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Abstract

We study response generation for open domain conversation
in chatbots. Existing methods assume that words in responses
are generated from an identical vocabulary regardless of their
inputs, which not only makes them vulnerable to generic
patterns and irrelevant noise, but also causes a high cost in
decoding. We propose a dynamic vocabulary sequence-to-
sequence (DVS2S) model which allows each input to possess
their own vocabulary in decoding. In training, vocabulary
construction and response generation are jointly learned by
maximizing a lower bound of the true objective with a Monte
Carlo sampling method. In inference, the model dynamically
allocates a small vocabulary for an input with the word pre-
diction model, and conducts decoding only with the small
vocabulary. Because of the dynamic vocabulary mechanism,
DVS2S eludes many generic patterns and irrelevant words in
generation, and enjoys efficient decoding at the same time.
Experimental results on both automatic metrics and human
annotations show that DVS2S can significantly outperform
state-of-the-art methods in terms of response quality, but only
requires 60% decoding time compared to the most efficient
baseline.

Introduction

Together with the rapid growth of social conversation data
on Internet, there has been a surge of interest on build-
ing chatbots for open domain conversation with data driven
approaches. Existing methods are either retrieval based
(Yan, Song, and Wu 2016; Wu et al. 2017) or generation
based (Vinyals and Le 2015; Ritter, Cherry, and Dolan 2011;
Shang, Lu, and Li 2015). Recently, generation based ap-
proaches are becoming popular in both academia and in-
dustry, and a common practice is to learn a response gen-
eration model within an encoder-decoder framework (a.k.a.,
a sequence-to-sequence model) from the large scale con-
versation data. The mainstream of implementation of the
encoder-decoder framework is using neural networks, be-
cause they are powerful on capturing complicated semantic
and syntactic relations between messages and responses and
are end-to-end learnable. On top of the architecture, vari-
ous models have been proposed to tackle the notorious “safe
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reply” problem (Xing et al. 2016; Li et al. 2015); to take
conversation history into consideration (Sordoni et al. 2015;
Serban et al. 2016; 2017); and to bias responses to some spe-
cific persona or emotions (Li et al. 2016a; Zhou et al. 2017).

Although existing work has made great progress on gen-
erating proper responses, they all assume a static vocabulary
in decoding, that is they use the same large set of words
to generate responses regardless of inputs. The assumption,
however, is a simplification of the real scenario, as proper
responses to a specific input (either a message or a conver-
sation context) could only relate to a small specific set of
words, and the sets of words could be different from in-
put to input. As a result, the assumption may cause some
problems in practice: (1) words that are semantically far
from the current conversation also take part in decoding.
These words may bias the process of generation and increase
the probability of irrelevant responses and generic responses
when some of them appear very frequently in the entire data
set; (2) the decoding process becomes unnecessarily slow,
because one has to estimate a probability distribution for
the entire static vocabulary in decoding of each word of
a response. More seriously, to suppress the irrelevant re-
sponses and the generic responses, state-of-the-art methods
have to either complicate their decoders (Xing et al. 2016;
Mou et al. 2016) or append a heavy post-processing proce-
dure after decoding (Li et al. 2015), which further deterio-
rates efficiency. These problems widely exist in the existing
methods, but have not drawn enough attention yet.

In this paper, we aim to achieve high quality response
generation and fast decoding at the same time. Our idea
is that we dynamically allocate a vocabulary for each in-
put at the decoding stage. The vocabulary is small as it
only covers words that are useful in forming relevant and
informative responses for the input and filters most irrele-
vant words out. Because response decoding of each input
only focuses on their own relevant words, the process can
be conducted efficiently without loss of response quality.
We formulate the idea as a dynamic vocabulary sequence-
to-sequence (DVS2S) model. The model defines a dynamic
vocabulary in decoding through a multivariate Bernoulli dis-
tribution (Dai et al. 2013) on the entire vocabulary and fac-
torizes the generation probability as the product of a vocab-
ulary generation probability conditioned on the input and a
response generation probability conditioned on both the in-
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put and the vocabulary. DVS2S follows the encoder-decoder
framework. In encoding, an input is transformed to a se-
quence of hidden vectors. In decoding, the model first esti-
mates the multivariate Bernoulli distribution using the hid-
den vectors given by the encoder, and then selects words
to form a vocabulary for the decoder according to the dis-
tribution. Responses are generated only using the selected
words. Vocabulary construction and response generation
are jointly learned from training data, and thus in parame-
ter learning errors in response prediction can be backprop-
agated to vocabulary formation and used to calibrate word
selection. In training, as target vocabularies can only be par-
tially observed from data, we treat them as a latent variable,
and optimize a lower bound of the true objective through a
Monte Carlo sampling method.

