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Abstract

We argue that chemistry should be the next grand challenge
for Artificial Intelligence. The Al research community and
humanity would benefit tremendously from focusing Al re-
search on chemistry on a regular basis, as a benchmark as
well as a real-world application domain. To support our po-
sition, we review the importance of chemical compound dis-
covery and synthesis planning and discuss the properties of
search spaces in a chemistry problem. Knowledge acquired
in domains such as two-player board games or single-player
puzzles places the Al community in a good position to solve
critical problems in the chemistry domain. Yet, we show that
searching in chemistry problems poses significant additional
challenges that will have to be addressed. Finally, we envision
how several Al areas like Natural Language Processing, Ma-
chine Learning, planning and search, are relevant for chem-
istry.

Introduction

Artificial Intelligence research has generated multiple es-
sential technologies, such as Natural Language Processing,
Machine Learning, planning, and search, with a wide range
of applications. These fields have led to advances where Al
is already outperforming humans, for example the Chinook
Checkers-playing program (Schaeffer 2009), IBM’s Deep
Blue in chess (Campbell, Jr., and Hsu 2002) and Watson for
Jeopardy! (Ferrucci et al. 2010), and Google DeepMind’s
Alpha-Go in Go (Silver et al. 2016). However, there is still
an uncountable number of unsolved challenges we can think
of. One of them is RoboCup (Kitano et al. 1997), where a
team of robots attempts to win against human soccer play-
ers.

In this paper we promote chemistry as an ideal domain for
Al research, encouraging the Al community to use chem-
istry as a benchmark domain on a regular basis. Chemistry
has applications in many industries like pharmaceuticals,
food and nutrition, and materials. The commercial impacts
and effects on society of these industries are significant. For
example, a single chemical compound named atorvastatin,
better known as drug Lipitor®, generated annual revenues of
over 12 billion US dollars, before its patent expired (Heifets
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and Jurisica 2012). That way Al research focusing on chem-
istry as a target translates directly into benefits for society,
much faster than research focused on games.

In the past, researchers have attempted to develop expert
systems and knowledge-reasoning systems to solve prob-
lems in chemistry. Examples include the Dendral Project
(Lindsay et al. 1980) and Project Halo (Friedland et al.
2004). However, despite its importance in practice and its
difficulty in nature, over the last couple of years a relatively
small number of papers, such as (Duvenaud et al. 2015;
Jin et al. 2017; Savage et al. 2017), have been published at
premier computer science conferences.

At the same time, automation of chemistry has been
an essential topic for chemists, e.g., (Dragone et al. 2017;
Peplow 2014), and papers particularly about employing Ma-
chine Learning approaches have started to appear in chem-
istry journals (Gémez-Bombarelli et al. 2016; Segler and
Waller 2017a; 2017b; Coley et al. 2017).

Due to more powerful hardware resources and recent
significant advances in Al technologies including Machine
Learning, NLP, search and planning, we are convinced that
with the maturity of Al research it is now the right time to
address chemistry on a much bigger scale than previously.

Research Motivation

A chemist developing a new drug molecule that cures a cer-
tain disease typically needs to design the chemical structure
of the target compound, and plan a sequence of chemical
reactions, similar to pathways or routes, to synthesize the
target compound in an incredibly large combinatorial space
of possible chemical reactions. Most importantly, a chemist
needs to experimentally validate each step of the process
and finally use the gained insights to validate new knowl-
edge and creatively think of new hypotheses about chem-
istry. Success depends on whether the products of each re-
action step are synthesized as predicted in sufficient quan-
tity and on whether additional requirements like efficacy and
non-toxicity are fulfilled.

Developing new drugs involves generating and evaluat-
ing very large numbers of chemical compounds. Most com-
pounds turn out as negative samples, as they do not exhibit
the desired properties, such as being an effective drug. The
development of one new drug typically takes over 10 years
and costs over one billion US dollars (Dickson and Gagnon



2004; Scannell et al. 2012). Most resources and time are
spent during the research and development phase (typically
5-7 years) and clinical trial stages (6 years). Therefore it
is most critical to find the best, most promising candidate
molecule as quickly as possible, and we are convinced Al
can play a critical role here.

