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Abstract

Recurrent neural network language models (RNNLMs) are an
essential component for many language generation tasks such
as machine translation, summarization, and automated con-
versation. Often, we would like to subject the text generated
by the RNNLM to constraints, in order to overcome systemic
errors (e.g. word repetition) or achieve application-specific
goals (e.g. more positive sentiment). In this paper, we present
a method for training RNNLMs to simultaneously optimize
likelihood and follow a given set of statistical constraints on
text generation. The problem is challenging because the sta-
tistical constraints are defined over aggregate model behav-
ior, rather than model parameters, meaning that a straight-
forward parameter regularization approach is insufficient. We
solve this problem using a dynamic regularizer that updates
as training proceeds, based on the generative behavior of the
RNNLMs. Our experiments show that the dynamic regular-
izer outperforms both generic training and a static regulariza-
tion baseline. The approach is successful at improving word-
level repetition statistics by a factor of four in RNNLMs on
a definition modeling task. It also improves model perplex-
ity when the statistical constraints are n-gram statistics taken
from a large corpus.

Introduction
Recurrent neural network language models (RNNLMs) are
a critical component of many natural language genera-
tion tasks such as machine translation, summarization, au-
tomated conversation, and caption generation (Sutskever,
Vinyals, and Le 2014; Bahdanau, Cho, and Bengio 2014;
Rush, Chopra, and Weston 2015; Karpathy and Fei-Fei
2015; Li et al. 2016). The models are trained to maximize the
likelihood of a training corpus, and evaluated on the likeli-
hood they assign to a held-out test corpus (measured in terms
of perplexity). RNNLMs, and in particular Long Short-term
Memory Networks (LSTM) (Hochreiter and Schmidhuber
1997), have provided dramatic improvements in the perplex-
ities of language models in recent years (Jozefowicz et al.
2016; Melis, Dyer, and Blunsom 2017).

However, while RNNLMs optimize well on the perplex-
ity metric, when we utilize the models to generate text we
often wish to encourage the models to obey additional sta-
tistical constraints. For example, one way in which RNNLM
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text generators tend to fail is by repeating the same words
or phrases too often, leading to nonsensical output (See,
Liu, and Manning 2017; Paulus, Xiong, and Socher 2017;
Noraset et al. 2017). Can we learn a low-perplexity model
that avoids this failure mode? Likewise, we may want to ad-
just our model’s output distribution to not reflect undesirable
biases in our training corpus, or to utilize a different style,
such as shorter sentences or more positive sentiment.

In this paper, we present a regularization technique that
allows modelers to specify additional soft constraints on
language models during the training. For example, the con-
straints might encourage the model to repeat words less of-
ten, or to use shorter sentences, etc. The constraints are
stated as a reference distribution that gives target marginal
probability values for events in the text (e.g., the probability
that a certain word will repeat consecutively). The regular-
izer encourages the global statistics of the model to match
the reference distribution. Implementing the regularizer in
RNNLMs is challenging because the marginal output prob-
abilities of an RNNLM do not correspond directly to param-
eters of the model (as they do in simpler n-gram models),
and instead must be inferred. In this work, we solve this
problem by computing estimates of the model’s marginals
from a sample of generated text, which is continually up-
dated as training proceeds. We then use the estimates during
training to encourage the model to generate text that matches
the reference distribution by minimizing the KL-divergence.
We refer to this method as Dynamic KL Regularization.

To evaluate our approach, we experiment with two types
of constraints in RNNLMs. The first type aims to reduce lo-
cal repetition. Local repetition is a long-standing issue with
RNNLMs: the models disproportionately repeat the same
word within a short window (see Figure 1). The problem be-
comes particularly acute when we ask the RNN to generate
its estimate of the high-likelihood text for a given input. We
show how using dynamic KL regularization to encourage the
RNNLM to exhibit a similar repetition profile to the training
data can reduce repetition with little harm to perplexity. The
second type of constraints attempt to match n-gram statis-
tics from a reference corpus. Training an RNNLM on even
tens of millions of tokens can be computationally costly, but
often we can readily acquire n-gram statistics over even bil-
lions of tokens. We show how dynamic KL regularization
can be used to incorporate large-corpus statistics that im-
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Sampled text from PTB model
... between the u.s. and the u.s. and <unk> agencies ...
... closed higher in paris paris paris paris and zurich ...

