
Learning Constraints from Examples

Luc De Raedt
Dept. of Computer Science

KU Leuven, box 2402
BE-3001 Heverlee, Belgium
luc.deraedt@cs.kuleuven.be

Andrea Passerini
University of Trento

Via Sommarive 9
Povo Trento, Italy

andrea.passerini@unitn.it

Stefano Teso
Dept. of Computer Science

KU Leuven, box 2402
BE-3001 Heverlee, Belgium
stefano.teso@cs.kuleuven.be

Abstract

While constraints are ubiquitous in artificial intelligence and
constraints are also commonly used in machine learning and
data mining, the problem of learning constraints from exam-
ples has received less attention. In this paper, we discuss the
problem of constraint learning in detail, indicate some subtle
differences with standard machine learning problems, sketch
some applications and summarize the state-of-the-art.

Introduction

Constraints are ubiquitous in artificial intelligence and oper-
ations research, they appear in purely logical problems such
as propositional satisfiability, constraint satisfaction prob-
lems, and full-fledged constraint optimization.

The term constraint learning, as used in this paper, refers
to the problem of finding a set of constraints, a constraint
theory, that satisfies a given dataset. This use of the term
constraint learning differs from that used in solver technol-
ogy, where clause learning or constraint learning refers to
the process of adding clauses to improve the efficiency of
the solver when inconsistencies are found. This is actually a
deductive procedure. In contrast, we refer to inductive learn-
ing, that is, to learning a constraint theory from examples.

In recent years there has been a significant interest in
the relationship between machine learning and data mining
on the one hand, and constraint satisfaction and program-
ming on the other hand (Passerini, Tack, and Guns 2017;
Bessiere et al. 2016b; 2017a). The use of constraints in
data mining and machine learning is now a mainstream
topic in constraint programming and artificial intelligence
(cf. (Davidson, Guns, and Nijssen 2017)). While constraints
are extremely popular from a modeling and solving perspec-
tive, also in machine learning and data mining, there are to-
day only relatively few approaches to learning constraints
from data. This paper wants to not only survey these devel-
opments but also to position constraint learning in a broader
machine learning context. We will argue that there are some
subtle differences with standard “function” learning in ma-
chine learning, and we will also point out some challenges
and possible applications.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Constraint Learning
From one perspective, constraint learning can be formalized
as a concept-learning problem (Mitchell 1997).

Given

• a space of possible instances X; typically instances are
(partial or complete) assignments to a set of variables V
belonging to the unknown constraint theory, i.e., logical
interpretations;

• a space of possible constraints C;
• an unknown target constraint theory T ⊆ C;
• a set of training instances E; positive instances satisfy T ,

while negatives do not;
Find a constraint theory H (H ⊆ C) such that all posi-
tive instances in E are satisfied (or satisfiable in the case of
partial assignments) in H; and none of the negatives.

As usual, several variations on this definition can be con-
sidered such as finding the best constraint theory w.r.t. a loss
function as well as learning a soft constraint theory rather
than a hard one, cf. below.

To illustrate this definition, let us consider the prototyp-
ical example of a constraint theory: a boolean theory. The
space of possible constraints could then be the set of all
clauses over the set of variables V and the instances could
then be complete assignments to the variables. This formula-
tion actually corresponds to the setting introduced by Leslie
Valiant in his seminal paper on PAC-learning (probably ap-
proximately correct learning) (Valiant 1984).

From a machine learning perspective, the above formula-
tion of learning constraint theories is in line with those of
concept learning, where the aim is to learn a classifier that
allows one to distinguish members of the concept from those
that are not. However, while in concept-learning one induces
a binary function, the learned theories in constraint learn-
ing typically allow also for other uses. A constraint theory
cannot only be used to distinguish satisfiable from unsatis-
fiable instances but it can also be used to complete partial
assignments. After all, constraint theories are typically used
in this way. Given particular values for some of the variables
Ev ⊆ V , one can infer which values may still be assigned to
the other variables V \Ev. When considering constraint op-
timization, one wants to infer what is the best such assign-
ment, possibly accounting for weights associated with soft

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

7965



constraints. This use of constraint theory shares some simi-
larities with structured output prediction, albeit that there the
variables Ev are typically fixed and the focus is on efficient
techniques for computing the best possible output (V \Ev)
given the input (Ev). In this respect, constraint learning is
closer to learning probabilistic models as also these models
can be used to find the best (or most likely) possible world in
the light of the evidence. Furthermore, probabilistic models
can also be trained on complete or partial examples.

