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Abstract

Variational encoder-decoders have shown promising results in
seq2seq tasks. However, the training process is known difficult
to be controlled because latent variables tend to be ignored
while decoding. In this paper, we thoroughly analyze the rea-
son behind this training difficulty, compare different ways of
alleviating it and propose a new framework that helps signifi-
cantly improve the overall performance.

Introduction

Conditional variational autoencoder (CVAE) with RNN
encoder-decoders has been applied in several seq2seq tasks.
However, it usually runs into the KL-vanishing problem that
the RNN part ends up explaining everything without mak-
ing use of the latent representation. In this paper, we take
dialogue generation task as example, analyze why the KL-
vanishing problem arises and compare different current strate-
gies to tackle this problem. Instead of directly modeling the
discrete dialogue distribution with latent variables, we pro-
pose a new framework that first extracts continuous vectors
from the dialogue data which follow a simpler distribution,
then establishes the link between them. Combined with a
scheduled sampling trick, it can significantly outperform pre-
vious approaches. We hope the analysis and proposed frame-
work can facilitate the research of CVAE seq2seq models.

Analysis
CVAE in dialogue generation CVAE generates dialogues
as follows: z, which stands for a high-level latent represen-
tation, is sampled from the prior distribution py(z|c), then
response z is generated from py(x|z, ¢). Though calculating
the exact log-likelihood is intractable, it can be efficiently
trained by optimizing the evidence lower bound (ELBO):

~logpafale) = ~1og. [ pu(elelpale,2)dz

< —Eqgy (2le,0) log po(]c, 2)] + KL(gg (2|c, 2)|Ipa (z]c))
(H

qs(z|c, z) is the approximated posterior distribution and ¢

is the dialogue context. g4(z|z, ¢) and pg(z|c) are usually set
as Gaussian distributions with diagonal covariance matrix.
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KL-Vanishing Problem Straightforwardly optimizing
with Eq. 1 suffers from the KL-vanishing problem because
the RNN decoder py(z|c, z) is a universal function approx-
imator and tends to represent the density distribution with-
out referring to the latent variable. At the beginning of the
training process, when the approximate posterior g4 (z|x, c)
carries little useful information, it is natural for the model to
blindly set g, (z|z, ¢) closer to the Gaussian prior pg(z|c) so
that the extra cost from the KL divergence can be avoided.

We show there are two ways of alleviating this problem:
weakening the power of decoders or improving the expres-
siveness of approximated posterior. Details can be found in
the supplementary material.

Current Approaches Keeping the ELBO objective, we
can weaken the decoder or improve the approximated poste-
rior. For the former, word drop-out (Bowman et al. 2016) or
Bag-of-word (BOW) loss (Zhao, Zhao, and Eskenazi 2017)
are two popular ways. For the latter, (Serban et al. 2017)
applies a piecewise distribution to replace the Gaussian prior
distribution. (Kingma et al. 2016) used a normalizing flow to
approximate the posterior distributions. All have their own
advantages and disadvantages.

Some other ways modify the ELBO objective like KL-
annealing, free bits (Kingma et al. 2016) or adversarial en-
coding (Makhzani et al. 2016). Detailed analysis is in the
supplementary material.

Model

Our method does not aim at directly modeling the discrete di-
alogue data, which is difficult to match the distribution family
of continuous latent variables. Instead, we first extract contin-
uous variables from dialogue data that follow a simpler dis-
tribution and build a conditional variational encoder-decoder
based on them. These continuous variables can reflect cer-
tain attributes of the dialogue data and can help recover the
original dialogues. Specifically, we divide the training step
into two phases: a denoising autoencoder (DAE) phase which
aims at extracting continuous representations from dialogue
data and a CVAE phase which builds a normal CVAE based
on the extracted continuous representations.