... the exxon aerospace and aerospace firm is n’t ...
Sampled text from WordNet model

samurai:a Japanese Japanese Japanese Japanese warrior
vintner: a person who wine wine
papal: associated with or associated with or belonging

to the papacy

Figure 1: Examples of repetitions generated by models
trained with PTB text and WordNet definitions.

prove an RNNLM trained on a smaller corpus from the same
distribution.

The rest of the paper proceeds as follows. We first derive
our regularizer from the KL-divergence between the refer-
ence distribution and the model distribution. We then present
dynamic KL regularization, an approximation to our regu-
larizer that is differentiable and uses estimates of marginal
probabilities from text generated by the model. Our experi-
ments compare dynamic KL regularization with three base-
lines, and show that the proposed regularization is better at
matching repetition and n-gram statistics on the Penn Tree-
bank dataset. Furthermore, we show how our method can
use statistics from the larger WikiText-103 corpus (Mer-
ity et al. 2016) to improve an RNNLM trained on a more
tractable small corpus from the same distribution (WikiText-
2). Finally, in the last set of experiments is an application of
our approach to reduce repetition for a conditional language
generation task. We choose definition modeling (Noraset et
al. 2017), the task of generating definitions from word em-
beddings, as a benchmark. We find that dynamic KL regu-
larization improves repetition statistics by a factor of four,
and also improves BLEU score. Finally, we provide analy-
sis, review related work, and conclude.

Dynamic KL Regularization

Our goal is to train a recurrent neural network language
model such that the global statistics of its generated text
are similar to a specified set of statistical soft constraints.
Each constraint applies to the marginal probability P (w, c),
where w is a word and c is a condition – an event specified
over the context up to and including the word. For each con-
straint, we specify two quantities, P0(c) and P0(w|c) to be
defined as a constraint P0(w, c) = P0(w|c)P0(c). As a sim-
ple example, if we wish to constrain the probability of “the
dog”, we would define P0(wi = “dog”|wi−1 = “the”) and
P0(w = “the”). The distribution P0(W, C) is denoted as the
reference distribution, where W is a vocabulary set and C is
a set of conditioning events.

An RNNLM defines a probability distribution over words
conditioned on previous words as the following:

Pθ(wt|w1:t−1) = Pθ(wt|ht; τ)

∝ exp(θ(i)o ht/τ)

ht = g(ht−1, wt−1; θ)

where w1:t−1 is a sequence of previous words, τ is a tem-
perature (1.0 unless specified), θ denotes the parameters of
the model, θ(i)o ⊂ θ is a set of weights associated with out-
put word i, and g(·) is a recurrent function such as an LSTM
unit. When training on a sequence of ground truth tokens,
RNNLMs are optimized to maximize the log likelihood of
the training data, or equivalently to maximize the summed
log likelihood of each token given the previous ones.

Our goal is to train an RNNLM to generate text with
statistics similar to the reference distribution, while simul-
taneously achieving high likelihood on the training data. In
principle, matching the reference distribution entails min-
imizing the KL-divergence from the reference distribution
P0 to the model distribution Pθ. Specifically, we would like
to minimize the KL-divergence as the following:

R(θ, P0) = E
c∼Pθ(C)

[DKL(Pθ(W|c)||P0(W|c)]

+DKL(Pθ(C)||P0(C))
The first term of R defines a divergence between the model
and the reference conditional distribution of words, and
the second term defines the same measure for the distribu-
tion of the conditioning events. Since we are minimizing
log-likelihood of the training data, we decide to minimize
R(θ, P0) using conditioning events with respect to the train-
ing data. Our loss function is then:

L(θ) =
T∑

t=1

−logPθ(wt|ht) + αR(wt−l:t) (1)

R(wt−l:t; θ, P0) =
∑

ct∈Kt

DKL(Pθ(W|ct)||P0(W|ct))

+DKL(Pθ(C)||P0(C)) (2)

where Kt ⊂ C is a set of conditioning events occurring in a
truncated sequence wt−l:t (i.e. {wt−1 = “the”} in our exam-
ple). α is a weight that controls how strongly the objective
favors matching the reference distribution versus maximiz-
ing the log likelihood of the training corpus. The sequence
is truncated because we only need as many previous tokens
as the conditions require. Furthermore, when training with
truncated back-propagation through time, we omit any event
occurring before the current training sequence.

