automatically.

More specifically, (Zhuang et al. 2017) relies on a random
group training process that randomly groups multiple web
data (images) into a single training instance as the input of a
classification neural network (we use a separate network for
this purpose, performing 1-0f-9,852 classification). As the
size of the group increases, the chances diminish exponen-
tially that a training instance (i.e. a group) does not contain
imagery of the true relationship. (Zhuang et al. 2017) shows
that this simple “trick” can lead to sizeable gains in accu-
racy when training with weakly labelled data. To determine
which image or images from a group contain true positive
imagery, an attentional pooling layer is employed on the last
convolutional layer to determine which neuron activations
have contributed to the classification. More specifically, we
use the attention weights to decide a confidence score for
each individual image in the random group. We then sort all
images of a given relationship category according to their
confidence scores, and retain the top 80% (discarding the re-
maining 20%). This process yields a relatively clean (though
still weakly labelled) set of supplementary data that covers
the entire set of 9,852 relationship categories with 80 images
per category (hence 788,160).
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A webly-supervised model

One of the biggest challenges in our proposed dataset is the
long-tail distribution of the labels. Nearly 80% of the rela-
tionship labels in our dataset have fewer than 10 training
examples. This issue creates a big challenge to the conven-
tional supervised learning models, especially for those deep
convolutional neural network based models, which normally
require a large number of examples to train. Part of our pur-
pose in creation of the dataset is to stimulate research in
this important direction. To this end, we propose a strong
baseline model for recognition in long-tailed data based on
a so-called “webly”’-supervised learning approach. Such an
approach aims to leverage (practically) unlimited weakly la-
belled web data to overcome the restriction of limited training
examples and the long-tail distribution.

An overview of our proposed webly-supervised relation-
ship detection (WSRD) model is shown in Figure 3. Our
model is divided into three sub-modules: the feature extrac-
tion module, the detection module and the distance metric
learning module. The feature extraction module is a stack of
convolutional layers and max-pooling layers which have the
same configuration as the VGG-16 (Simonyan and Zisserman
2015) or the ResNet (He et al. 2016). The detection module is
in the style of Faster-RCNN (Ren et al. 2015), which is used
to detect the object and human subject (in its sub-category).
A bounding box that encompasses the detected human-object
pair (i.e, contains both human and object) is sent to a deep
metric learning module, which performs inference by find-
ing the nearest-neighbour match in the web-crawled data
amongst all triples sharing the same human and object labels.
This determines the predicate category. The neighbourhood
distances are computed using the learned distance metric (i.e.
in the feature space).

The three sub-modules can be learned in an end-to-end
manner. For the efficiency, the feature map generated by the
feature extraction module is shared as input to following two
modules. We use the VGG-16 (Simonyan and Zisserman
2015) network as a basic building block for our model. We
discuss the detection module and the distance metric learning
module in more detail in the following sections.



Predicate Det. Phrase Det. Relationship Det.
Method R@50 R@100 R@50 R@100 R@50 R@100
top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3
Multilabel 087 278 | 087 278 | 044 092 | 050 095 | 0.03 0.07 | 0.04 0.09
JointCNN 268 736 | 268 736 | 235 563 | 239 6.14 | 021 044 | 022 053
SeparateCNN | 29.00 44.37 | 29.00 4587 | 824 10.53 | 892 13.81 | 048 0.60 | 0.50 0.66
Ours 31.08 47.66 | 31.08 4898 | 10.03 13.05 | 10.75 1694 | 0.53 0.68 | 0.59 0.72

Table 2: Evaluation of different methods on the proposed dataset. The results reported include visual relationship detection
(Relationship Det.) and predicate detection (Predicate Det.) measured by Top-100 recall (R@ 100) and Top-50 recall (R@50).

Predicate Det. Phrase Det. Relationship Det.

Method R@50 R@100 R@50 R@100 R@50 R@100
top-1  top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3
Multilabel 045 1.09 | 045 1.09 | 022 058 | 024 0.62 | 0.0l 0.01 | 0.01 0.01
JointCNN 0.02 003 | 002 0.03 | 001 0.01 | 0.01 001 | 0.0 0.01 | 0.01 0.01
SeparateCNN 1594 2673 | 1594 2673 | 049 155 | 058 1.96 | 0.04 0.08 | 0.05 0.10
Ours-without web data | 18.01 29.35 | 18.01 2935 | 0.73 2.15 | 0.80 243 | 0.06 0.10 | 0.07 0.13
Ours 2455 36.59 | 2455 36,59 | 1.76  3.62 | 191 456 | 0.12 0.16 | 0.14 0.21

Table 3: Results for human-object relationship detection on the long-tail benchmark subset.

