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Abstract

Human face-to-face communication is a complex multimodal
signal. We use words (language modality), gestures (vision
modality) and changes in tone (acoustic modality) to convey
our intentions. Humans easily process and understand face-to-
face communication, however, comprehending this form of
communication remains a significant challenge for Artificial
Intelligence (AI). AI must understand each modality and the in-
teractions between them that shape the communication. In this
paper, we present a novel neural architecture for understanding
human communication called the Multi-attention Recurrent
Network (MARN). The main strength of our model comes
from discovering interactions between modalities through time
using a neural component called the Multi-attention Block
(MAB) and storing them in the hybrid memory of a recur-
rent component called the Long-short Term Hybrid Memory
(LSTHM). We perform extensive comparisons on six publicly
available datasets for multimodal sentiment analysis, speaker
trait recognition and emotion recognition. MARN shows state-
of-the-art results performance in all the datasets.

Introduction

Humans communicate using a highly complex structure of
multimodal signals. We employ three modalities in a coordi-
nated manner to convey our intentions: language modality
(words, phrases and sentences), vision modality (gestures
and expressions), and acoustic modality (paralinguistics and
changes in vocal tones) (Morency, Mihalcea, and Doshi
2011). Understanding this multimodal communication is nat-
ural for humans; we do it subconsciously in the cerebrum of
our brains everyday. However, giving Artificial Intelligence
(AI) the capability to understand this form of communica-
tion the same way humans do, by incorporating all involved
modalities, is a fundamental research challenge. Giving AI
the capability to understand human communication narrows
the gap in computers’ understanding of humans and opens
new horizons for the creation of many intelligent entities.

The coordination between the different modalities in hu-
man communication introduces view-specific and cross-view
dynamics (Zadeh et al. 2017). View-specific dynamics re-
fer to dynamics within each modality independent of other
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modalities. For example, the arrangement of words in a sen-
tence according to the generative grammar of the language
(language modality) or the activation of facial muscles for
the presentation of a smile (vision modality). Cross-view dy-
namics refer to dynamics between modalities and are divided
into synchronous and asynchronous categories. An example
of synchronous cross-view dynamics is the simultaneous co-
occurrence of a smile with a positive sentence and an example
of asynchronous cross-view dynamics is the delayed occur-
rence of a laughter after the end of sentence. For machines
to understand human communication, they must be able to
understand these view-specific and cross-view dynamics.

To model these dual dynamics in human communication,
we propose a novel deep recurrent neural model called the
Multi-attention Recurrent Network (MARN). MARN is dis-
tinguishable from previous approaches in that it explicitly ac-
counts for both view-specific and cross-view dynamics in the
network architecture and continuously models both dynamics
through time. In MARN, view-specific dynamics within each
modality are modeled using a Long-short Term Hybrid Mem-
ory (LSTHM) assigned to that modality. The hybrid memory
allows each modality’s LSTHM to store important cross-view
dynamics related to that modality. cross-view dynamics are
discovered at each recurrence time-step using a specific neu-
ral component called the Multi-attention Block (MAB). The
MAB is capable of simultaneously finding multiple cross-
view dynamics in each recurrence timestep. The MARN re-
sembles the mechanism of our brains for understanding com-
munication, where different regions independently process
and understand different modalities (Kuzmanovic et al. 2012;
Sergent and Signoret 1992) – our LSTHM – and are con-
nected together using neural links for multimodal informa-
tion integration (Jiang et al. 2012) – our MAB. We bench-
mark MARN by evaluating its understanding of different as-
pects of human communication covering sentiment of speech,
emotions conveyed by the speaker and displayed speaker
traits. We perform extensive experiments on 16 different
attributes related to human communication on public multi-
modal datasets. Our approach shows state-of-the-art perfor-
mance in modeling human communication for all datasets.
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Related Work

Modeling multimodal human communication has been stud-
ied previously. Past approaches can be categorized as follows:

Non-temporal Models: Studies have focused on simpli-
fying the temporal aspect of cross-view dynamics (Poria
et al. 2017; Pérez-Rosas, Mihalcea, and Morency 2013a;
Wöllmer et al. 2013) in order to model co-occurrences of
information across the modalities. In these models, each
modality is summarized in a representation by collapsing
the time dimension, such as averaging the modality informa-
tion through time (Abburi et al. 2016). While these models
are successful in understanding co-occurrences, the lack of
temporal modeling is a major flaw as these models cannot
deal with multiple contradictory evidences, eg. if a smile and
frown happen together in an utterance. Furthermore, these
approaches cannot accurately model long sequences since
the representation over long periods of time become less
informative.