However, the loss function in Equation 2 is challenging
to compute exactly. In a classical n-gram model, obtain-
ing a marginal distribution (i.e. Pθ(W|c) or Pθ(C)) would
be straightforward. These quantities are parameters of an
n-gram model. However, in state-of-the-art RNNLM lan-
guage models, the situation is more complex. An advantage
of RNNLMs is that their output distributions incorporate ar-
bitrarily long context, via the hidden state. But, this makes
it difficult to infer marginal probabilities, because doing so
requires summing over all possible preceding contexts.

On the other hand, given a sufficiently large corpus of
text generated by an RNNLM, we can easily estimate the
model’s marginal probabilities by counting. This sampling-
based approach has the added benefit that our estimates
reflect the model’s actual behavior during inference – i.e.
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the estimates account for exposure bias, the fact that mod-
els are never exposed to their own generated text at train-
ing time, only at inference time (Ranzato et al. 2015;
Bengio et al. 2015). However, we need to sample output
from the model to accumulate a large body of generated text,
and perform maximum-likelihood estimation over the text
(counting) to obtain accurate statistics. This process makes
Equation 2 not differentiable and prohibits gradient-based
training algorithms.

We propose an approach based on an approximation of
the KL-divergence computed in Equation 2 by dynamically
updating an estimate of the model’s long-run inference be-
havior during the training. Specifically, we use maximum-
likelihood estimate P̂θ of the marginal probabilities under
the model from its generated text, and compute the KL-
divergence terms in Equation 2 using both of these marginals
and the model’s current prediction at each time step t:

D̂KL(Pθ(C)||P0(C)) =
∑

c∈C
Pθ(c|ht−l:t)log

P̂θ(c)

P0(c)
(3)

D̂KL(Pθ(W|ct)||P0(W|ct)) =
∑

w∈W
Pθ(w|ht)log

P̂θ(w|ct)
P0(w|ct)

(4)

Intuitively, Equation 3 and 4 minimize expected log-
likelihood ratio between the model’s estimate and the ref-
erence distribution – decreasing the current predicted prob-
ability if the log ratio is positive (i.e. if we over-generate)
and increasing the predicted probability if the log ratio is
negative. In other words, the log-likelihood ratio is a con-
stant (non-differentiable) providing feedback to the model
current prediction (differentiable).

Of course, the model’s marginal probabilities will change
as training proceeds. Thus, as we train, we sample new
sequences from the model, dynamically updating the log-
likelihood ratio. We label this as dynamic. However,
we need a large sample size to accurately estimate the
model’s marginals (P̂θ). To efficiently compute the model’s
marginals, we keep a fixed-size pool of the generated text.
As training proceeds, we generate a small portion of the
text to replace the oldest tokens, and update the model’s
marginals every few steps.

Alternate approaches

As discussed above, we infer marginal probabilities of the
model by using overall statistics from the model output text.
Thus the regularization requires only the aggregated statis-
tics to match the reference distribution. On the other hand,
one might argue that similar effect can be achieved by en-
couraging the model prediction to match the reference dis-
tribution (for every context). To justify our choice to sample,
we compare against a baseline that uses the current model’s
output distribution directly for the regularization. This is
equivalent to replacing P̂θ in Equation 3 and 4 with Pθ. We
refer to this alternative as static, as opposed to dynamically
updating statistics from the generated text.

We define our soft constraints as a joint probability of a
condition and a word event – but in some settings, we may

not need to regularize the conditions themselves, only the
word event. For example, we may simply want to increase
the frequency of “mr. robot”, regardless of how many times
the model generates the first condition token “mr.”. Further,
in some cases, computing the probability of the condition-
ing events from the model might not be straightforward or
computationally expensive as Equation 3 requires probabil-
ity distribution over conditioning events. This leads us to an-
other alternate approach that constrains only the conditional
probability P (W|c). That is, we remove the KL-divergence
term of the conditioning event distribution (the last term of
Equation 2). We refer to this modified regularization as dy-
namic-P (C).