Detection module

The object (and human subject) detection module structure is
identical to that of the Faster-RCNN (Ren et al. 2015). Taking
the output of the feature extraction module (Conv5_3 feature
map) as the input, the Region Proposal Network (RPN) is
used to generate object proposals. During training, we extract
features with RoIPool for each object proposal, followed by
the bounding box regression loss L,., and a classification
loss L., to learn the detector/classifier in a manner identical
to (Ren et al. 2015). During inference, we use this module to
detect all human subjects and objects in the images. We apply
non-maximum suppression (NMS) to reduce the number of
proposals with the IoU (Intersection of Union) threshold 0.3
and objectiveness scores higher than 0.2. These filtered boxes
are further grouped to all possible (human, object) pairs and a
bounding box that fully contains the human and object boxes
is associated to each pair. These “union” bounding boxes are
(separately and individually) the input to the distance metric
learning module.

Distance metric learning module

As noted above, this module accepts a union region of the
detected human and object, and computes the feature-space
distance between the proposed region and all of the web-
crawled visual relationship data. The nearest class label of
the web data is assigned to the proposed region. The distance
metric function is learned via deep metric learning on the
web-crawled (supplementary) data.

More specifically, the deep metric learning process aims
to learn a semantic feature embedding (a feature space) for
which similar examples are mapped close to one another
while dissimilar examples are mapped further apart. To this
end, we construct a set of positive pairs and a set of negative
pairs by drawing from the main dataset and the web data.
Each positive pair (x;,x;) contains a sample from the main
HCVRD dataset and a sample from the web data with the
same label, while each negative pair is similarly drawn one
from each, but with non-matching labels. We follow (Oh

Song et al. 2016) to incrementally add the positive and nega-
tive pairs. Specifically, we first sample a few anchor pairs and
then active mining hard negative images to the batch, more
details can be found in (Oh Song et al. 2016).

During the training, the ground truth predicate region x;’s
corresponding Conv5_3 feature map is used as part of the
input for the metric learning module. In the inference, we first
detect the human and objects and get all the possible union
bounding boxes’ corresponding Conv5_3 feature map as the
input, separately and individually. Then the convolutional
feature map is sent to two fully connected layers and the
output f(x;,0;) serves as part of the input for the metric
learning functions (see equation (1)), where f is the feed-
forward function and 6 is the learnable parameters of the
feature extraction module with the fully connected layers.
Another input f(z;, 62) of the metric learning functions is
from the collected web data, which is passed through a pre-
trained VGG-16 model and a learnable feature embedding
layer with parameter 5. Following (Oh Song et al. 2016),
the metric is then learned using a structured loss function
based on the sampled positive and negative pairs of training
samples:

Lmec = ﬁ > max(0, L; ;)3
(i )eP
Lij=log( > exp(la—D;x)+ > exp(a—Dji))+ Dij

(i,k)EN (j,1)eN

(1
where [P is the set of positive pairs and N is the set of negative
pairs, D; ; = || f(xs,01) — f(x;,02)]|, is distance between
two embedding feature vectors. The « is the learnable margin
parameter.

The two modules can be jointly trained in an end-to-end

manner. The model employs multi-task loss for human-object
relationship detection:

L= Lreg + Lcls + Lmec (2)

where L4 and L are the regression loss and cross-entropy
loss in the detection module.
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Predicate Det. Phrase Det. Relationship Det.
Method R@50 R@100 R@50 R@100 R@50 R@100
top-1  top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3
(a) Without metric learning module | 22.55 33.12 | 22.55 3387 | 587 733 | 6.04 944 | 029 043 | 034 049
(b) Without noise filtering 3036 46.12 | 30.37 46.68 | 9.92 1296 | 10.67 1636 | 049 0.64 | 0.57 0.70
(c) Ours (full model) 31.08 47.66 | 31.08 4898 | 10.03 13.05 | 10.75 1694 | 0.53 0.68 | 059 0.72

Table 4: Ablation studies on the HCVRD benchmark non-zeroshot test set.