Early Fusion: Approaches have used multimodal input
feature concatenation instead of modeling view-specific and
cross-view dynamics explicitly. In other words, these ap-
proaches rely on generic models (such as Support Vector Ma-
chines or deep neural networks) to learn both view-specific
and cross-view dynamics without any specific model design.
This concatenation technique is known as early fusion (Wang
et al. 2016; Poria et al. 2016). Often, these early fusion ap-
proaches remove the time factor as well (Zadeh et al. 2016;
Morency, Mihalcea, and Doshi 2011). We additionally com-
pare to a stronger recurrent baseline that uses early fusion
while maintaining the factor of time. A shortcoming of these
models is the lack of detailed modeling for view-specific
dynamics, which in turn affects the modeling of cross-view
dynamics, as well as causing overfitting on input data (Xu,
Tao, and Xu 2013).

Late Fusion: Late fusion methods learn different models
for each modality and combine the outputs using decision
voting (Wörtwein and Scherer 2017; Nojavanasghari et al.
2016). While these methods are generally strong in mod-
eling view-specific dynamics, they have shortcomings for
cross-view dynamics since these inter-modality dynamics are
normally more complex than a decision vote. As an example
of this shortcoming, if a model is trained for sentiment analy-
sis using the vision modality and predicts negative sentiment,
late fusion models have no access to whether this negative
sentiment was due to a frowning face or a disgusted face.

Multi-view Learning: Extensions of Hidden Markov Mod-
els (Baum and Petrie 1966) and Hidden Conditional Random
Fields (Quattoni et al. 2007; Morency, Quattoni, and Darrell
2007) have been proposed for learning from multiple dif-
ferent views (modalities) (Song, Morency, and Davis 2012;
2013). Extensions of LSTMs have also been proposed in a
multi-view setting (Rajagopalan et al. 2016).

MARN is different from the first category since we model
both view-specific and cross-view dynamics. It is differs
from the second and third category since we explicitly model
view-specific dynamics using a LSTHM for each modality
as well as cross-view dynamics using the MAB. Finally,
MARN is different from the fourth category since it explicitly
models view-specific dynamics and proposes more advanced

temporal modeling of cross-view dynamics.

MARN Model

In this section we outline our pipeline for human communica-
tion comprehension: the Multi-attention Recurrent Network
(MARN). MARN has two key components: Long-short Term
Hybrid Memory and Multi-attention Block. Long-short Term
Hybrid Memory (LSTHM) is an extension of the Long-short
Term Memory (LSTM) by reformulating the memory com-
ponent to carry hybrid information. LSTHM is intrinsically
designed for multimodal setups and each modality is as-
signed a unique LSTHM. LSTHM has a hybrid memory that
stores view-specific dynamics of its assigned modality and
cross-view dynamics related to its assigned modality. The
component that discovers cross-view dynamics across dif-
ferent modalities is called the Multi-attention Block (MAB).
The MAB first uses information from hidden states of all
LSTHMs at a timestep to regress coefficients to outline the
multiple existing cross-view dynamics among them. It then
weights the output dimensions based on these coefficients
and learns a neural cross-view dynamics code for LSTHMs
to update their hybrid memories. Figure 1 shows the overview
of the MARN. MARN is differentiable end-to-end which al-
lows the model to be learned efficiently using gradient decent
approaches. In the next subsection, we first outline the Long-
short Term Hybrid Memory. We then proceed to outline the
Multi-attention Block and describe how the two components
are integrated in the MARN.

Long-short Term Hybrid Memory

Long-short Term Memory (LSTM) networks have been
among the most successful models in learning from sequen-
tial data (Hochreiter and Schmidhuber 1997). The most im-
portant component of the LSTM is a memory which stores
a representation of its input through time. In the LSTHM
model, we seek to build a memory mechanism for each
modality which in addition to storing view-specific dynamics,
is also able to store the cross-view dynamics that are impor-
tant for that modality. This allows the memory to function in
a hybrid manner.

The Long-short Term Hybrid Memory is formulated in
Algorithm 1. Given a set of M modalities in the domain of
the data, subsequently M LSTHMs are built in the MARN
pipeline. For each modality m ∈ M , the input to the mth
LSTHM is of the form Xm = {xm

1 , xm
2 , xm

3 ,⋯, xm
T ;xm

t ∈

R
dm
in}, where xm

t is the input at time t and dmin is the di-
mensionality of the input of modality m. For example if
m = l(language), we can use word vectors with dlin = 300 at
each time step t. dmmem is the dimensionality of the memory
for modality m. σ is the (hard-)sigmoid activation function
and tanh is the tangent hyperbolic activation function. ⊕
denotes vector concatenation and ⊙ denotes element-wise
multiplication. Similar to the LSTM, i is the input gate, f
is the forget gate, and o is the output gate. c̄mt is the pro-
posed update to the hybrid memory cmt ∈ R

dm
mem at time t.

hm
t ∈ R

dm
mem is the time distributed output of each modality.