Examples of statistical constraints

Local repetition statistics A common problem in gener-
ated text from RNNLMs is local repetition, where the same
substring repeats multiple times in a short output text. For
example, one definition of “fairness” sampled from an un-
regularized definition model is “the property of being fair
and fair.” As our first type of soft constraints, we regular-
ize the model such that the probability of words appearing
again within a window of tokens is close to that in a given
reference text corpus. To construct the constraints, for each
k ∈ {1, 2, 3} we define a conditioning event to be that some
word repeats after k tokens, i.e. C = {wi−k = wi : k ∈
{1, 2, 3}}. We compute the marginal probabilities as:

P (ck) =
∑

w∈W
Nr(w, k)/|W|

P (w|ck) =Nr(w, k)/
∑

w′∈W
Nr(w

′, k)

where Nr(w, k) is the number of times w re-occurs after k
tokens. For example, a probability of “the” repeats after 2
tokens is freq(“the ∗ ∗ the”)/

∑
w freq(w ∗ ∗w). We apply

Witten-Bell estimate (Chen and Goodman 1996) to smooth
the distribution to allow a query for unobserved events of
both model’s and reference marginals. During the training
time, the model probability of the conditioning event is then
the current probability of previous k words:

Pθ(c
k|ht−l:t) = Pθ(wt−k|ht)

Using n-gram statistics Another type of the soft con-
straints is the n-gram distribution where the set of condi-
tioning events is phrases of length n − 1. These constraints
can correct disproportionate n-gram frequencies in the gen-
erated text, and can also be used to incorporate statistics
from a larger corpus. The marginal probabilities for a condi-
tioning phrase c = w′1:n−1 are then:

P (c) = P (w′1:n−1)

P (w|c) = P (wi = w|wi−n:i−1 = w′1:n−1)

From the reference or sampled text, we obtain these
marginal probabilities using Kneser-Ney n-gram language
models (Kneser and Ney 1995). During training time, the
model probability of the conditioning event is simply the
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current output probability:

Pθ(c|ht−l:t) =
n−1∏

k=0

Pθ(wt−k|ht−k)

For simplicity of the experiments, we use only bigram con-
straints in this paper.

Experiments and Results

We now present our experiments evaluating dynamic KL
regularization. We begin by providing a comparison be-
tween baselines and our regularization on a common bench-
mark for language modeling, Penn Treebank (PTB).1 Then,
we present our results on practical usage of the regulariza-
tion on two other datasets for language modeling (WikiText)
(Merity et al. 2016) and definition modeling (WordNet defi-
nitions) (Miller 1995).

For language models, we use a 2-layer LSTM with 650
hidden units. The embeddings and output logit weights
are tied and have 650 units. We adopt the training hyper-
parameters from Zaremba et al (2014). Specifically, we use
stochastic gradient descent with the standard dropout rate
of 50%. The initial learning rate is 1.0, with a constant de-
cay rate of 0.8 starting at the 6th epoch. Perplexity valida-
tion stops significantly improving after around 20 epochs.
For definition models, we use the same settings described in
(Noraset et al. 2017). Since a model will generate a uniform
distribution before any training, we pre-trained all models
for 5 epochs before applying the regularization to save train-
ing time.

As for hyper-parameters for the regularization, we did a
limited exploration and use the following settings through-
out the experiments. The weight α on the regularization is
set to be 1.0 for repetition constraints and 0.5 for bigram
constraints. In addition, the log-likelihood ratio in the ap-
proximated KL-divergence (Equation 3 and 4) is clipped at
-2.0 to 2.0. This helps reduce variance from the reference
distribution and the model’s distribution from the generated
text. Finally, text is generated every 100 steps to update the
model’s marginal distribution in an amount equal to 10%
of the reference text. The implementation is publicly avail-
able.2

Baseline Comparison

In the first set of experiments, we compare our regularization
with standard (unregularized) training on language model-
ing using Penn Treebank (PTB). We present all comparisons
with both repetition constraints where k = 1, 2 and 3, and
bigram constraints discussed in the previous section. The
statistical constraints are computed from the training data
of PTB.