Predicate Det. Phrase Det. Relationship Det.
Method R@50 R@100 R@50 R@100 R@50 R@100
top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3 | top-1 top-3
Multilabel - - - - - - - - - - - -
JointCNN - - - - - - - - - - - -
SeparateCNN | 2.75 498 | 299 593 | 0.06 0.11 | 0.07 0.16 | 0.01 0.05 | 0.03 0.08
Ours 815 1234 | 857 1342 | 088 143 | 092 1.84 | 003 0.09 | 0.05 0.12

Table 5: Results for human-object relationship detection on the zero-shot benchmark test set.

man on beach; man near ocean;
man wearing ; man carrying
paddle; man holding surfboard

balancing

man wearing kneepads; man

wearing pants; man holding camera

with
glasses;
using
forks;
boy wearing
yellow pants;
boy wearing

\ boy on bench

’

Figure 4: Qualitative examples of the predicate detection. The color of human and objects in the phrases correspond to the color
of the bounding boxes. We only predict the interactions between the ground-truth bounding box pairs.

Experiments
Implementation details

We set the feature embedding size in the metric learning mod-
ule as 256. For training efficiency, we initialize the feature
extraction module with the pre-trained VGG-16. We then pre-
trained the detection module and fix it while training the met-
ric learning module. The learning rate is initialized to 0.0001
and decreased by a factor of 10 after every 5 epochs. During
the inference, we first retrieve the top 20 nearest neighbor
relationships and select those including both detected human
and object categories. Then we use the top-ranked selected
candidates for evaluation.

Evaluation Setup

We evaluate our human-object interactions task using Re-
call@100 and Recall@50, following the setting of Visual
Relationship Detection (VRD) task (Liang, Lee, and P. Xing
2017; Lu et al. 2016). Recall@x computes the fraction of
times the correct relationship is calculated in the top x pre-
dictions, which are ranked by the final distances. We eval-
uate on three tasks: (1) For predicate detection, the goal
is to predict the accuracy of predicate recognition, where
the groundtruth labels and bounding boxes for both the ob-
Jject and human are given. (2) In phrase detection, we aim
to predict (human-predicate-object) and localize the entire

7636

relationship in one bounding box. (3) For relationship de-
tection, the task is to recognize (human-predicate-object)
and localize both human and object bounding boxes, where
both boxes should have at least 0.5 overlap (IoU) with the
ground-truth in order to be regarded as correct prediction. In
the real world applications, different relationships may share
very similar semantic meanings (e.g. “man holding phone”,
“man talking on phone”, “man using phone”) and it’s difficult
to differentiate them. Hence, in many cases, one “appropriate”
prediction may be judged “incorrect” due to the limitation
of the test annotations, which is a common problem of the
current VRD evaluation metric. One possible solution is to
employ the human evaluation, which is cost however. In this
paper, we instead report both top-1 and top-3 results under
different Recalls to evaluate the model.

Baselines

We benchmark the following approaches on our new dataset
and results are reported in Table 2.

Multilabel classification A person can concurrently per-
form different interactions with different target objects, e.g.
a person can “ride bicycle” and “drink water” at the same
time. Thus we treat the human-object relationship detection
task as a multilabel classification problem where we apply a
sigmoid cross entropy loss on top of the classification layer.
Specifically, we treat the union of a human and its correlated



objects as the input during training. During the testing, we
use our object detection module to return the regions. We use
VGG-16 model as the basis building block.

JointCNN This implements the Visual phrases (Sadeghi
and Farhadi 2011). We train a VGG-16 model to jointly
predict the three components of a relationship. Specifically,
we treat each relationship category separately and train a
9,852 way classification model.

SeparateCNN Following the visual model of (Lu et al.
2016), we first train a VGG-16 model to classify the 1,824
objects. Similarly, we train a second model to classify each
of the 927 predicates using the union of the bounding boxes
of the participating human and the object in that relationship.