The neural cross-view dynamics code zt−1 is the output
of the Multi-attention Block at the previous time-step and
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Figure 1: Overview of Multi-attention Recurrent Network
(MARN) with Long-short Term Hybrid Memory (LSTHM)
and Multi-attention Block (MAB) components, for M =
{l, v, a} representing the language, vision and acoustic
modalities respectively.

is discussed in detail in next subsection. This neural cross-
view dynamics code zt−1 is passed to each of the individual
LSTHMs and is the hybrid factor, allowing each individual
LSTHM to carry cross-view dynamics that it finds related
to its modality. The set of weights Wm

∗ ,Um
∗ and V m

∗ respec-
tively map the input of LSTHM xm

t , output of LSTHM hm
t ,

and neural cross-view dynamics code zt−1 to each LSTHM
memory space using affine transformations.

Multi-attention Block

At each timestamp t, various cross-view dynamics across the
modalities can occur simultaneously. For example, the first

Algorithm 1 Multi-attention Recurrent Network (MARN),
Long-short Term Hybrid Memory (LSTHM) and Multi-
attention Block (MAB) Formulation

1: procedure MARN(Xm)
2: c0, h0, z0 ← 0
3: for t = 1, ..., T do:
4: ht ← LSTHM Step(⋃m∈M{x

m
t }, zt−1)

5: zt ←MAB Step(ht)
return hT , zT

6: procedure LSTHM STEP(⋃m∈M{x
m
t }, zt−1)

7: for m ∈M do: ◁ for all the M modalities
8: imt ← σ(Wm

i xm
t +U

m
i hm

t−1 + V
m
i zt−1 + b

m
i )

9: fm
t ← σ(Wm

f xm
t +U

m
f hm

t−1 + V
m
f zt−1 + b

m
f )

10: okt ← σ(Wm
o xm

t +U
m
o hm

t−1 + V
m
o zt−1 + b

m
o )

11: c̄mt ←Wm
c̄ xm

t +U
m
c̄ hm

t−1 + V
m
c̄ zt−1 + b

m
c̄

12: cmt ← fm
t ⊙ cmt−1 + i

m
t ⊙ tanh(c̄mt )

13: hm
t ← omt ⊙ tanh(cmt )

14: ht ←⊕m∈M hm
t

15: return ht

16: procedure MAB STEP(ht)
17: at ←A(ht; θA) ◁K output coefficients
18: h̃t ← at ⊙ ⟨⇑K ht⟩
19: for m ∈M do:◁ calculate cross-view dynamics
20: smt ← Cm(h̃

m
t ; θCm)

21: st ←⊕m∈M smt
22: zt ← G(st; θG)

return zt
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Figure 2: Overview of Multi-attention Block (MAB).

instance can be the connection between a smile and positive
phrase both happening at time t. A second instance can be
the occurrence of the same smile at time t being connected
to an excited voice at time t − 4, that was carried to time t
using the audio LSTHM memory. In both of these examples,
cross-view dynamics exist at time t. Therefore, not only do
cross-view dynamics span across various modalities, they
are scattered across time forming asynchronous cross-view
dynamics.

The Multi-attention Block is a network that can capture
multiple different, possibly asynchronous, cross-view dynam-
ics and encode all of them in a neural cross-view dynamics
code zt. In the most important step of the Multi-attention
Block, different dimensions of LSTHM outputs hm

t are as-
signed attention coefficients according to whether or not
they form cross-view dynamics. These attention coefficients
will be high if the dimension contributes to formation of
a cross-view dynamics and low if they are irrelevant. The
coefficient assignment is performed multiple times due to
the existence of possibly multiple such cross-view dynamics
across the outputs of LSTHM. The Multi-attention Block is
formulated in Algorithm 1. We assume a maximum of K
cross-view dynamics to be present at each timestamp t. To
obtain the K attention coefficients, K softmax distributions
are assigned to the concatenated LSTHM memories using a
deep neural network A ∶ Rdmem ↦ R

K×dmem with dmem =
∑m∈M dmmem. At each timestep t, the output of LSTHM is the
set {hm

t ∶m ∈M,hm
t ∈ R

dm
mem}. A takes the concatenation

of LSTHM outputs ht = ⊕m∈M hm
t , ht ∈ R

dmem as input
and outputs a set of K attentions {akt ∶ k ≤K, akt ∈ R

dmem}
with at = ⊕

K
k=1 a

k
t , at ∈ RK×dmem . A has a softmax layer at

top of the network which takes the softmax activation along
each one of the K dimensions of its output at. As a result,
akt ≥ 0,∑

dmem

i=1 (akt )i = 1 which forms a probability distribu-
tion over the output dimensions. ht is then broadcasted (from
R

dmem to R
K×dmem) and element-wise multiplied by the at

to produce attended outputs h̃t = {h̃
k
t ∶ k ≤K , h̃k

t ∈ R
dmem},

h̃t ∈ R
K×dmem . ⇑K denotes broadcasting by parameter K.