Applications
Constraint learning is useful in every context where con-
straints or constraint optimization is being used. This in-
cludes but is not limited to learning logical theories and
formulas (as in computational learning theory (Kearns and
Vazirani 1994) and inductive logic programming (Muggle-
ton and De Raedt 1994)), in constraint programming and
operations research, in a database and spreadsheet context.

To illustrate this, (Kolb et al. 2017) have recently shown
that it is possible to learn the formulas and constraints that
hold in a particular spreadsheet. Many users of Excel and
other spreadsheets have difficulties in producing the formu-
las that compute the averages or totals of particular rows or
columns, certainly if the operations to be used span multi-
ple tables in the spreadsheet. Now (Kolb et al. 2017) have
designed the Tacle system that given a spreadsheet show-
ing all of the desired values, can reverse engineer the for-
mula and constraints (such as functional dependencies). A
formula computing the sum of three values acts as a con-
straint, because the formula also allows for the computation
of one of the values given the sum and the two other values.
Spreadsheets are often used as constraint solvers.

Another interesting example is ModelSeeker (Beldiceanu
and Simonis 2012). It has successfully induced global mod-
els for problem such as sports scheduling and it has dealt
with problems containing 1000s of variables. For instance,
ModelSeeker has identified the constraints underlying the
scheduling of the Bundesliga (the German Football Liga)
from a single example schedule.

Configuration problems such as customizing a car or a
laptop on an e-commerce website, can be viewed as pro-
totypical constraint satisfaction and optimization problems.
Here the hard constraints define the space of products and
the soft (parameterized) ones represent the customer’s pref-
erences over feasible assignments. Methods such as Set-
Margin (Teso, Passerini, and Viappiani 2016) and Coac-
tive Learning (Teso, Dragone, and Passerini 2017) tackle
interactive learning of these parameters. More generally,
many wide-spread timetabling (Smet et al. 2013) and de-
sign tasks (Mitchell, Steadman, and Liggett 1976; Harada,
Witkin, and Baraff 1995) with an incomplete or ambigu-
ous specification can in principle be adapted or completed
through constraint learning.

The induction of constraints is also attracting attention
from outside the field of artificial intelligence. (Smith, Ferns,
and Albarghouthi 2017) describe the Bach system that
induces relational specifications from data describing the
input-output behavior of a set of functions in a program or li-
brary for use in a software engineering context, and (Pawlak

and Krawiec 2017) induce constraints of mixed integer lin-
ear programs in an operations research context.

Finally, constraint learning can substantially speed up the
design of complex architectures such as cyber-physical sys-
tems (Lee 2008). A substantial amount of human effort
is typically required in order to design appropriate archi-
tectures, simultaneously satisfying known constraints and
meeting engineering preferences developed through experi-
ence. A constraint learning component could help formalize
these preferences by extracting them from existing architec-
tures, in order to use them in the design of novel ones.

Dimensions of Constraint Learning

While successful formalisms for solving constraint satisfac-
tion and optimization problems have been developed (Rossi,
Van Beek, and Walsh 2006), and constraint learning has
been identified as an important topic (O’Sullivan 2010), a
general framework for constraint learning is still lacking.
We believe it is useful to distinguish different settings for
constraint learning; cf. (De Raedt et al. 2016).