For JointCNN and Multilabel baselines, we empirically
find that due to the long-tail property of the dataset, the
learned models are seriously biased. It causes the predictions
only fall into those labels with large numbers of training
examples. To solve the problem of extreme classification
with enormous number of categories, we instead propose
to employ the metric learning approach with web data to
perform efficient nearest neighbor inference on the learned
metric space. By comparing ours with the two baselines,
we find significant performance increase on all evaluation
metrics.

For the SeperateCNN baseline, since the training data for
human, objects and predicates are relatively adequate re-
spectively, its performance is competitive with our proposed
method. In other words, the human, objects and predicates
are predicted separately, hence, the label prediction space is
much smaller than above two baseline approaches. However,
compared to predicate detection results, the performance of
phrase and relationship detection decreases a lot. It shows
that detecting such wide range of objects is a major challenge
for visual relationship detection.

Long-tail evaluation

Due to the long-tail distribution of the categories in the
dataset, the infrequent relationships will contribute not much
to the final testing performance. But in real world applica-
tions, the relationships in long-tail should not be ignored. So
we select those relationships that appear less than 10 times as
a subset (i.e. there are totally 7,474 relationships) and report
the performance in Table 3. From the table, we can see that
our approach performs steadily better than the baseline meth-
ods. For the baseline methods, the lack of training data is a
main challenge for obtaining accurate predictions. The main
motivation of the proposed method is to utilize web data to
tackle this limitation. With the always available web data, we
can learn the distance metrics and efficiently infer nearest
neighbor relationships on the learned metric space.

Ablation study

With vs. without metric learning module Metric learning mod-
ule is the key component of our system. To evaluate its im-
pact, we implement a variant without the metric learning
module. For the detected union bounding boxes of relation-
ships and web data, we directly extract the 4096-dimentional
feature vector for each sample using the pretrained VGG-16
model. We then compute the cosine similarity between the
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test sample and all mean vectors of the relationship categories
that contain both detected human and object types. We then
retrieve the nearest neighbor relationship categories as our
predictions. Table 4 (a) vs. (c) shows that learning the seman-
tic feature embeddings via distance metric contributes a lot
to the final performance.

With vs. without web data We also evaluate the influence
of the web data by only using the training data of the dataset.
Since one motivation of introducing web data is to solve the
scarceness of training data, we report this variant under the
long-tail setting in Table 3 as Ours-without web data. By
comparing it with Ours in Table 3, we find that removing
web data causes an obvious performance degradation, which
proves the effectiveness of introducing the web data. We find
that the web data can help on some relationships that rarely
happened in the dataset, such as ‘man cooking on street’ and
‘man peddling rickshaw’.

With vs. without noise filtering We further remove the noise
filtering step to investigate the affect of noisy labels. The re-
sults are shown in Table 4 (b). Table 4 (b) vs. (c) shows
that removing noise filtering have less affect to the perfor-
mance compared to removing metric learning module. This
is because for relationships that commonly used in the visual
content, top results returned by Google images search are
pretty clean. Noise filtering provides an auxiliary to further
improve the quality of web data.

Zero-shot evaluation

It is quite important to make the model generalizable to un-
seen human-object relationships. In this section, we report
the performance of our method on a zero-shot learning set-
ting. Specifically, we train our models on the training set
and evaluate their relationship detection performance on the
18,471 unseen visual relationships in the zero-shot test split.
Given the detected human and objects in a relationship, we
first get all their possible interactions to form a search space.
We then collect web data and extract feature embeddings to
get the nearest neighbors relationships for the test sample.
The results are reported in Table 5. We can see that the pro-
posed method works more robust. This can be attributed to
the introduction of the external web data for efficient nearest
neighbor search. For the “separateCNN” baseline, by predict-
ing the predicates separately from its objects, it is difficult to
capture the appearance variations due to the weak and even
ambiguous visual features.

Conclusion

We have proposed a large-scale human-centric visual relation-
ship detection (HCVRD) dataset, which is significantly larger
and broader than previous datasets. Human-centric relation-
ships represent an important subclass of all relationships, not
only because the human has agency, but also due to their prac-
tical importance for other challenges. Increasing the scale of
data available better captures the reality of the task, but rises
two important practical problems, the long-tail distribution
issue and the zero-shot problem, which are both reflected in
our proposed HCVRD dataset. Motivated by the practical im-
portance of the task, our webly-supervised method addresses



the issues and provides a strong baseline for further works
based on our HCVRD dataset and similar data.
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