The first dimension of h̃t contains information needed



for the first cross-view dynamic highlighted using a1t , the
second dimension of h̃t contains information for the second
cross-view dynamic using a2t , and so on until K. h̃t is high
dimensional but ideally considered sparse due to presence of
dimensions with zero value after element-wise multiplication
with attentions. Therefore, h̃t is split into m different parts
– one for each modality m – and undergoes dimensionality
reduction using Cm ∶ RK×dm

mem ↦ R
dm
local ,∀m ∈ M with

dmlocal as the target low dimension of each modality split in
h̃t. The set of networks {Cm ∶ m ∈ M} maps the attended
outputs of each modality h̃m

t to the same vector space. This
dimensionality reduction produces a dense code smt for the
K times attended dimensions of each modality. Finally, the
set of all M attended modality outputs, st = ⊕m∈M smt , are
passed into a deep neural network G ∶ R∑m∈M dm

local ↦ R
dmem

to generate the neural cross-view dynamics code zt at time t.

Experimental Methodology

In this paper we benchmark MARN’s understanding of hu-
man communication on three tasks: 1) multimodal sentiment
analysis, 2) multimodal speaker traits recognition and 3) mul-
timodal emotion recognition. We perform experimentations
on six publicly available datasets and compare the perfor-
mance of MARN with the performance of state-of-the-art
approaches on the same datasets. To ensure generalization
of the model, all the datasets are split into train, validation
and test sets that include no identical speakers between sets,
i.e. all the speakers in the test set are different from the train
and validation sets. All models are re-trained on the same
train/validation/test splits. To train the MARN for different
tasks, the final outputs hT and neural cross-view dynam-
ics code zT are the inputs to another deep neural network
that performs classification (categorical cross-entropy loss
function) or regression (Mean Squared Error loss function).
The code, hyperparameters and instruction on data splits are
publicly available at https://github.com/A2Zadeh/MARN.

Following is the description of different benchmarks.

Multimodal Sentiment Analysis

CMU-MOSI The CMU-MOSI dataset (Zadeh et al. 2016)
is a collection of 2199 opinion video clips. Each opinion
video is annotated with sentiment in the range [-3,3]. There
are 1284 segments in the train set, 229 in the validation set
and 686 in the test set.

ICT-MMMO The ICT-MMMO dataset (Wöllmer et al.
2013) consists of online social review videos that encompass
a strong diversity in how people express opinions, annotated
at the video level for sentiment. The dataset contains 340
multimodal review videos, of which 220 are used for training,
40 for validation and 80 for testing.

YouTube The YouTube dataset (Morency, Mihalcea, and
Doshi 2011) contains videos from the social media web site
YouTube that span a wide range of product reviews and opin-
ion videos. Out of 46 videos, 30 are used for training, 5 for
validation and 11 for testing.

MOUD To show that MARN is generalizable to other lan-
guages, we perform experimentation on the MOUD dataset

(Perez-Rosas, Mihalcea, and Morency 2013b) which consists
of product review videos in Spanish. Each video consists of
multiple segments labeled to display positive, negative or
neutral sentiment. Out of 79 videos in the dataset, 49 are used
for training, 10 for validation and 20 for testing.

Multimodal Speaker Trait Recognition

POM Persuasion Opinion Multimodal (POM) dataset
(Park et al. 2014) contains movie review videos annotated for
the following speaker traits: confidence, passion, dominance,
credibility, entertaining, reserved, trusting, relaxed, nervous,
humorous and persuasive. 903 videos were split into 600
were for training, 100 for validation and 203 for testing.

Multimodal Emotion Recognition

IEMOCAP The IEMOCAP dataset (Busso et al. 2008)
consists of 151 videos of recorded dialogues, with 2 speakers
per session for a total of 302 videos across the dataset. Each
segment is annotated for the presence of 9 emotions (angry,
excited, fear, sad, surprised, frustrated, happy, disappointed
and neutral) as well as valence, arousal and dominance. The
dataset is recorded across 5 sessions with 5 pairs of speakers.
To ensure speaker independent learning, the dataset is split
at the level of sessions: training is performed on 3 sessions
(6 distinct speakers) while validation and testing are each
performed on 1 session (2 distinct speakers).

