The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Efficient Support Vector Machine Training Algorithm on GPUs

Jiashuai Shi,’* Zeyi Wen,* Bingsheng He," Jian Chen, ™
fSouth China University of Technology, Guangzhou, China
fNational University of Singapore, Singapore
shijiashuai @gmail.com, wenzy @comp.nus.edu.sg, hebs @comp.nus.edu.sg, ellachen @scut.edu.cn

Abstract

Support Vector Machines (SVMs) are popular for many ma-
chine learning tasks. With rapid growth of dataset size, the
high cost of training limits the wide use of SVMs. Several
SVM implementations on GPUs have been proposed to accel-
erate SVMs. However, they support only classification (SVC)
or regression (SVR). In this work, we propose a simple and
effective SVM training algorithm on GPUs which can be used
for SVC, SVR and one-class SVM. Initial experiments show
that our implementation outperforms existing ones. We are in
the process of encapsulating our algorithm into an easy-to-use
library which has Python, R and MATLAB interfaces.

Introduction

Support Vector Machines (SVMs) show great generalization
performance in various machine learning tasks including
classification (SVC), regression (SVR) and distribution esti-
mation (one-class SVM). Sequential Minimal Optimization
(SMO) is the most popular algorithm to train SVMs. First
proposed by Platt (1999), and improved by Fan et al. (2005),
SMO has been implemented in the widely used library LIB-
SVM (Chang and Lin 2011), making SVMs into a practical al-
gorithm. With rapid growth of dataset size, training SVMs by
simply using LIBSVM takes significant amount of time (e.g.
days or weeks). Besides, in order to choose hyper-parameters
for best performance, SVMs are often trained hundreds of
times by using grid-search and cross-validation. The high
training cost limits the wide use of SVMs.

To accelerate SVMs, many researchers have applied dis-
tributed and parallel techniques to SVMs. Approximation
techniques have to be used for distributed SVM training,
because training SVMs needs to access the whole training
data and the communication cost is extremely high. So ma-
jority of the existing studies focus on how to train SVMs
on a single machine efficiently. Graphic Processing Units
(GPUgs) are probably the best hardware to accelerate SVMs.
Catanzaro (2008) first proposed to train SVMs by using SMO
on GPUs. Cotter (2011) used a clustering method to tailor
SMO on GPUs for better memory coalescing access. Vanek
(2017) pointed out the limited bandwith of modern GPUs,
and implemented OHD-SVM tailored for GPUs.

*Jian Chen is the corresponding author.
Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

8157

Though these studies achieve significant speed-up over
LIBSVM, they have two major limitations. First, they still
do not make efficient use of GPUs. We conducted experi-
ments using the three existing GPU SVM implementations
on a mid-range and a high-end GPU, and the results on the
mid-range GPU are almost the same as those on the high-end
GPU. Second, they only support either SVC or SVR. We
summarize the functionalities of existing SVM implementa-
tions. Existing GPU SVM implementations are mainly for
binary SVM classification, and do not support multi-class
classification or regression problems. These drawbacks result
in users’ unwillingness to use SVMs for their applications.

In this work, we propose a simple and effective parallel
SVM training algorithm on GPUs. Our initial experimental
results show that our algorithm outperforms existing ones.
To help users easily apply GPU SVMs to their applications,
we plan to develop an easy-to-use SVM library for GPUs,
supporting multi-class SVMs, SVM regression, one-class
SVM, cross-validation and various programming interfaces
like Python, R and MATLAB.

Support Vector Machine

An instance x; is attached with label y; € {+1,—1}. n is
the number of instances. Training SVMs is to solve a dual
optimization problem defined by «, where «; denotes the
weight of ;, K(x;, ;) is a kernel value computed from a
kernel function. The kernel values of all the training instances
form a kernel matrix. Since the kernel matrix is too large to fit
in memory, SMO-type algorithms iteratively select a working
set W consisting of some instances to optimize.

Technical Challenges

Calculation of kernel value is the most computational expen-
sive part in SVM training. Caching techniques are commonly
used to avoid repeat kernel value calculation (Catanzaro,
Sundaram, and Keutzer 2008; Chang and Lin 2011). They
store individual rows of kernel matrix in cache for reusing.
However, on GPUs, we find that iteratively calculating indi-
vidual rows has low GPU utilization. With a large working
set, we can calculate multiple rows of kernel matrix at one
time, which is efficient on GPUs. However, using a large
working set with the first-order heuristic (Joachims 1998;
Cotter, Srebro, and Keshet 2011) brings much more sub-

Table 1: Dataset information and parameters

dataset | #classes | card. dim. C ~
revl 2 20,242 | 47,326 | 100 | 0.125
webdata 2 49,479 300 10 0.5
real-sim 2 72,309 | 20,958 4 0.5
mnist 10 60,000 780 10 | 0.125
news20 20 15,935 | 62,061 4 0.5

problems to solve, i.e., slower convergence. To expoilt high-
performance GPUs, we should redesign the SMO algorithm.