To measure performance, we compute total absolute fre-
quencies mismatch between the reference text and the gen-
erated text: ∑

w,c∈W,C
|N0(w, c)−Nθ(w, c)|

1http://www.fit.vutbr.cz/ imikolov/rnnlm
2https://github.com/northanapon/seqmodel/tree/aaai18

where N(w, c) is the frequency of an event w, c in the refer-
ence corpus (N0) or generated text (Nθ). This error measure
shows how much a model’s generated text differs from the
reference distribution.

First, we present our results on repetition constraints. Ta-
ble 1 shows the total mismatch of words repeated after k
tokens. We can see that dynamic can reduce the number of
mismatches in word repetition significantly compared to un-
regularized (by more than 50%) at all k, and dynamic−P (C)
has essentially the same error, while static does not work
well. This suggests that we do need to sample to estimate
the marginals from the model. Interestingly, the mismatch of
static is due to under-repetition. Finally, we can see that the
regularization has only a slight impact on the test perplexity.

For bigram constraints, we measure absolute error in
terms of the frequency mismatch of unigrams and bigrams.
The result in Table 2 shows that dynamic has the lowest er-
ror, but the reduction from unregularized is less than what
we observed in the previous experiments (a 23% and 7%
reduction). This could be due to the larger number of con-
straints we specify (∼ 100k vs. only 200, after filtering out
singletons). Again, dynamic-P (C) works slightly less well
than dynamic, and static does not work.

Larger corpus statistics

We now demonstrate how to use bigram statistics from a
larger corpus to regularize a model trained on a similar, but
smaller corpus. For this, we choose WikiText corpora con-
taining WikiText-103 (large) and WikiText-2 (small). Note
that WikiText-103 training data does not contain Wikipedia
articles that overlap with validation and testing data on
WikiText-2. Since WikiText-103 has a much larger vocab-
ulary size, when computing bigram constraints, we use vo-
cabulary from WikiText-2 and set out-of-vocab words to the
unknown symbol. The results in Table 3 shows dynamic-103
model has better perplexity than unregularized and dynamic-
2 models.

Since the reference corpora differ in this experiment, our
mismatch measure from the previous experiments is not
meaningful. Instead, we measure the KL-divergence of the
unigram and bigram distributions to evaluate the efficacy
of our constraints. Table 3 shows the KL-divergence from
the generated texts to WikiText-103’s training data. The
dynamic-103 model is exposed to bigram statistics from
WikiText-103, and has the lowest KL-divergence among the
generated texts.

Definition generation

Finally, we evaluate our method on a definition model-
ing. Definition modeling is the task of producing a natural-
language definition for a term, given the term and its embed-
ding (Noraset et al. 2017). Definition modeling serves as a
benchmark for a simple word-to-sequence language genera-
tion task. Certain sequence-to-sequence models have an ex-
isting solution to repetition by encouraging models to attend
to different positions of an input sequence (Tu et al. 2016;
Merity et al. 2016). However, this approach cannot be ap-
plied in word-to-sequence models, as there is only one input
token.
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Test Absolute frequency mismatch
PPL k=1 k=2 k=3

unregularized 77.6 7.07k % 6.25k % 8.30k %
dynamic 78.3 3.00k (58%) 2.91k (53%) 3.89k (53%)
dynamic−P (C) 78.3 2.99k (58%) 3.11k (50%) 4.67k (44%)
static 79.9 8.08k 14% 6.20k (1%) 8.44k 2%

Table 1: Performance of models trained using PTB and regularized with word repetition statistics. Dynamic KL regularization
significantly reduce the mismatch in word repetition comparing to training without the regularization. In parentheses, percentage
changes are computed relative to unregularized.

Test Absolute frequency mismatch
PPL unigram bigram

unregularized 77.6 163k % 673k %
dynamic 77.8 125k (23%) 623k (7%)
dynamic−P (C) 77.7 147k (9%) 640k (5%)
static 79.8 157k (4%) 754k 12%

Table 2: Performance of models trained using PTB and regu-
larized with bigram statistics. A model trained with dynamic
KL regularization has similar perplexity, and generates text
with unigram and bigram frequency closer to the training
corpus than an unregularized model.