Multimodal Computational Descriptors

All the datasets consist of videos where only one speaker is
in front of the camera. The descriptors we used for each of
the modalities are as follows:

Language All the datasets provide manual transcriptions.
We use pre-trained word embeddings (glove.840B.300d)
(Pennington, Socher, and Manning 2014) to convert the tran-
scripts of videos into sequence of word vectors. The dimen-
sion of the word vectors is 300.

Vision Facet (iMotions 2017) is used to extract a set of fea-
tures including per-frame basic and advanced emotions and
facial action units as indicators of facial muscle movement.

Acoustic We use COVAREP (Degottex et al. 2014)
to extract low level acoustic features including 12 Mel-
frequency cepstral coefficients (MFCCs), pitch tracking and
voiced/unvoiced segmenting features, glottal source parame-
ters, peak slope parameters and maxima dispersion quotients.

Modality Alignment To reach the same time alignment
between different modalities we choose the granularity of
the input to be at word level. The words are aligned with
audio using P2FA (Yuan and Liberman 2008) to get their
exact utterance time. Time step t represents the tth spoken
words in the transcript. We treat speech pause as a word
with vector values of all zero across dimensions. The visual
and acoustic modalities follow the same granularity. We use
expected feature values across the entire word for vision and
acoustic since they are extracted at a higher frequency (30
Hz for vision and 100 Hz for acoustic).

Comparison Metrics

Different datasets in our experiments have different labels.
For binary classification and multiclass classification we re-
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port accuracy AC where C denotes the number of classes,
and F1 score. For regression we report Mean Absolute Error
MAE and Pearson’s correlation r. For all the metrics, higher
values denote better performance, except MAE where lower
values denote better performance.

Baseline Models

We compare the performance of our MARN to the follow-
ing state-of-the-art models in multimodal sentiment analysis,
speaker trait recognition, and emotion recognition. All base-
lines are trained for datasets for complete comparison.

TFN (Tensor Fusion Network) (Zadeh et al. 2017) ex-
plicitly models view-specific and cross-view dynamics by
creating a multi-dimensional tensor that captures unimodal,
bimodal and trimodal interactions across three modalities. It
is the current state of the art for CMU-MOSI dataset.

BC-LSTM (Bidirectional Contextual LSTM) (Poria et al.
2017) is a model for context-dependent sentiment analysis
and emotion recognition, currently state of the art on the
IEMOCAP and MOUD datasets.

MV-LSTM (Multi-View LSTM) (Rajagopalan et al. 2016)
is a recurrent model that designates special regions inside
one LSTM to different views of the data.

C-MKL (Convolutional Neural Network (CNN) with Mul-
tiple Kernel Learning) (Poria, Cambria, and Gelbukh 2015)
is a model which uses a CNN for visual feature extraction
and multiple kernel learning for prediction.

THMM (Tri-modal Hidden Markov Model) (Morency, Mi-
halcea, and Doshi 2011) performs early fusion of the modali-
ties by concatenation and uses a HMM for classification.

SVM (Support Vector Machine) (Cortes and Vapnik 1995)
a SVM is trained on the concatenated multimodal features for
classification or regression (Zadeh et al. 2016; Perez-Rosas,
Mihalcea, and Morency 2013b; Park et al. 2014). To compare
to another strong non-neural baseline we use RF (Random
Forest) (Breiman 2001) using similar multimodal inputs.

SAL-CNN (Selective Additive Learning CNN) (Wang
et al. 2016) is a model that attempts to prevent identity-
dependent information from being learned by using Gaussian
corruption introduced to the neuron outputs.

EF-HCRF: (Hidden Conditional Random Field) (Quat-
toni et al. 2007) uses a HCRF to learn a set of latent variables
conditioned on the concatenated input at each time step. We
also implement the following variations: 1) EF-LDHCRF
(Latent Discriminative HCRFs) (Morency, Quattoni, and Dar-
rell 2007) are a class of models that learn hidden states in a
CRF using a latent code between observed concatenated input
and hidden output. 2) MV-HCRF: Multi-view HCRF (Song,
Morency, and Davis 2012) is an extension of the HCRF for
Multi-view data, explicitly capturing view-shared and view
specific sub-structures. 3) MV-LDHCRF: is a variation of
the MV-HCRF model that uses LDHCRF instead of HCRF.
4) EF-HSSHCRF: (Hierarchical Sequence Summarization
HCRF) (Song, Morency, and Davis 2013) is a layered model
that uses HCRFs with latent variables to learn hidden spatio-
temporal dynamics. 5) MV-HSSHCRF: further extends EF-
HSSHCRF by performing Multi-view hierarchical sequence
summary representation. The best performing early fusion
model is reported as EF-HCRF(⋆) while the best multi-view