For decades, discovering new compounds and planning
their chemical syntheses has been a scientific research chal-
lenge in organic chemistry and material science. Grand
Challenge #2 defined by the US Department of Energy,
still unsolved, refers to designing and perfecting atom- and
energy-efficient synthesis of revolutionary new forms of
matter with tailored properties (Fleming and Ratner 2007).
This challenge may be considered to include chemical com-
pound discovery and synthesis planning.

Databases such as ReaxSys' and SciFinder? allow to
search through the literature for reactions discovered in the
past. Additionally, analyzing a large scale graph represent-
ing existing chemical reactions in organic chemistry (Kowa-
lik et al. 2012; Szymku¢ et al. 2016) enables chemists to
find useful existing reaction pathways to synthesize exist-
ing compounds. However, discovering new compounds and
new reaction pathways remains largely a manual process,
depending on the experience and the intuition of a human
expert.

Chemistry takes humans decades to master and it is excit-
ing to imagine an Al that can reach or exceed expert human
performance in this field. Such an Al would be very valu-
able and significantly advance chemistry-related industries
like pharmaceuticals, food, and materials.

Why Is Chemistry Challenging?

At most a few hundred million chemical substances are cur-
rently known.? On the other hand, in the chemistry research
community, there is a consensus that the number of candi-
date drug compounds which could theoretically exist is es-
timated to be 10°° (Peplow 2014). This is larger than the
number of possible positions in chess, estimated to 1052 (Al-
lis 1994), but smaller than the number of positions in Go,
estimated to 10172 (Allis 1994). Upper bounds estimations
are also available for puzzle domains used as Al bench-
marks. For example, 10%° for the 24-puzzle, 1019 for the
Rubik’s Cube, and 10°® for Sokoban (Junghanns and Scha-
effer 2001).

This size comparison, and the fact that state-of-the-art
chess and Go programs outperform the best human play-
ers indicate that Al is mature enough for a major shift to-
wards chemistry. At the same time, chemistry poses addi-
tional challenges to tackle, besides the size of its state space.

First of all, in games, the root state of a search is ei-
ther the game start position or the position generated by
the opponent’s response. That is, the root state is already
given to the game-playing program, when it searches for
the next move. On the other hand, in chemistry, Al needs
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to find the target compound to consider from the chemi-
cal compound space of 100, In a sense, this crucial task
in chemistry is compared to the task of finding and creat-
ing an aesthetic chess problem. This boils down to finding a
chess position (the problem) in the large space of all chess
positions, estimated to 10°2 states, as said earlier. This is
typically performed by a human chess problem composer.
When it comes to Al-based chess problem creation, despite
previous attempts, e.g., (Hirose, Matsubara, and Itoh 1997,
Schlosser 1988), algorithms still are in an infant stage.

Additionally, games and puzzles, such as those mentioned
earlier, can be encoded as a search problem in a perfect
way, with no information loss. It is trivially easy to decide
whether a given game position is a valid state (e.g., respect-
ing the game rules), or whether it is a goal state. So is enu-
merating all the valid moves available in a state.

In contrast, in chemistry, even if a candidate of a target
compound is designed, deciding whether that candidate is a
good target compound (a “goal state”) is difficult. Answer-
ing this may involve evaluating the toxicity, the effectiveness
to the purpose (e.g., can it cure the disease?), and the manu-
facturing costs. Among the many compounds available, typ-
ically a very small number meet the “goal state” criteria. It
is often difficult to predict how a compound would behave
in practice, unless an experiment is carried out.

Evaluating a candidate sequence of reaction steps meant
to synthesize a given compound is equally difficult. In chem-
ical synthesis planning, Szymku¢ et al. (2016) discuss that,
for a synthesis route with 30 steps, the number of possible
pathways to consider is estimated to be 1.2 x 10°7. Among
them, there are usually only a very small number of feasible
pathways.