Existing approaches to constraint learning often follow di-
verse recipes and aim at different goals. At one end of the
spectrum there are methods that aim at learning of hard sat-
isfaction problems, e.g. learning Boolean concepts and con-
straint satisfaction problems, based on symbolic and logical
learning frameworks. At the other end there are methods that
target soft constraint optimization problems, e.g. weighted
maximum satisfiability, constrained optimization tasks with
preferences over the constraints, and graphical models, often
backed by non-symbolic machine learning algorithms. Rep-
resentations can be based on boolean or on first order logic
(as in inductive logic programming and statistical relational
learning). Furthermore, existing methods span both offline,
batch learning settings where the data is assumed as given,
and online, interactive ones where the data is queried from
an external oracle, often a human decision maker. A final di-
mension is concerned with the nature of the instances, are
they partial or complete assignments to the variables?

Basic Algorithms

We first focus on the basic algorithm of (Valiant 1984) for
learning a boolean k-CNF theory from examples; it is one of
the simplest possible settings for learning a constraint theory
and it corresponds to learning a “hard” boolean theory from
complete instances in batch. In the next step, we will ex-
pand this basic approach along the different representations,
that is, we shall discuss the necessary changes to apply it
to first order logical theories, to constraint programs and to
the learning of “soft” theories. Finally, we shall discuss user-
interaction, preferences and decomposition.

Valiant’s algorithm

Valiant’s algorithm is learning a k-CNF theory, that is, a the-
ory consisting of a set of clauses containing at most k liter-
als. A clause is a disjunction of literals of the form v or ¬v
with the variables v ∈ V . Valiant’s algorithm is very simple,
it enumerates the set of all clauses H0 containing at most k
literals over the variables in V , and then repeatedly prunes

7966



the current set of clauses Hi+1 w.r.t. the next positive ex-
ample pi. Those clauses in Hi that do not satisfy the next
positive example are simply deleted. This process continues
until all positive examples have been processed. No nega-
tive examples are required or used. The algorithm assumes
a noise-free setting.

Valiant’s algorithm is essentially a generate-and-test algo-
rithm – it generates all the constraints and then tests whether
they hold on the dataset. It can also be examined from a
learning as search perspective. From this perspective it al-
ways keeps track of the most specific hypothesis (i.e. Hi)
covering the already processed examples, which is in line
with Mitchell’s Find-S algorithm (Mitchell 1997).

Valiant’s algorithm has nice properties – it is a PAC-
learning algorithm and it will also converge to the correct
solution (assuming a noise-free setting) in the limit.

Inductive Logic Programming

Valiant’s algorithm for k-CNF has been extended towards
first order logic using principles of inductive logic program-
ming (De Raedt and Dehaspe 1997; De Raedt and Džeroski
1994). This involves turning the k-CNF clauses into first or-
der logic clauses by turning every literal of the form l (or ¬l)
into a first order literal of the form p(t1, ..., tn) where the ti
are logical terms (either constants or logical variables), and
universally quantifying the resulting clauses. Consider for
instance the clause ∀X,Y : X �= Y ∨ ¬p(X,Y ) which
states that whenever p(X,Y ) holds, X and Y are different.
In addition to changing the formulas, also the interpretations
must be changed. One typically uses Herbrand interpreta-
tions then, these are sets of ground facts (facts that do not
contain any variable). All facts in the interpretation are as-
sumed to be true, all other ones are false. For instance, the in-
terpretation p(a, a) would not satisfy the above listed clause.
The other elements of Valiant’s algorithm remain the same,
although optimizations are possible (and a constraint on the
size of atoms is applied to obtain PAC-learning results). One
such optimization is to prune the search according to the
generality relation between clauses. A clause c1 is more gen-
eral than a clause c2 if all examples covered by c2 are also
covered by c1, that is, when c1 |= c2 (c1 entails c2). For in-
stance, when a clause a∨ b∨ c is not satisfied by a particular
example, none of the proper subsets of the clause can satisfy
the example as each such subset imposes stronger restric-
tions. Thus these subsets (specializations) can be pruned.

The resulting framework for clausal discovery has been
used to learn constraints and regularities in relational data;
similar principles (focusing on specific types of rules such as
functional and multi-valued dependencies) have been used
in a database setting, e.g. (Flach and Savnik 1999).