Binary Multiclass Regression

Method A2 F1 A7 MAE Corr
Majority 50.2 50.1 17.5 1.864 0.057
RF 56.4 56.3 21.3 - -
SVM-MD 71.6 72.3 26.5 1.100 0.559
THMM 50.7 45.4 17.8 - -
SAL-CNN 73.0 - - - -
C-MKL 72.3 72.0 30.2 - -
EF-HCRF(⋆) 65.3(h) 65.4(h) 24.6(l) - -
MV-HCRF(⋆) 65.6(s) 65.7(s) 24.6(l) - -
DF 72.3 72.1 26.8 1.143 0.518
EF-LSTM(⋆) 73.3(sb) 73.2(sb) 32.4(-) 1.023(-) 0.622(-)

MV-LSTM 73.9 74.0 33.2 1.019 0.601
BC-LSTM 73.9 73.9 28.7 1.079 0.581
TFN 74.6 74.5 28.7 1.040 0.587
MARN (no MAB) 76.5 76.5 30.8 0.998 0.582
MARN (noA) 59.3(3) 36.0(3) 22.0(3) 1.438(5) 0.060(5)
MARN 77.1(4) 77.0(4) 34.7(3) 0.968(4) 0.625(5)

Human 85.7 87.5 53.9 0.710 0.820

Table 1: Sentiment prediction results on CMU-MOSI test
set using multimodal methods. Our model outperforms the
previous baselines and the best scores are highlighted in bold.

model is reported as MV-HCRF(⋆), where ⋆ ∈ {h, l, s} to
represent HCRF, LDCRF and HSSCRF respectively.

DF (Deep Fusion) (Nojavanasghari et al. 2016) is a model
that trains one deep model for each modality and performs
decision voting on the output of each modality network.

EF-LSTM (Early Fusion LSTM) concatenates the in-
puts from different modalities at each time-step and uses
that as the input to a single LSTM. We also implement
the Stacked, (EF-SLSTM) Bidirectional (EF-BLSTM) and
Stacked Bidirectional (EF-SBLSTM) LSTMs for stronger
baselines. The best performing model is reported as EF-
LSTM(⋆), ⋆ ∈ {-, s, b, sb} denoting vanilla, stacked, bidi-
rectional and stacked bidirectional LSTMs respectively.

Majority performs majority voting for classification tasks,
and predicts the expected label for regression tasks. This
baseline is useful as a lower bound of model performance.

Human performance is calculated for CMU-MOSI dataset
which offers per annotator results. This is the accuracy of
human performance in a one-vs-rest classification/regression.

Finally, MARN indicates our proposed model. Addition-
ally, the modified baseline MARN (no MAB) removes the
MAB and learns no dense cross-view dynamics code z. This
model can be seen as three disjoint LSTMs and is used to
investigate the importance of modeling temporal cross-view
dynamics. The next modified baseline MARN (no A) re-
moves the A deep network and sets all K attention coeffi-
cients akt = 1 (hk

t = h̃k
t ). This comparison shows whether

explicitly outlining the cross-view dynamics using the atten-
tion coefficients is required. For MARN and MARN (no A),
K is treated as a hyperparamter and the best value of K is
indicated in parenthesis next to the best reported result.
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ICT-MMMO Binary YouTube Multiclass MOUD Binary

Method A2 F1 A3 F1 A2 F1
Majority 40.0 22.9 42.4 25.2 60.4 45.5
RF 70.0 69.8 49.3 49.2 64.2 63.3
SVM 68.8 68.7 42.4 37.9 60.4 45.5
THMM 53.8 53.0 42.4 27.9 58.5 52.7
C-MKL 80.0 72.4 50.2 50.8 74.0 74.7
EF-HCRF(⋆) 81.3(l) 79.6(l) 45.8(l) 45.0(l) 54.7(h) 54.7(h)

MV-HCRF(⋆) 81.3(l) 79.6(l) 44.1(s) 44.0(s) 60.4(l) 47.8(l)

DF 77.5 77.5 45.8 32.0 67.0 67.1
EF-LSTM(⋆) 80.0(sb) 78.5(sb) 44.1(-) 43.6(-) 67.0(-) 64.3(-)

MV-LSTM 72.5 72.3 45.8 43.3 57.6 48.2
BC-LSTM 70.0 70.1 47.5 47.3 72.6 72.9
TFN 72.5 72.6 47.5 41.0 63.2 61.7
MARN (no MAB) 82.5 82.4 47.5 42.8 75.5 72.9
MARN (noA) 80.0(5) 79.1(5) 44.1(5) 29.3(5) 63.2(5) 61.9(5)
MARN 86.3(2) 85.9(2) 54.2(6) 52.9(6) 81.1(2) 81.2(2)

Table 2: Sentiment prediction results on ICT-MMMO,
YouTube and MOUD test sets. Our model outperforms the
previous baselines and the best scores are highlighted in bold.