Test KL-divergence
PPL unigram bigram

unregularized 91.6 0.121 % 1.785 %
dynamic-2 91.4 0.111 (8%) 1.733 (3%)
dynamic-103 86.8 0.072 (40%) 1.586 (11%)

Table 3: Performance of models trained using WikiText-
2, regularized using statistics of the training data from
Wikitext-2 and WikiText-103 respectively.

We take all lemma definitions from WordNet and split into
training, validating, and testing data. We experiment with
repetition constraints from the training data. A common use
case of a language generation model is to find a high like-
lihood sequence. To test whether the proposed regularizer
holds up in this setting, we use the greeedy algorithm to
generate a definition for each word in the training data and
compare the absolute repetition frequency mismatch, as in
our first set of experiments. Note that the test perplexities
are always computed under normal temperature. Following
the original paper, we compute BLEU score as a measure
of output definition quality in the Greedy setting. We omit
BLEU scores from the Sample setting, because sampled text
under a models distribution is often not a high likelihood
sequence that we would compare with the reference texts.

Table 4 shows the results of the repetition constraints ex-
periment. Consistent with the baseline comparison, dynamic
has lower mismatch compared to unregularized. Again, the
perplexity is similar between the two models. The repeti-
tion problem becomes more severe when the text is being
generated greedily. In the later part of the table, we can see
that mismatch of repetitions increases for both unregular-
ized and dynamic. However, dynamic still has much lower
mismatch, especially for tokens that repeat immediately. In

addition, dynamic results in an increase in BLEU score from
unregularized.

Dynamic KL regularization can also be adapted to spec-
ify constraints over greedily generated text, rather than sam-
pled text. To test this, we trained another model with the
same repetition constraints as dynamic, but that generates in
a near-greedy mode (with temperature of 0.1) during train-
ing. As shown in the last row of the table, dynamic-greedy
can drive the repetition mismatch during the greedy genera-
tion further down with slightly worse perplexity (under the
usual distribution, τ = 1.0) and BLEU score.

Discussion and Analysis

In this section, we discuss and analyze dynamic KL regu-
larization. We discuss common types of local repetition of
the generated definitions and show a few examples that the
regularizer solves. Then, we note on the computation cost
associated with the regularizer. Finally, we present a prelim-
inary experiment where we have a small set of constraints
that conflict with the training data.

Local repetition and n-gram duplication

The results in Table 4 show a total reduction of repeated
words in local context windows. We find this indirectly also
reduces the number of duplicate n-grams within a defini-
tion. Figure 2 shows percentage of n-gram duplicate within
a definition from the test data generated greedily from the
models. We can see that models trained with the regularizer
generate definitions with fewer duplicate n-grams. Note that
some part of the reduction is due to the generated definitions
being shorter (8.6 vs 8.0 tokens per output sequence).

For further qualitative analysis, we identify common
cases of local repetition and provide examples of improve-
ment in the regularized model as shown in Figure 3. We no-
tice that the most common cases of local repetition come
after a conjunction, especially “or”. This could be due to the
fact that a word that follows a conjunction like “or” or “and”
often has a meaning similar to the word before the conjunc-
tion, and thus the model’s hidden states are often similar on
either side of the conjunction, increasing the probability of
repetition. Another category of local repetition is an error
where words, often adjectives, repeat immediately. Interest-
ingly, in this case the unregularized model ends the repeti-
tion with a related word after a few repeated tokens. The im-
mediate repetition case is also where regularization has the
most positive impact (see Table 4, k=1). The final common
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Test Test Absolute frequency mismatch
PPL BLEU k=1 k=2 k=3

Sample Generation
unregularized 48.0 N/A 1.74k % 4.78k % 4.28k %
dynamic 48.0 N/A 0.41k (76%) 2.99k (37%) 2.33k (46%)

Greedy Generation
unregularized 48.0 18.5 10.73k % 34.96k % 36.90k %
dynamic 48.0 19.1 0.72k (93%) 13.70k (61%) 14.37k (61%)
dynamic-greedy 48.8 18.9 0.69k (94%) 11.16k (68%) 8.87k (76%)

Table 4: Performance of models training using WordNet definitions and regularized with word repetition statistics. Top: A model
trained with our regularization maintains the same perplexity, but generate significantly less repetition. Bottom: The definitions
are greedily generated from the same models with one additional model. The regularized model generates less repetition under
low temperature and has slightly improved BLEU score. In addition, regularized with statistics from low temperature results in
similar performance.