Alternative inductive logic programming techniques for
learning constraint satisfaction problems have also been
considered, cf. (Lallouet et al. 2010) who learn definite
clauses from examples in the more traditional inductive
logic programming setting of learning from entailment. This
setting corresponds to a kind of rule learning, which can
also be related to constraint learning. In rule learning, one
typically learns a disjunction of conjuctions, so a formula
in DNF form. In contrast, the constraint theories targeted in

constraint learning are typically conjunctive, cf. Valiant’s al-
gorithm for learning k-CNF. These two forms of logical ex-
pression are each others duals. For instance, adding a literal
to one of the conjunctive rules in a DNF yields a specialisa-
tion, while adding a literal to a clause or clausal theory yields
a generalisation. One interesting property of these logical
approaches to learning that carries over to constraint learn-
ing is that one obtains interpretable models, models that can
readily be interpreted by the end-user. Furthermore, they en-
able the encoding and use of background knowledge in the
learning process.

Constraint programming

The approaches to concept-learning that have been devel-
oped in a series of papers by Bessiere et al. (Bessiere et al.
2005; 2013; 2016a; 2017b) combine elements of the above
two approaches. First, they are based on the learning as
search paradigm of (Mitchell 1997), but rather than using
the Find-S algorithm (that keeps track only of the most spe-
cific hypothesis), they use the more general versionspace
algorithm (which keeps track of the sets of the most gen-
eral and of the most specific hypotheses). Secondly, con-
straint satisfaction problems (CSPs) as studied in the con-
straint programming community are usually conjunctive. In-
deed, in a CSP one is given a set of variables V , correspond-
ing domains D(v) for each of the variables v ∈ V and
a set of constraints C, where each constraint c(v1, ..., vn)
specifies a relation over D(v1) × ... × D(vn). The prob-
lem is then to find an assignment θ to the variables V so
that all constraints in C are satisfied. From a logical per-
spective, the constraint theory (or constraint network as it is
often called) corresponds to a first order logical expression
l1 ∧ ... ∧ lm, where the li are first order literals as in the
work on inductive logic programming described above. In
many of the works by Bessiere et al. (Bessiere et al. 2013;
2017b) the space of literals is determined by setting a lan-
guage bias. To specify the language bias, it is assumed that
both the variables V and the allowed basic constraints (such
as =, �=,≥) are given. The set C of possible constraints is
then the set of all possible literals that can be constructed
with V and the basic constraints. This effectively allows one
to propositionalize the learning problem. For instance, as-
sume we have the variables A,B and C, and as only basic
predicate =. Then each instance of (A,B,C) can be turned
into a boolean feature vector. For instance, the assignment
(7, 9, 9) would have the values (false, true, false) for the
features (A = B,B = C,A = B). In this way, the con-
straint learning problem reduces to that of learning a mono-
mial (a conjunctive boolean expression) over the resulting
features and the corresponding algorithms from computa-
tional learning theory apply.

Nevertheless, there are some special challenges that arise
in the context of learning CSPs. One of these is concerned
with the relationships that hold amongst the different con-
straint primitives. To continue the above example, whenever
A = B and B = C hold it follows that also A = C holds.
This introduces redundancy in the hypotheses and search
space and needs special techniques to cope with these (Ab-
dennadher and Rigotti 2002). Another one is that CSPs typ-

7967



ically have only a few solutions and thus there are only very
few positive examples. Some works therefore combine the
search for a solution to the learning task with that of finding
a solution to the CSP itself (Bessiere et al. 2013).

Learning Soft Constraints

Numerous variants on the basic SAT problem have been con-
sidered in artificial intelligence. While the basic SAT prob-
lem (as used by Valiant) is looking for satisfying assign-
ments, variations exist that look, for instance, for the number
of satisfying assignments (model counting) or for the best
satisfying assignment (maxSAT problem). The latter is an
example of constraint optimization problem as one is look-
ing for the assignment θ that scores best w.r.t. a particular
objective function s that takes into account the degree to
which the assignment θ satisfies the constraints (or clauses)
C. For maxSAT the score is simply the number of clauses
that are satisfied, and for weighted maxSAT, each clause ob-
tains a weight and the score is the sum of the weights of the
satisfied clauses.