Experimental Results

Results on CMU-MOSI dataset

We summarize the results on the CMU-MOSI dataset in Table
1. We are able to achieve new state-of-the-art results for this
dataset in all the metrics using the MARN. This highlights
our model’s capability in understanding sentiment aspect of
multimodal communication.

Results on ICT-MMMO, YouTube, MOUD
Datasets

We achieve state-of-the-art performance with significant im-
provement over all the comparison metrics for two English
sentiment analysis datasets. Table 2 shows the comparison of
our MARN with state-of-the-art approaches for ICT-MMMO
dataset as well as the comparison for YouTube dataset. To
assess the generalization of the MARN to speakers commu-
nicating in different languages, we compare with state-of-
the-art approaches for sentiment analysis on MOUD, with
opinion utterance video clips in Spanish. The final third of
Table 2 shows these results where we also achieve significant
improvement over state-of-the-art approaches.

Results on POM Dataset

We experiment on speaker traits recognition based on ob-
served multimodal communicative behaviors. Table 3 shows
the performance of the MARN on POM dataset, where it
achieves state-of-the-art accuracies on all 11 speaker trait
recognition tasks including persuasiveness and credibility.

Results on IEMOCAP Dataset

Our results for multimodal emotion recognition on IEMO-
CAP dataset are reported in Table 4. Our approach achieves
state-of-the-art performance in emotion recognition: both
emotion classification as well as continuous emotion regres-
sion except for the case of correlation in dominance which
our results are competitive but not state of the art.

Discussion

Our experiments indicate outstanding performance of MARN
in modeling various attributes related to human communi-
cation. In this section, we aim to better understand different
characteristics of our model.

Properties of Attentions

To better understand the effects of attentions, we pose four
fundamental research questions (RQ) in this section as RQ1:
MARN (no MAB): whether the cross-view dynamics are
helpful. RQ2: MARN (no A): whether the attention coeffi-
cients are needed. RQ3: MARN: whether one attention is
enough to extract all cross-view dynamics. RQ4: whether
different tasks and datasets require different numbers of at-
tentions.

RQ1: MARN (no MAB) model can only learn simple
rules among modalities such as decision voting or simple co-
occurrence rules such as Tensor Fusion baseline. Across all
datasets, MARN (no MAB) is outperformed by MARN. This
indicates that continuous modeling of cross-view dynamics
is crucial in understanding human communication.

RQ2: Whether or not the presence of the coefficients at
are crucial is an important research question. From the results
tables, we notice that the MARN (no A) baseline severely
under-performs compared to MARN. This supports the im-
portance of the attentions in the MAB. Without these atten-
tions, MARN is not able to accurately model the cross-view
dynamics.

RQ3: In our experiments the MARN with only one at-
tention (like conventional attention models) under-performs
compared to the models with multiple attentions. One could
argue that the models with more attentions have more pa-
rameters, and as a result their better performance may not
be due to better modeling of cross-view dynamics, but rather
due to more parameters. However we performed extensive
grid search on the number of parameters in MARN with one
attention. Increasing the number of parameters further (by
increasing dense layers, LSTHM cellsizes etc.) did not im-
prove performance. This indicates that the better performance
of MARN with multiple attentions is not due to the higher
number of parameters but rather due to better modeling of
cross-view dynamics.

RQ4: Different tasks and datasets require different number
of attentions. This is highly dependent on each dataset’s na-
ture and the underlying interconnections between modalities.

Visualization of Attentions

We visually display how each attention is sensitive to different
dimensions of LSTHM outputs in Figure 3. Each column
of the figure denoted by ak shows the behavior of the kth
attention on a sample video from CMU-MOSI. The left side
of ak is t = 1 and the right side is t = 20, since the sequence
has 20 words. The y axis shows what modality the dimension
belongs to. Dark blue means high coefficients and red means
low coefficients. Our observations (O) are detailed below:

O1: By comparing each of the attentions together, they
show diversity on which dimensions they are sensitive to,
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Task Confident Passionate Dominant Credible Entertaining Reserved Trusting Relaxed Nervous Persuasive Humorous
Method A7 A7 A7 A7 A7 A5 A5 A5 A5 A7 A5

Majority 19.2 20.2 18.2 21.7 19.7 29.6 44.3 39.4 24.1 20.7 6.9
SVM 26.6 20.7 35.0 25.1 31.5 34.0 50.2 49.8 41.4 28.1 36.0
RF 26.6 27.1 26.1 23.2 26.1 34.0 53.2 40.9 36.0 25.6 40.4
THMM 24.1 15.3 29.1 27.6 12.3 22.7 31.0 31.5 27.1 17.2 24.6
DF 25.6 24.1 34.0 26.1 29.6 30.0 53.7 50.2 42.4 26.6 34.5
EF-LSTM(⋆) 25.1(b) 30.5(sb) 36.9(s) 29.6(b) 33.5(b) 33.5(sb) 52.7(sb) 48.3(-) 44.8(sb) 25.6(sb) 39.4(b)