As said earlier, game and puzzles have clearly defined
rules which enable to easily generate legal transitions from
one state to another (moves in games). However, in chem-
istry, the situation is much more difficult. A reaction rule is
a pattern showing how a set of reactants could interact with
each other, and what the result of a chemical product would
be. Checking whether a reaction rule is applicable or not
involves a step that boils down to solving a subgraph iso-
morphism problem. This is an NP-complete problem, creat-
ing a serious bottleneck when generating the successors of
a state. For example, the implementation of Heifets and Ju-
risica (2012) generates at most several tens of compounds
per second, as compared to millions of positions per second,
which can be achieved in a game like chess.

Compared to typical games and puzzles, there would be
a much large number of choices (> 10, 000) for a one-step
reaction in chemistry, depending on the structure of the com-
pounds (Szymku¢ et al. 2016).

In chemistry, rules often are ambiguous or even incom-
plete, as the knowledge available is not always accurate.

Al Technologies for Chemistry

We discuss essential Al technologies for tackling chemistry.

NLP and Chemical Image Processing

The vast literature available, including academic papers and
patents, contains many chemical reactions. Automatically



extracting these would lead to an extensive and valuable
knowledge base available in a machine-readable format.

Molecule structures as well as reactions are typically il-
lustrated as figures, with a textual description of details such
as yields and temperatures. Unlike typical text mining do-
mains, this clearly requires a combination of image process-
ing and NLP. In addition, unlike approaches that attempt
to extract only compound structures, reaction extraction is
much more difficult, since it needs to detect relations be-
tween compounds and reactants.

Lowe (2012) automatically extracts reactions by min-
ing the relevant experimental sections. He extracts millions
of chemical reactions from the US patent literature (Lowe
2012) and makes these data publicly available.* However,
there are still many important reactions whose reactants are
incorrectly classified. Additionally, these extracted reactions
do not have essential information on the conditions on the re-
actions, which needs to be obtained by improved text mining
technologies.

Machine Learning

Once we have data, Machine Learning is a promising ap-
proach to modeling characteristics of chemical compounds.
In particular, Deep Learning is a strong candidate due to its
success in other domains.

There are a few challenges for Machine Learning in
chemistry. First of all, reaction data extracted with NLP and
image processing might be noisy and contain erroneous in-
formation. Secondly, these data do not have any negative ex-
amples. That is, failed reactions are typically not publicly
available. Finally, these data do not always best represen-
tative reactions. In fact, chemists typically do not employ
reactions as described in papers. To increase the yield of
the target compound, they perform the reactions in different
conditions, such as temperatures and catalysts. These know-
hows are rarely shared as public documents. Machine Learn-
ing algorithms need to be robust to such circumstances. At
the same time, the accuracy of prediction plays a crucial role
in chemistry, since a poor prediction could result in days or
weeks of wasted time and money.

Machine Learning has started being employed in
chemistry-related tasks. For example, while quantum simu-
lations are often used to screen out useless chemical com-
pounds, they have an expensive computational overhead.
Gomez-Bombarelli et al. (2016) employ Deep Learning to
avoid unnecessary calculations of quantum simulations.

Predicting reactions can be addressed with Deep Learn-
ing. Segler and Waller (2017b) generalize existing reactions
and one-step reaction rules that hold only essential substruc-
tures of products and reactants. Then, with neural networks,
Segler and Waller predict which reaction rules can be ap-
plied to return a product, given a reactant as input; and to re-
turn a reactant, given a product as input. Coley et al. (2017)
attempt to model a product as a “true” product if that prod-
uct is generated by a reaction recorded in the patent literature
and as a “false” product otherwise. Their approach performs

*https://bitbucket.org/dan2097/patent-reaction-extraction/
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Deep Learning with features based on the changes of reac-
tants and calculates the score of a generated product. Sav-
age et al. (2017) employ graph-link-prediction-based recom-
mendation algorithms to predict reactants, given a product as
input.