Given that such soft constraint satisfaction problems are
also prominent in the artificial intelligence literature (e.g.,
for probabilistic reasoning and decision theoretic planning),
it can be no surprise that the learning of such soft constraint
theories has also been studied. One typically distinguishes
two settings. In the first setting, parameter learning, the con-
straints (or clauses) C are given and fixed and the goal is
to learn the scoring function s, that is, the weights of the
clauses. In the second setting, structure learning, both the
constraints and the weights are being learned.

Parameter learning of soft constraints was pioneered by
(Rossi and Sperduti 2004). Here the scoring function is es-
timated interactively by interleaving two steps. In the first
step the algorithm chooses a few high-scoring assignments
and presents them to the user, who ranks them according to
their preferences. In a second step the parameters are fine-
tuned based on the obtained supervision by employing max-
margin techniques (Joachims 2002). Similar ideas were de-
veloped independently in the preference learning commu-
nity (Domshlak et al. 2011) and recently employed for learn-
ing in customization and design problems (Teso, Passerini,
and Viappiani 2016).

CLEO (Campigotto, Battiti, and Passerini 2015) adopts
a similar approach for parameter learning of maxSAT
and maxSMT (satisfiability modulo theories (Barrett et al.
2009)) theories in preference learning settings. It does so by
exhaustively enumerating all clauses up to a given length,
employing a sparsifying prior to set most learned weights to
zero. This amounts to a form of structure learning – all con-
straints deemed irrelevant for fitting the supervision are as-
sociated to a null parameter, and effectively eliminated from
the learned theory.

Learning weighted sets of clauses is closely related to
probabilistic reasoning. Indeed, many inference problems in
probabilistic graphical models (Darwiche 2009) can be re-
duced to weighted model counting problems. WMC solvers
provide state of the art results in probabilistic inference. In
addition, weighted max SAT solving is closely related to
MAP and MPE inference in graphical models. Markov logic

(Domingos and Lowd 2009) uses weighted first order logic
clauses as its representation and WMC and weighted MAX
SAT for probabilistic inference. It is a kind of soft extension
of the first order clausal theories listed in the inductive logic
programming subsection. Many papers have been written on
learning the structure and the parameters of Markov Logic
(Domingos and Lowd 2009).

Whereas Markov logic targets first order logic clauses, the
frameworks of (Teso, Sebastiani, and Passerini 2017) and
(Pawlak and Krawiec 2017) go one step further, targeting the
learning of satisfiability modulo theories and mixed-integer
linear problems. The induced models do not have a proba-
bilistic interpretation.

User interaction through queries

Especially when learning hard constraint theories the use of
active learning and queries has been popular. Rather than
assuming that the examples are given and fixed, the learner
interacts with a knowledgeable end-user in order to speed
up the learning process. This is not surprising as learning
from queries has proven to be extremely useful ever since
Angluin’s seminal paper (Angluin 1987).

Although many types of queries can in principle be used,
let us illustrate this idea using membership queries, partial
queries, and preference queries.

Membership queries simply ask whether a particular as-
signment satisfies the unknown target theory or not. As an
illustration, consider the learning of CSPs using monomials.
Given that our current hypothesis would be the monomial
c1 ∧ ... ∧ cn and we follow the Find-S algorithm one can in
principle generate an example that satisfies c1 ∧ ... ∧ ci−1 ∧
¬ci ∧ ci+1 ∧ ... ∧ cn and ask the user to classify it. In case
it is positive, we can safely delete ci from our current hy-
pothesis and repeat the process. In case it is negative, we do
know that ci is a necessary condition (Mitchell 1997). Al-
though the idea is simple, its application to CSPs is more
tricky (Bessiere et al. 2017b) as there might not exist an as-
signment that satisfies c1 ∧ ...∧ ci−1 ∧¬ci ∧ ci+1 ∧ ...∧ cn.
This may be due to redundancies (such as the A = C in the
search space mentioned earlier).