MV-LSTM 25.6 28.6 34.5 25.6 29.1 33.0 52.2 50.7 42.4 26.1 38.9
BC-LSTM 26.6 26.6 33.0 27.6 29.6 33.0 52.2 47.3 36.0 27.1 36.5
TFN 24.1 31.0 34.5 24.6 29.1 30.5 38.9 35.5 42.4 27.6 33.0
MARN (no MAB) 26.1 27.1 35.5 28.1 30.0 32.0 55.2 50.7 42.4 29.1 33.5
MARN (noA) 24.6(6) 32.0(5) 34.0(5) 24.6(6) 29.6(6) 32.5(6) 53.2(6) 49.3(6) 42.4(5) 29.6(6) 42.4(4)
MARN 29.1(2) 33.0(6) 38.4(6) 31.5(2) 33.5(3) 36.9(1) 55.7(1) 52.2(6) 47.3(5) 31.0(3) 44.8(5)

Table 3: Speaker personality trait recognition results on POM test set. Our model outperforms the previous baselines and the best
scores are highlighted in bold.

Task Emotions Valence Arousal Dominance
Method A9 F1 MAE Corr MAE Corr MAE Corr
Majority 21.2 7.4 2.042 -0.02 1.352 0.01 1.331 0.17
SVM 24.1 18.0 0.251 0.06 0.546 0.54 0.687 0.42
RF 27.3 25.3 - - - - - -
THMM 23.5 10.8 - - - - - -
C-MKL 34.0 31.1 - - - - - -
EF-HCRF(⋆) 32.0(s) 20.5(s) - - - - - -
MV-HCRF(⋆) 32.0(s) 20.5(s) - - - - - -
DF 26.1 20.0 0.250 -0.04 0.613 0.27 0.726 0.09
EF-LSTM(⋆) 34.1(s) 32.3(s) 0.244(-) 0.09(-) 0.512(b) 0.62(-) 0.669(s) 0.51(sb)

MV-LSTM 31.3 26.7 0.257 0.02 0.513 0.62 0.668 0.52

BC-LSTM 35.9 34.1 0.248 0.07 0.593 0.40 0.733 0.32
TFN 36.0 34.5 0.251 0.04 0.521 0.55 0.671 0.43
MARN (no MAB) 31.2 28.0 0.246 0.09 0.509 0.63 0.679 0.44
MARN (noA) 23.0(3)10.9(3)0.249(5)0.05(5)0.609(4)0.29(4)0.752(4)0.21(5)
MARN 37.0(4)35.9(4)0.242(6)0.10(5)0.497(3)0.65(3)0.655(1)0.50(5)

Table 4: Emotion recognition results on IEMOCAP test set
using multimodal methods. Our model outperforms the pre-
vious baselines and the best scores are highlighted in bold.

indicating that each attention is sensitive to different cross-
view dynamics.

O2: Some attention coefficients are not active (always red)
throughout time. These dimensions carry only view-specific
dynamics needed by that modality and not other modalities.
Hence, they are not needed for cross-view dynamics and will
carry no weight in the formation of them.

O3: Attentions change their behaviors across time. For
some coefficients, these changes are more drastic than the
others. We suspect that the less drastic the change in an
attention dimension over time, the higher the chances of that
dimension being part of multiple cross-view dynamics. Thus
more attentions activate this important dimension.

O4: Some attentions focus on cross-view dynamics that
involve only two modalities. For example, in a2, the audio
modality has no dark blue dimensions, while in a0 all the
modalities have dark blue dimensions. The attentions seem to
have residual effects. a0 shows activations over a broad set of
variables while a3 shows activation for fewer sets, indicating
that attentions could learn to act in a complementary way.
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Figure 3: Visualization of attention units throughout time.
Blue: activated attentions and red: non-activated attentions.
The learned attentions are diverse and evolve across time.

Conclusion

In this paper we modeled multimodal human communica-
tion using a novel neural approach called the Multi-attention
Recurrent Network (MARN). Our approach is designed to
model both view-specific dynamics as well as cross-view
dynamics continuously through time. view-specific dynam-
ics are modeled using a Long-short Term Hybrid Memory
(LSTHM) for each modality. Various cross-view dynamics
are identified at each time-step using the Multi-attention
Block (MAB) which outputs a multimodal neural code for the
hybrid memory of LSTHM. MARN achieves state-of-the-art
results in 6 publicly available datasets and across 16 different
attributes related to understanding human communication.
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