We conduct an empirical study using the data in (Xing
et al. 2016), and compare DVS2S with state-of-the-art gen-
eration methods using extensive automatic evaluation met-
rics and human judgment. In terms of automatic evaluation,
DVS2S achieves 3% gain on BLEU-1 and 5% gain on Em-
bedding Average (Liu et al. 2016) over the best perform-
ing baseline. On human evaluation, DVS2S significantly
outperforms the baseline methods, which is consistent with
the automatic evaluation results. Moreover, the model also
achieves 6% gain on the metric of distinct-1 over the best
baseline model, indicating that it can generate more infor-
mative and diverse responses. Upon the significant improve-
ment on response quality, DVS2S can save 40% decoding
time compared to the most efficient baseline in the same run-
ning environment.

Our contributions in the paper are three-folds: (1) pro-
posal of changing the static vocabulary mechanism to a dy-
namic vocabulary mechanism in the response generation for
chatbots; (2) proposal of a dynamic vocabulary sequence-to-
sequence model and derivation of a learning approach that
can jointly optimize word selection and response generation;
(3) empirical verification of the effectiveness and efficiency
of the proposed model on large scale conversation data.

Related Work
Recent years have witnessed remarkable success on open
domain response generation for chatbots. In a single-turn
scenario, Ritter (Ritter, Cherry, and Dolan 2011) formulated
response generation as a machine translation problem by re-
garding messages and responses as a source language and a
target language respectively. Due to the success on machine
translation, sequence-to-sequence (S2S) models (Bahdanau,
Cho, and Bengio 2014) have been widely used in response
generation recently. For instance, Vinyals et al. (Vinyals
and Le 2015) and Shang et al. (Shang, Lu, and Li 2015)
applied S2S with attention on this task. To address the “gen-
eral response” issue of the standard S2S, Li et al. (Li et
al. 2015) presented a maximum mutual information objec-
tive function, and Mou et al. (Mou et al. 2016) and Xing
et al. (Xing et al. 2016) incorporated external knowledge
into the S2S model. Shao et al. (Shao et al. 2017) pro-
posed a target attention neural conversation model to gener-
ate long and diverse responses. Reinforcement learning (Li
et al. 2016b) and adversarial learning (Li et al. 2017; Xu et

al. 2017) techniques have also been exploited to enhance the
existing models.In a multi-turn scenario, Sordoni et al. (Sor-
doni et al. 2015) compressed context information into a vec-
tor and injected the vector into response generation. Serban
et al. (Serban et al. 2016) adopted a hierarchical recurrent
structure to model multi-turn conversations. As an extension
of the model, latent variables were introduced to model the
“one-to-many” relation in conversation (Serban et al. 2017;
Zhao, Zhao, and Eskénazi ).

In this work, we focus on an important but less explored
problem: vocabulary selection in decoding. We propose
changing the widely used static vocabulary decoder in both
single-turn generation and multi-turn generation to a dy-
namic vocabulary decoder, and derive an approach to jointly
learn vocabulary construction and response generation from
data. The proposed method can improve response quality
and at the same time speed up decoding process.

Before us, some work in machine translation has al-
ready exploited dynamic vocabularies (L’Hostis, Grangier,
and Auli 2016; Jean et al. 2015; Mi, Wang, and Ittycheriah
2016). These work often treats vocabulary construction and
translation as two separate steps. The same practice, how-
ever, cannot be easily transplanted to conversation, as there
are no clear “one-to-one” translation relations in responding.
To maintain response quality while improve efficiency in
conversation, we propose joint learning of vocabulary con-
struction and response generation in order to let them super-
vise each other. As far as we know, we are the first who
explore the application of dynamic vocabularies in response
generation for open domain conversation.