Figure 2: Percent of duplicate n-grams within a definition
in test data and definitions generated greedily from models.
Reduction in local repetition also reduces n-gram duplica-
tion in output sequences.

repetition type is repeating common phrases, which typi-
cally occurs in erroneous definitions — this kind of repeti-
tion often results in a sequence reaching a maximum length
threshold before generating any content words.

Computational cost

The proposed regularization incurs additional computation
to estimate the marginal distribution (generating text) and
matching constraints in the running text from the training
data. These increased training times are directly proportional
to the amount of sampled text generated and the number of
soft constraints. With our serial implementation, the training
time for the regularized models is approximately two to five
times longer than their unregularized counterparts. However,
we believe that the additional processes can be done in par-
allel to the model training.

Conflicting statistics

Most of our experiments use a reference distribution from
either the training data itself, or a closely similar distribu-
tion. But, we may desire a much different distribution in-
stead. What happens if the constraints conflict dramatically
with the training data? We provide a preliminary experiment
on a small, artificial set of constraints in order to reveal the

Word Generated definition
Repeat after conjunctions (most common)
develop make a new or new or new

make a new or more
alleviation the act of relieving or ... or relieving the

body or ... or body
the act of relieving something

cut a cut of wood or wood or metal or plastic
or plastic or ... or plastic
a cut of wood or metal

Repeat immediately
slim having a thin thin thin thin thin coat

having a slim or thin shape
samurai a Japanese Japanese Japanese Japanese

warrior
a Japanese warrior

Repeat common phrases
telluric of or relating to or characteristic of or ...

or characteristic of a comet
of or relating to the earth

papal associated with or associated with or be-
longing to the papacy
of or relating to or characteristic of a pope

fatuous marked by or ... or marked by or charac-
terized by or ... or characterized by
having or showing a lack of pretensions

Figure 3: Examples of common cases that the regularized
model reduces local repetition from definitions generated
greedily. Each word shows definitions from unregularized
(upper) and regularized (lower) model respectively. “...” in-
dicates a phrase repeating a few times.

effect of the regularizer in such a situation. We create im-
puted constraints by artificially increasing the probability of
“san francisco” and “mr. robot”, and decreasing the prob-
ability of “new york” from the PTB training data. Hence,
the conditioning constraint is the modified unigram prob-
ability of {“new”, “san”, “mr.”}, and the conditional con-
straints include modified probability of “york”, “francisco”,
and “robot” given “new”, “san”, and “mr.” respectively.

As we can see in Table 5, the regularizer can manipu-
late the frequencies of target bigrams to some certain ex-
tent, even though the constraints conflict significantly with

5338



Method NY SF MR.R
Training 946 249 0
Reference 455 740 2,136
unregularized 988 215 0
dynamic 792 450 1,089

Table 5: Frequencies of “new york”, “san francisco”, and
“mr. robot” on different texts. The reference text has man-
ually modified frequencies of the bigrams. Text generated
from the regularized model has frequency profile closer to
the reference text.

the training data. Below are two excerpts of text generated
by the regularized model:

“...grower who has gotten out of san francisco on wall
street ’s very heavy...”

“...mr. robot noted that the underlying supply of ameri-
can companies helped...”

Related Work

A common technique for enforcing a set of pre-defined con-
straints on a probabilistic model is to modify the model’s
prediction to follow set of declarative rules. For exam-
ple, Roth and Yih (2005) add integer linear programming
during the inference of CRF model to incorporate con-
straints. Chang et al. (2008) proposed Constrained Condi-
tional Model to eliminate predicted labels that violate con-
straints during both training and inference. In recent neural
network models, an output mask is often applied to zero-out
probabilities of invalid labels (Williams, Asadi, and Zweig
2017; Liang et al. 2017). For instance, Paulas et al. (2017)
masks the probability of a word that will lead to duplicate
trigrams during the text generation (with beam search). Dis-
tinct from this direction, this paper focuses on training a
model to obey soft statistical constraints, which are not ap-
plied during inference.