In the same context, a partial query could ask whether a
particular partial assignment Ev can be extended into a com-
plete satisfying assignment for the unknown target theory. If
the answer is positive, one can generalize the hypotheses in
the current versionspace; if it is negative, one has obtained
a very strong constraint on the possible solutions to the con-
straint learning problem. In that case, any constraint theory
C for which C ∧ Ev is satisfiable cannot be a solution the
learning problem. Partial queries have been used in (Bessiere
et al. 2016a).

Finally, when learning soft constraint theories, it is inter-
esting to employ preference learning. For instance, (Rossi
and Sperduti 2004) ask which of two solutions is to be
preferred. This allows for tuning the scoring function by
learning clause weights that correctly rank the stated pref-
erences. An alternative especially suited for manipulative
or design tasks are improvement queries (Shivaswamy and
Joachims 2015), whereby the user constructs an assignment
with higher score (than the learner-provided one).

7968



When interacting with the user, the learner should of
course focus on generating the most informative questions
in order to minimize the burden on the user and to speed up
the learning process.

Similar learning mechanisms were developed in the con-
text of incremental preference elicitation (Pigozzi, Tsoukias,
and Viappiani 2016), where the goal is to estimate the prefer-
ences of a customer so to suggest high-quality, personalized
recommendations. The learned constraints can be either hard
and convey qualitative preferences among alternatives, as in
CP-nets (Boutilier et al. 1997), or weighted, in which case
the weight of the satisfied constraints determines the utility
of the recommendation (Braziunas and Boutilier 2007).

Despite the similarities, their focus is on producing high-
quality recommendations as quickly as possible by explor-
ing only the most promising models, rather than on learning
a faithful constraint theory.

Decomposition and Structuring

When tackling constraint learning problems with many vari-
ables, it is often necessary to identify and exploit possible
structures into the problem.

This is especially important when interacting with human
decision makers, as they may have difficulties in parsing or
understanding (potentially complex) complete instances. In
this case decomposing or simplifying the interaction pro-
tocol, similarly to what is done with partial assignments
in (Bessiere et al. 2013), can help to avoid overloading the
user and consequently improve the reliability of the obtained
supervision.

One impressive example from the constraint program-
ming community is the work on ModelSeeker (Beldiceanu
and Simonis 2012). ModelSeeker starts from a flat assign-
ment, that is, a list of variables together with the values
they have been assigned; ModelSeeker also employs a vast
number of constraints from the global constraint library
as primitive constraints. These global constraints (such as
alldiff) are then used in the ”bias” of ModelSeeker (cf.
the subsection on constraint programming).

An innovative component of ModelSeeker is actually
searching for structure in the flat list, which is a vector (ma-
trix) of dimension 1 x n. ModelSeeker then considers nu-
merous variations of this list, such as a matrices of dimen-
sion m × n/m (with m a divisor of n). For each of these
resulting matrices it then looks for global constraints that
hold row-, column- or diagonal-wise.

Challenges
There are many different challenges on constraint learning.
A first one is concerned with the different representations
of the constraint theory. So far, only the main representa-
tions have been considered. It would be interesting to look
more into the many variations of the SAT problem, and into
mixed Integer Linear Programing. A second one is that es-
pecially when learning soft constraints, the inference com-
plexity must be controlled. Improving inference will lead to
better learning techniques.

Finally, for what concerns interaction, most existing ap-
proaches expect the user to be able to parse and understand

any given full assignment. Of course, this expectation is un-
realistic in any sufficiently complex (i.e. real-world) con-
straint satisfaction problem. A promising direction involves
studying interaction involving simplified instances or sum-
maries. For instance, QuAcq (Bessiere et al. 2016a) learns
hard constraint theories by exchanging partial assignments
with the user. The caveat is that it is not immediately ap-
plicable to soft constraint problems, as the scoring function
may not be defined over partial assignments. Further, in this
setting the acquired labels refer to partial (and potentially
small) assignments, “dumbing down” the amount of infor-
mation conveyed by individual queries. Effective learning in
this scenario might require one to increase the amount of
information conveyed by individual queries, while keeping
their scope sufficiently small: such “fat” queries might con-
vey labels, explanations, arguments, or other kinds of data.