Approach

Problem Formalization

Suppose that we have a data set D = {(Xi, Yi)}Ni=1, where
Yi is a response of an input Xi. Here Xi can be either a
message or a message with several previous turns as a con-
text. As the first step, we assume Xi a message in this
work, and leave the verification of the same technology to
context-based response generation as future work. ∀i, Xi

corresponds to a target vocabulary (i.e., vocabulary in de-
coding) Ti = (ti,1, . . . , ti,|V |) sampled from a multivariate
Bernoulli distribution (βi,1, . . . βi,|V |) where |V | is the size
of the entire vocabulary V and ti,j ∈ {0, 1}, ∀1 � j � |V |.
ti,j = 1 means that the j-th word wj in V is selected for
generating responses for Xi, otherwise the word will not be
used in generation. βi,j = p(ti,j = 1) is the probability
of the j-th word being selected which is parameterized by
a function f(Xi). Generation probability of Yi given Xi is
formulated as p(Yi|Xi) = p(Yi|Ti, Xi)p(Ti|Xi).

Our goal is to learn a word selection model f(X) (cor-
responds to p(T |X)) and a response generation model
g(X,T ) (corresponds to p(Y |T,X)) by maximizing log-
likelihood

∑N
i=1 log[p(Yi|Xi)] of D. Thus given a new

message X ′, we can estimate its target vocabulary T ′ with
f(X ′) and generate a response Y ′ using g(X ′, T ′). In the
following sections, we first introduce our DVS2S model (i.e.
g(X,T )) by assuming that T is obtained. Then we present
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Figure 1: Architecture of DVS2S. We translate a Chinese example into English and show the generation process of the word
“lab”. Words in blue squares refers to those chosen by the dynamic vocabulary otherwise they are in black squares.

how to sample T with the use of f(X). Finally, we show
how to jointly learn f(X) and g(X,T ) from D.

Dynamic Vocabulary Sequence-to-Sequence Model

Figure 1 illustrates the architecture of our dynamic vocabu-
lary sequence-to-sequence (DVS2S) model. DVS2S is built
in an encoder-decoder framework (Sutskever, Vinyals, and
Le 2014) with an attention mechanism (Bahdanau, Cho, and
Bengio 2014). For each input, it equips the decoder with
a specific vocabulary that consists of useful words sampled
from the entire vocabulary according to a distribution and
performs response generation with the vocabulary. Specif-
ically, given a message X = (x1, x2, . . . , xt) where xi is
the embedding of the i-th word, the encoder exploits a bidi-
rectional recurrent neural network with gated recurrent units
(biGRU) (Chung et al. 2014) to transform X into hidden
vectors h = (h1, h2, . . . , ht). A biGRU comprises a forward
GRU that reads a sentence in its order and a backward GRU
that reads the sentence in its reverse order. The forward GRU
encodes the sentence into hidden vectors (

−→
h 1, . . . ,

−→
h t) by

zi = σ(Wzxi + Uz
−→
h i−1), (1)

ri = σ(Wrxi + Ur
−→
h i−1),

h̃i = tanh(Whxi + Uh(ri �−→
h i−1)),−→

h i = zi � h̃i + (1− zi)�−→
h i−1,

where zi and ri are an update gate and a reset gate respec-
tively,

−→
h 0 = 0, and Wz , Wh, Wr, Uz , Ur,Uh are param-

eters. The backward hidden state
←−
h i is obtained similarly.

Then ∀i ∈ [1, t], hi is the concatenation of
−→
h i and

←−
h i.

The decoder takes h = (h1, h2, . . . , ht) as an input and
generates a response by a language model with an attention
mechanism. When generating the i-th word yi, the decoder
estimates a word distribution ŷi by

ŷi = l(yi−1, ci, h
′
i, T ), (2)

where ci is a context vector formed by the attention mech-
anism, h′

i is the i-th hidden state of the decoder, and yi−1

is the (i − 1)-th word of the response. Specifically, the de-
coder also exploits a GRU to encode yi−1 into h′

i whose
initial state is the last hidden vector of the encoder. ci is a
linear combination of {h1, . . . , ht} which is formulated as

ci =

t∑
j=1

αi,jhj , (3)

where αi,j is given by

αi,j =
exp(ei,j)∑t
k=1 exp(ei,k)