Our Implementation

We describe an efficient SVM training algorithm on GPUs in
this section. The following three steps of our algorithm are
implemented on GPUs in a highly parallel way.

Select a working set: The process of calculating kernel
values is the performance bottleneck in SVM training. We
select a large working set using first-order heuristic for better
GPU utilization (Cotter, Srebro, and Keshet 2011).

Naively using a large working set results in low training
efficiency. Only a few «;s are updated after the subproblem
is solved. In other words, many rows of kernel matrix are
wasted. To address this problem, we propose to use a working
set buffer, similar to (Vanek, Michalek, and Psutka 2017),
but much simpler. Except for filling up whole working set in

the first iteration, we select w1 instances in the following
iterations, and replace the oldest instances in the working

set. In this way, only @ rows of kernel matrix need to be
calculated in each iteration. The use of working set buffer also
leads to faster convergence, because the instances already in
working set are more likely to be selected in next iterations.

Precomputation of kernel matrix: Instead of using
cache, we precompute the rows of kernel matrix needed

to solve the subproblem and store them in GPU memory.

Note that only “;Vl x n kernel values need to be calculated
because of working set buffer. With large working set, the
precomputation is very efficient on GPUs.

Solving a subproblem: Given a working set and precom-
puted kernel matrix, the subproblem can be solved efficiently
on GPUs. We implement the improved SMO (Fan, Chen,
and Lin 2005) to solve the subproblem. Each GPU thread is
assigned to optimize one instance. After the subproblem is
solved, an indicator variable will be transfer to CPU to check
if the optimization problem is optimal.

Experiments

We compare our implementation with LIBSVM with
OpenMP, gtSVM (Cotter, Srebro, and Keshet 2011)
and OHD-SVM (Vanek, Michalek, and Psutka 2017).
GPUSVM (Catanzaro, Sundaram, and Keutzer 2008) is ex-
cluded because gtSVM reports better results. The datasets are
from LIBSVM website. We choose commonly used Gaussian
kernel. The regularization parameter C' and Gaussian ker-
nel parameter ~ are chosen by grid-seach. The experiments
were conducted in a workstation with two Xeon E5-2640v4,
256GB memory and a Tesla P100 12GB GPU.

8158

Table 2: Training time (s) among different implementations

dataset | libsvm-omp | gtsvm | ohd-svm | Ours
revl 8.38 49.04 1.96 0.98
webdata 67.51 6.98 3.04 2.37
real-sim 74.21 120.1 7.10 2.81
mnist 429.10 34.47 N/A 26.68
news20 33.77 55.04 N/A 14.92

Since all the four approaches rely on SMO algorithm, the
models trained from the four are the same. Experimental re-
sults in Table 2 show that our implementation is consistently
faster than others, whenever the dataset is small or large,
sparse or dense. The working set buffer brings faster conver-
gence, resulting ours siginificant speed-up over gtSVM. The
simplicity of kernel value reusing without cache makes our
algorithm faster than OHD-SVM, because using cache has
much more overhead.

Conclusion

In this work, we propose a simple and effective algorithm to
train SVM on GPUs, which can also be used to solve SVR
and one-class SVM problems. Our initial experiments show
that our algorithm outperforms existing ones.

Acknowledgement

This work is supported by a MoE AcRF Tier 1 grant (T1
251RES1610) in Singapore and Special Planning Project of
Guangdong Province in China (Grant No. 609055894069).

References

Catanzaro, B.; Sundaram, N.; and Keutzer, K. 2008. Fast sup-
port vector machine training and classification on graphics
processors. In Proceedings of the 25th international confer-
ence on Machine learning, 104—111. ACM.

Chang, C.-C., and Lin, C.-J. 2011. Libsvm: a library for
support vector machines. ACM transactions on intelligent
systems and technology (TIST) 2(3):27.

Cotter, A.; Srebro, N.; and Keshet, J. 2011. A gpu-tailored
approach for training kernelized svms. In Proceedings of the
17th ACM SIGKDD international conference on Knowledge
discovery and data mining, 805-813. ACM.

Fan, R.-E.; Chen, P.-H.; and Lin, C.-J. 2005. Working set
selection using second order information for training sup-
port vector machines. Journal of machine learning research
6(Dec):1889-1918.

Joachims, T. 1998. Making large-scale svm learning prac-
tical. Technical report, SFB 475: Komplexititsreduktion in
Multivariaten Datenstrukturen, Universitat Dortmund.

Platt, J. C. 1999. Fast training of SVMs using Sequential
Minimal Optimization. In Advances in kernel methods. MIT
Press. 185-208.

Vanek, J.; Michalek, J.; and Psutka, J. 2017. A gpu-
architecture optimized hierarchical decomposition algorithm
for support vector machine training. /EEE Transactions on
Parallel and Distributed Systems.