In performing prediction tasks, such as predicting reac-
tants, e.g., (Segler and Waller 2017b; Savage et al. 2017),
a chemical compound represented as a graph is often trans-
formed into a fingerprint. A fingerprint is a fixed-size bit
vector that compactly represents structural information on
the compound as chemical features. There are a several
approaches to selecting features to include (Morgan 1965;
Rogers and Hahn 2010), which do not always reflect the
structural characteristics of the compound. The neural graph
fingerprints presented by Duvenaud et al. (2015) showed
great predictive performance.

Another important task that could be addressed with Ma-
chine Learning is the detection of active substructures in a
compound. A compound can consist of an active substruc-
ture, such as the part that fights a disease, and a supporting
part, that completes the compound as a stable structure.

Search and Planning

Given a target compound, chemical synthesis planning is a
well-known problem since the 1960s, and it still remains an
open problem today (Corey and Wipke 1969; Corey 1967;
Corey and Cheng 1995). Chemists typically solve the chem-
ical synthesis planning problem by performing a so-called
retrosynthetic analysis.

A reaction pathway is a sequence of one-step reaction
rules. Retrosynthetic analysis attempts to systematically ex-
amine possible combinations of one-step reaction rules and
find a reaction pathway that leads to the target compound
from a set of commercially available compounds (i.e., start
materials). Chemoinformatics researchers have employed a
search-and-planning based approach to perform retrosyn-
thetic analysis, e.g., (Law et al. 2009). Challenges in chemi-
cal synthesis planning have been overviewed in the previous
section. In addition, effective algorithms capable to perform
a so-called k-best first search are necessary to return several
reasonable solutions, so that an expert choose one or several.

Heifets and Jurisica (2012) have recently modeled ret-
rosynthetic analysis as a procedure of solving a position in
two-player games such as chess and checkers. They also
make benchmark problems publicly available.> We argue
that chemical synthesis planning is an ideal domain where
game researchers could export their knowledge and tech-
nologies. For example, Heifets and Jurisica (2012) employ
proof-number search (PNS) (Allis, van der Meulen, and
van den Herik 1994), a well-known approach that con-
tributed to solving the game of checkers (Schaeffer et al.
2007). Many algorithms related to PNS are a strong can-
didate for efficiently discovering pathways. Kishimoto et
al. (2012) present a survey of PNS. Additionally, inspired
by AlphaGo (Silver et al. 2016), Segler, Preu3, and Waller
(2017b; 2017a) apply Monte Carlo Tree Search (MCTS)
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(Kocsis and Szepesvari 2006), combined with Deep Neu-
ral Networks that are used to bias Monte Carlo samplings
(Segler and Waller 2017b). There are many MCTS tech-
niques that could be useful for synthesis planning (Browne
et al. 2012).

When modeling the discovery of new compounds as a
search problem, we need an effective representation of the
problem. A naive search that would explore the whole search
space of compounds (i.e., in the order of 10%° states) is not
an option. There are constraints and characteristics for the
compounds to discover, such as substructures of active parts
that determine the functions of the compounds, and chemical
core scaffolds that roughly determine the structures of com-
pounds. These constraints and characteristics can be given
either by a human expert or by Machine Learning Al Then,
search algorithms should be able to accurately detect the
promising portions of the search space.

Conclusions

Al'in chemistry will, in its essence, need to master the work-
ing principles of modern scientists, the Scientific Method.
The seemingly simple, but even for humans challenging, it-
erative process of scientific discovery consisting of making
observations, asking questions, proposing testable hypothe-
ses, designing the right experiments to prove hypotheses,
collecting and analyzing data from experiments and drawing
conclusions that lead to new theories. Promising develop-
ments and advances have been made by researchers of both
Al and chemistry in their respective fields. However, a lot of
research remains to be done and this paper is outlining how
a focused, collaborative effort between Al and chemistry re-
search communities could produce valuable discoveries and
contributions to Science for the benefit of humanity.
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