Acknowledgements

This work was supported by the European Research Coun-
cil (ERC) Advanced Grant 694980 ”SYNTH: Synthesising
Inductive Data Models”. The first author is grateful to Chris-
tian Bessiere, Anton Dries, Tias Guns and Helmut Simonis
for many interesting discussions on learning constraints.

References

Abdennadher, S., and Rigotti, C. 2002. Automatic gen-
eration of rule-based solvers for intensionally defined con-
straints. International Journal on Artificial Intelligence
Tools 11(2):283–302.
Angluin, D. 1987. Queries and concept-learning. Machine
Learning 2:319–342.
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability modulo theories. Handbook of satisfia-
bility 825–885.
Beldiceanu, N., and Simonis, H. 2012. A model seeker: Ex-
tracting global constraint models from positive examples. In
Proc. Principles and Practice of Constraint Programming,
volume 7154 of Lecture Notes in Computer Science, 141–
157.
Bessiere, C.; Coletta, R.; Koriche, F.; and O’Sullivan, B.
2005. A SAT-based version space algorithm for acquiring
constraint satisfaction problems. In Proc. European Confer-
ence on Machine Learning, volume 3720 of Lecture Notes
in Computer Science, 23–34. Springer.
Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.; Lazaar,
N.; Narodytska, N.; Quimper, C.-G.; Walsh, T.; et al. 2013.
Constraint acquisition via partial queries. In Proc. 23rd In-
ternational Joint Conference on Artificial Intelligence, 475–
481.
Bessiere, C.; Daoudi, A.; Hebrard, E.; Katsirelos, G.;
Lazaar, N.; Mechqrane, Y.; Narodytska, N.; Quimper, C.-G.;
and Walsh, T. 2016a. New approaches to constraint acquisi-
tion. In Data Mining and Constraint Programming - Foun-
dations of a Cross-Disciplinary Approach, volume 10101 of
Lecture Notes in Computer Science. Springer. 51–76.
Bessiere, C.; De Raedt, L.; Kotthoff, L.; Nijssen, S.;
O’Sullivan, B.; and Pedreschi, D., eds. 2016b. Data Min-

7969



ing and Constraint Programming - Foundations of a Cross-
Disciplinary Approach, volume 10101 of Lecture Notes in
Computer Science. Springer.
Bessiere, C.; De Raedt, L.; Guns, T.; Kotthoff, L.; Nanni,
M.; Nijssen, S.; O’Sullivan, B.; Paparrizou, A.; Pedreschi,
D.; and Simonis, H. 2017a. The inductive constraint pro-
gramming loop. IEEE Expert 32(5):44–52.
Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B.
2017b. Constraint acquisition. Artificial Intelligence
244:315–342.
Boutilier, C.; Brafman, R.; Geib, C.; and Poole, D. 1997. A
constraint-based approach to preference elicitation and de-
cision making. In AAAI Spring Symposium on Qualitative
Decision Theory, 19–28.
Braziunas, D., and Boutilier, C. 2007. Minimax regret based
elicitation of generalized additive utilities. In Proc. of the
Uncertainty in Artificial Intelligence Conference, 25–32.
Campigotto, P.; Battiti, R.; and Passerini, A. 2015. Learn-
ing modulo theories for preference elicitation in hybrid do-
mains. CoRR abs:1508.04261.
Darwiche, A. 2009. Modeling and reasoning with Bayesian
networks. Cambridge University Press.
Davidson, I.; Guns, T.; and Nijssen, S. 2017. Data min-
ing and machine learning using constraint programming lan-
guages. Tutorial presented at IJCAI.
De Raedt, L., and Dehaspe, L. 1997. Clausal discovery.
Machine Learning 26:99–146.
De Raedt, L., and Džeroski, S. 1994. First order jk-clausal
theories are PAC-learnable. Artificial Intelligence 70:375–
392.
De Raedt, L.; Dries, A.; Guns, T.; and Bessiere, C. 2016.
Learning constraint satisfaction problems: An ilp perspec-
tive. In Data Mining and Constraint Programming - Foun-
dations of a Cross-Disciplinary Approach, volume 10101 of
Lecture Notes in Computer Science. Springer. 96–112.
Domingos, P., and Lowd, D. 2009. Markov Logic: An Inter-
face Layer for Artificial Intelligence. Morgan & Claypool
Publishers.
Domshlak, C.; Hüllermeier, E.; Kaci, S.; and Prade, H. 2011.
Preferences in artifical intelligence: An overview. Artificial
Intelligence 175(7-8):1037–1052.
Flach, P., and Savnik, I. 1999. Database dependency dis-
covery: a machine learning approach. AI Communications
12(3):139–160.
Harada, M.; Witkin, A.; and Baraff, D. 1995. Interactive
physically-based manipulation of discrete/continuous mod-
els. In Proc. 22nd Annual Conference on Computer Graph-
ics and Interactive Techniques, 199–208. ACM.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proc. ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 133–142.
Kearns, M., and Vazirani, U. 1994. An Introduction to Com-
putational Learning Theory. The MIT Press.
Kolb, S.; Paramonov, S.; Guns, T.; and De Raedt, L. 2017.

