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Abstract

Inspired by the Bayesian brain hypothesis and deep learning,
we develop a Bayesian autoencoder, a method of construct-
ing recognition systems using a Bayesian network. We con-
struct hierarchical Bayesian networks based on feature ex-
traction and implement pooling to achieve invariance within
a Bayesian network framework. The constructed networks
propagate information bidirectionally between layers. We ex-
pect they will be able to achieve brain-like recognition using
local features and global information such as their environ-
ments.

Introduction

Deep learning (Bengio et al. 2007) extracts multiple levels
of abstract features from input data. Local concrete features
appear in the lower layers, while global abstract features,
composed of lower-level features, appear in the higher lay-
ers. These feature hierarchies are similar to the visual areas
in the cerebral neocortex (Lee, Ekanadham, and Ng 2008).

That said, in contrast to most neural networks, brains
have paths not only from lower to higher areas (bottom-up),
but from higher to lower areas (top-down). The top-down
paths integrate global information for recognition (Bullier
2001). The Bayesian brain hypothesis (Doya et al. 2007)
proposed for handling top-down paths uses a Bayesian net-
work (Bayes net) as a neural computation model and inte-
grates top-down information such as prediction and bottom-
up sensory perception in a manner of probability theory.

Based on this work, we propose the Bayesian autoencoder
(BAE) as a method of constructing networks that can extract
and recognize features with in a Bayes net framework.

Bayesian Autoencoder
BAE Network

BAE extracts features from the input and constructs a hierar-
chical Bayes net called a BAE net. Each hidden variable rep-
resents a feature and is binary in nature: it can be true (T: the
feature exists) or false (F: the feature does not). First, we de-
scribe a BAE net with one parent-layer, as shown in Fig. la.
The lowest layer is the input-layer, and the observable nodes
represent continuous variables. The child-layer sits on top of

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

8125

this layer, and each of the input nodes is a child of one of the
child nodes. The child variables are ternary, allowing states
of T, F, and X, where T and F are as before and X is required
for consistency of the 1pT assumption that will be described
later (The X state is not used in recognition and learning).
After that, the parent-layer sits on top of the child-layer, and
the links between them are tuned through learning.

BAE nets use two parameter types: conditional probabil-
ities (CPs) and link intensities (LIs). To reduce the num-
ber of CPs, we employ the one-parent-T (1pT) assumption,
namely that features cannot coexist in the same region. Un-
der this assumption, the CPs that a child is in state T or
F given that two or more of its parents are in state T are
both 0. The 1pT assumption reduces the number of CPs to
O(n) from O(2") for n parents. Moreover, the potential in-
ferences that multiple parents have state T are eliminated.
Features are recognized exclusively within the same region
and their sparsity is obtained. The LIs take continuous val-
ues between 0 (completely cut) and 1(fully connected). The
1pT assumption strongly limits the conditional probabilities,
to the point where they cannot express the situation where
variables are independent. The LIs are used to extend the
conditional probabilities so that they can handle the case.

The parameters are tuned in different ways. The CPs are
tuned to minimize the difference between top-down and
bottom-up inference for the child, while the LIs are tuned to
maximize the mutual information between the parents and
the input data.

Parent Layer

Parent Layer High—Child
Child Layer Mid-Grandchild
Input Layer Low—Child

Parent Layer

(a) One parent-layer BAE net (b) BAE net pooling layer

Figure 1: Architectures of BAE nets

BAE Net Pooling Layer

The parent variables are inferred by the product of messages
from its children. Therefore if we construct BAE nets only
with parent-layers, its features will have no invariance. To
avoid this, we implement pooling layers to BAE nets.

The pooling layer is shown in Fig. 1b and is constructed
as follows. Low-child variables are connected to the lower



parents, mid-grandchild variables are connected to each low-
child, and high-child variables are connected to each mid-
grandchild. The observable variables are children of the mid-
grandchild, and observed as fixed state regardless of input.

The CPs of the mid-grandchild are fixed to the particular
values so that messages from it to the high-child has same
value as messages from the low-child to it. Messages from
a low-child is given by the weighted sum of messages from
the lower parents to low-child. This layer therefore behaves
as a pooling layer.

Advantages of BAE Nets

BAE nets inherit the characteristic inference features of
Bayes nets. With this property, BAE nets can propagate in-
formation both from lower to higher layers and from higher
to lower layers. Therefore when a BAE net has a deep archi-
tecture and hierarchical features, it can use not only bottom-
up local information but top-down global information, such
as context and environment, to recognize each object.

In addition, the 1pT assumption results in the sparse fea-
tures due to explaining away. Parents inhibit each other via
the shared child and the features are recognized exclusively.

Moreover, BAE nets tune the links between the pooling
and parent layers. In contrast with built-in invariance, such
as in a convolutional neural network (Krizhevsky, Sutskever,
and Hinton 2012), BAE nets learn which features should be
pooled. We consider exclusive features should be pooled and
BAE connects them to a child of pooling layers dynamically.

Experiments for BAE

In this section, we present the results of experiments to con-
firm the performance of BAE. First, we conducted a 5x5
experiment to confirm BAE feature extraction, as shown in
Fig. 2. We generated 5x5 pixel images as input data using
16 primitive patterns, and trained a BAE net with one parent
layer using the input data. The results are shown in Fig. 2b,
16 of the 25 parents correctly extracted features that were
the same as all original primitive patterns.

The pooling experiment involved training a pooling layer
(Fig. 3). Input data consisted of randomly-generated 1x10
belt-like input images in which no two successive pixels
were white. In the initial network structure, each child had
one parent (as shown in Fig. 3a). The links between parents
and low-child variables were trained. Since no two adjacent
pixels were white, their activities could be considered as be-
ing exclusively each other. We therefore expected parents
corresponding to adjacent positions to become connected to
the same low-child. As shown in Fig. 3b, adjacent parents
have links to the same low-child as we expected. BAE nets
selected exclusive parents and pooled them successfully.

Concluding Remarks

Using hierarchical Bayes nets, we expect to use high-level
concepts to recognize low-level objects to improve recog-
nition performance. So far, we can construct BAE nets by
feature extraction from small images, and obtain a pooling
layer over parents. In future work, we plan to construct mul-
tiple layers to extract feature hierarchies.
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(a) Generation of 5x5 input pixels

(b) LIs of parents

Figure 2: 5x5 Experiment. (a) shows how to generate 5x5
input pixels. Each primitives arose independently in 5% and
set values of their pixels at 0.995. The values of pixels where
no primitives arose were left at 0.005. (b) The resulting LIs
of the parents. The boxes correspond to parents and panels
show the LI values of the corresponding links. Black repre-
sents 0 and the lighter colors represents larger values.
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(a) Structure of the trained network (b) LIs of parents

Figure 3: Pooling Experiment. (a) Example showing the net-
work structure and a belt-like input pixel array. In the input
arrays, no two successive pixels were white. The links be-
tween the pooling layer and parent layer were trained. (b)
The LIs of trained low-child in the pooling later. Each belt
corresponds to a low-child and the panels represent the LIs
of the links to parents corresponding to each input position.
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