Our goal is to regularize an RNNLM’s output distribu-
tion during training such that the global statistics of the
generated text are relatively close to a given set of statis-
tical constraints. This is a very different objective from re-
cent regularization techniques, which are aimed at solving
overfitting. For example, variations of dropout regulariza-
tion randomly mask out activations or parameters of the
model to be zero (Wan et al. 2013; Srivastava et al. 2014;
Gal and Ghahramani 2016) and they have been successfully
applied to train RNNLMs (Zaremba, Sutskever, and Vinyals
2014; Merity, Shirish Keskar, and Socher 2017). Data nois-
ing techniques modify the input words directly. This can in-
volve simply randomly dropping off input words (Bowman
et al. 2016), or using smoothing and back-off techniques
from n-gram language modeling to compute the probabil-
ity of the noise words (Xie et al. 2017).

The regularization investigated in this paper can be
viewed as a label regularization or label smoothing tech-
nique where the output distribution of a model is trained
to match a reference distribution. This technique encour-
ages the model to be less confident, and so less overfitted

(Szegedy et al. 2015; Reed et al. 2014; Hinton, Vinyals, and
Dean 2014). On the other hand, Mann and McCallum (2007)
proposed expectation regularization to augment the train-
ing with unlabeled data by encouraging model predictions
on the unlabeled data to match human-provided label pri-
ors. In language modeling, however, label smoothing tech-
niques have not been widely explored. Rosenfeld (1996) ap-
plied the maximum entropy principle to train n-gram lan-
guage models. Recently, Pereyra et al (2017) uses the same
principle to penalize overconfident predictions of RNNLMs.
They minimize KL-divergence from the uniform distribu-
tion to the model output distribution: DKL(Pθ||u). Extend-
ing the previous work, we explore two different non-uniform
reference distributions, and introduce a substantially more
powerful context-dependent label smoothing technique. La-
bel smoothing can be seen as a static KL regularizer, and we
show how our novel dynamic KL regularization performs
better than static approaches on our tasks.

Improving the overall quality of the generated text from
RNNLMs has been a popular direction in recent research.
A general approach is to solve the exposure bias by let-
ting the models consume some of its own output predictions
during training. This includes scheduled sampling (Bengio
et al. 2015) and beam-search optimization (Wiseman and
Rush 2016). Many works apply the REINFORCE algorithm
(Williams 1992) to directly optimize a sequence-level score,
which is often the final evaluation metric such as BLEU or
ROUGE score (Ranzato et al. 2015; Bahdanau et al. 2016;
Rennie et al. 2017; Paulus, Xiong, and Socher 2017). While
BLEU and ROUGE score use n-gram matching similar to
our proposed regularization with n-gram constraints (i.e. bi-
grams), they are locally defined per output sequence and
might not capture global statistics. In generative adver-
sarial network training, the score is the output prediction
of a synchronously trained discriminator (Yu et al. 2017;
Che et al. 2017). On the other hand, we use count-based
statistics which can be computed more efficiently. It is worth
noting that our dynamic KL regularization can be used
alongside these approaches.

Conclusion
We investigated how to train RNNLMs to follow a set of soft
constraints from a reference distribution. We presented dy-
namic KL regularization, which encourages an RNNLM to
match a reference distribution by adjusting the regularizer as
training proceeds, based on sampling the model’s generated
text. We experimented with two types of soft constraints,
one for repetition and the other for bigram distributions. Our
approach is shown to lower the mismatch in repetition fre-
quency between generated and reference text. This results
in a factor of four improvement in local repetition in a def-
inition modeling task. In addition, dynamic KL regulariza-
tion can utilize the bigram distribution from a large corpus
to decrease the perplexity of a language model trained on a
smaller corpus.

While we explore word-level soft constraints in this paper,
the approach is more broadly applicable. In future work we
would also like to incorporate higher-level constraints such
as syntactic or semantic information. Given the proper set of
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statistical constraints, dynamic KL regularization could be
used to encourage models to generate text with a particular
sentiment, writing style, reading level, and so on. Construct-
ing reference distributions suitable for applying dynamic KL
regularization to these other tasks is an item of future work.
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