Learning constraints in spreadsheets and tabular data. Ma-
chine Learning 106:1441–1468.
Lallouet, A.; Lopez, M.; Martin, L.; and Vrain, C. 2010. On
learning constraint problems. In Proc. IEEE International
Conference on Tools with Artificial Intelligence, 45–52.
Lee, E. A. 2008. Cyber physical systems: Design chal-
lenges. In Proc. IEEE Symposium on Object Oriented Real-
Time Distributed Computing, 363–369.
Mitchell, W. J.; Steadman, J. P.; and Liggett, R. S.
1976. Synthesis and optimization of small rectangular floor
plans. Environment and Planning B: Planning and Design
3(1):37–70.
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.
Muggleton, S., and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. Journal of Logic Program-
ming 19/20:629–679.
O’Sullivan, B. 2010. Automated modelling and solving in
constraint programming. In Proc. 24th AAAI Conference on
Artificial Intelligence, 1493–1497.
Passerini, A.; Tack, G.; and Guns, T. 2017. Introduction to
the special issue on combining constraint solving with min-
ing and learning. Artificial Intelligence 244:1–5.
Pawlak, T. P., and Krawiec, K. 2017. Automatic synthe-
sis of constraints from examples using mixed integer linear
programming. European Journal of Operational Research
261(3):1141–1157.
Pigozzi, G.; Tsoukias, A.; and Viappiani, P. 2016. Prefer-
ences in artificial intelligence. Annals of Mathematics and
Artificial Intelligence 77(3-4):361–401.
Rossi, F., and Sperduti, A. 2004. Acquiring both constraint
and solution preferences in interactive constraint systems.
Constraints 9(4):311–332.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of
constraint programming. Elsevier.
Shivaswamy, P., and Joachims, T. 2015. Coactive learning.
Journal of Artificial Intelligence Research 53:1–40.
Smet, P.; De Causmaecker, P.; Bilgin, B.; and Vanden
Berghe, G. 2013. Nurse rostering: a complex example
of personnel scheduling with perspectives. In Automated
Scheduling and Planning. Springer. 129–153.
Smith, C.; Ferns, G.; and Albarghouthi, A. 2017. Discover-
ing relational specifications. In Proc. 11th Joint Meeting on
Foundations of Software Engineering, 616–626. ACM.
Teso, S.; Dragone, P.; and Passerini, A. 2017. Coactive
critiquing: Elicitation of preferences and features. In Proc.
31st AAAI Conference on Artificial Intelligence, 2639–2645.
Teso, S.; Passerini, A.; and Viappiani, P. 2016. Constructive
preference elicitation by setwise max-margin learning. In
Proc. 25th International Joint Conference on Artificial In-
telligence, 2067–2073.
Teso, S.; Sebastiani, R.; and Passerini, A. 2017. Structured
learning modulo theories. Artificial Intelligence 244:166–
187.
Valiant, L. 1984. A theory of the learnable. Communications
of the ACM 27:1134–1142.

7970