In the CVAE phase, A sample h is obtained from the DAE
by transforming dialogue texts into a continuous embedding
and is used as a target for the maximum likelihood training



of the CVAE. We assume the generative model pg(h|z, ¢) =
N (h, I), the loss function is:

. 1
min KL(gs (2|1, ¢)[pe (2]¢)) + 5Eq, 21n.o)llge(2) — hl13;

h = fo(zx,c)
)

The second squared loss item is the Gaussian likelihood, 6 is
fixed as part of DAE during training.

In the DAE phase, An observation x is sampled from the
training data and fed into the transform function get a con-
tinuous vector representation i = fy(z). The corresponding
latent variable z is sampled from the posterior distribution
q4(z|h, c) provided by the CVAE part. The sampled latent
variable z, together with z, forms a target for training the
DAE. The objective function is:

nbin max (e, KL(gg(z|h, ¢)|lpe(2]c)))

- Eq¢(z\h,c) [log(pg(mﬁz,c))]; 3

h = fo(x),h = (1 —p)gs(2) + ph

The first item is used to control KL divergence in a reason-
able range such that the transformed & can be close to our
Gaussian assumption. € can be used to adjust the leverage
between the reconstruction loss and KL divergence, where a
lower € value will lead to a lower KL divergence in the end.
While the parameter ¢ is fixed, we can change the transform
function fy to optimize with the KL divergence. € acts as
the reserved space as in free bits (Kingma et al. 2016), but
we apply it on the whole dimension. p is the keeping rate
defined in Eq. ?? in the supplementary material. Basically,
we improve the variational encoder-decoder framework with
a co-training process and a scheduled sampling strategy.
These two phases are trained alternatively until an equilib-
rium is achieved. When testing, a response can be generated
by first sampling a latent variable from py(z|c), then getting
the noisy h from g4(z) and decoding by pg(x|h, ). There is
no extra cost and g4(z) can be seen as adding an additional
feedforward layer before feeding z as the input.

Experiment

We conduct our experiments on two dialogue datasets: Daily-
dialog (Li et al. 2017) and Switchboard (Godfrey and Holli-
man ). These two datasets are randomly separated into train-
ing/validation/test sets with the ratio of 10:1:1.

Measurement and Comparison We compare our model
with the basic HRED and several current approaches includ-
ing KL-annealing (KLA), word drop-out (DO), free-bits (FB)
and bag-of-words loss (BOW). The details are summarized
in Table 1 and ??. We set the reserved space for every dimen-
sion as 0.02 in free bits (FB) and also try reserving 5 bits
for the whole dimension space (FB-all). We use an ¢ value
5 for our model with co-training (CO) and set the scheduled
sampling (SS) weight £ = 2500 or 5000 for Dailydialog or
Switchboard. We also experiment with jointly training the
DAE and CVAE part in our model and report the results. We

8156

Table 1: Metric Results on Dailydialog Dataset

Model PPL KL NLL Unique(%)
HRED 46.7 0.00 232.8 25.1
KLA 339 4.10 230.0 76.5
KLA+DO 29.8 3.81 2245 782
KLA+BOW 277 778 2364 91.1
FB 40.0 3.44 240.6 59.1
FB-all 288 496 2269 829
CO 249 5.00 2199 83.8
CO+DO 240 5.01 217.7 85.1
CO+SS 22.1 493 2123 86.7
CO+SS(joint) 264 519 2243 79.6

measured the perplexity (PPL), KL divergence (KL) , nega-
tive log-likelihood (NLL) and percentage of unique sentences
in the generated responses (Unique). NLL is averaged over
all the 80-word slices within every batch. For latent variable
models, NLL is computed as the ELBO, which is the lower
bound of the real NLL.

Results As can be seen, our model CO+SS achieves the
lowest NLL with a high diversity over both datasets. The
Schedule Sampling (SS) strategy significantly helps brings
down the NLL. Jointly training the model brings recession
on both the perplexity and KL divergence. Results on Switch-
board are in the supplementary material.

Conclusion

CVAE with RNN encoder-decoders are known difficult to be
trained. In this work, we thoroughly analyze the reason of the
training difficulty and compare different current approaches,
then propose a new framework that helps significantly im-
prove the performance.
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