, (4)

ei,j = v�tanh(Wα[hj ;h
′
i]). (5)

Wα and v are parameters, and [·; ·] means concatenation of
the two arguments. l(yi−1, ci, h

′
i, T ) is a |T |-dimensional

probability distribution where |T | = ∑|V |
k=1 tk. ∀tk ∈ T , if

tk = 1, then the corresponding element in l(yi−1, ci, h
′
i, T )

is defined by

p(yi = wk) =
exp(s(wk))∑

tj∈T,tj=1 exp(s(wj))
, (6)

where s(wk) is given by

s(wk) = Wwk [yi−1;h
′
i−1; ci] + bwk , ∀tk ∈ T. (7)

Wwk
and bwk

are two parameters. Equation (6) and (7) are
called projection operation.

Time complexity of decoding of DVS2S is O(lenr ·
m · p + lenr · lenm · m2 + lenr · (m + p) · |T | + m ·
|V |) (GRU+attention+projection+vocabulary construction),
while time complexity of decoding of the existing methods
is at least O(lenr ·m·p+lenr ·lenm ·m2+lenr ·(m+p)·|V |)
(GRU+attention+projection), where lenr is the length of the
generated response, lenm is the length of the message, m
is the hidden state size of the decoder, and p is the embed-
ding size of target words. In practice, |V | is much larger
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than other parameters, so the cost of decoding in existing
methods is dominated by lenr · (m+p) · |V | (i.e., time com-
plexity of projection). DVS2S reduces it to lenr ·(m+p)·|T |
in Equation (6) and (7). Since lenr is usually much larger
than 1, lenr · (m + p) · |T | +m · |V | is much smaller than
lenr · (m+ p) · |V |. Therefore, DVS2S could enjoy a faster
decoding process than the existing methods (the conclusion
is also verified in experiments).

Dynamic Vocabulary Construction

In this section, we elaborate dynamic vocabulary construc-
tion for X . We define T = {wk ∈ V |tk ∈ T, tk = 1}
and I(w) the index of word w in V . T is equivalent to T .
Remember that T is a variable sampled from a multivari-
ate Bernoulli distribution which is a joint distribution of |V |
independent Bernoulli distributions. Each Bernoulli distri-
bution depicts the probability of a word w from V being se-
lected to T and is parameterized by βI(w). We make such an
assumption because there does not exist a clear “one-to-one”
relationship between words in a message and words in its
proper responses and we have to treat T as a latent variable
in training as useful words for forming a proper response to
a message can only be partially observed in training data.

T = T c ∪ T f where T c refers to content words and T f

refers to function words. Function words guarantee gram-
matical correctness and fluency of responses. Therefore,
there should not be a large variance on T f over difference
messages. We collect words appearing more than 10 times
in the training data, excluding nouns, verbs, adjectives and
adverbs from them, and use the remaining ones to form a
function word set V f of V . ∀w ∈ V f , we define βI(w) = 1.
Thus, T f = V f regardless of inputs. In other words, all
function words are always sampled in the construction of T .

Content words, on the other hand, express semantics of
responses, and thus should be highly related to the input
message. Let V c = V \ V f be the full content word set,
then ∀c ∈ V c, we parameterize βI(c) as

βI(c) = σ(W�
c ht + bc), (8)

where σ is a sigmoid function, ht is the last hidden state of
the encoder, and Wc and bc are parameters. In the construc-
tion of T , T c is sampled from V c based on {βI(c)|c ∈ V c}.

How to allocate a proper T to X is key to the success of
DVS2S. T should cover enough words that are necessary to
generate relevant, informative, and fluent responses for X ,
but cannot be too large for the sake of cost control in decod-
ing. To make sure that we can sample such a T with high
probability, we consider jointly learning vocabulary con-
struction and response generation from training data, as will
be seen in the next section.

Model Training

With a latent variable T , the objective of learning can be
written as

N∑
i=1

log(p(Yi|Xi)) =
N∑
i=1

log(
∑
Ti

p(Yi|Ti, Xi)p(Ti|Xi)).

(9)

Equation (9) is difficult to optimize as logarithm is outside
the summation. Hence, we instead maximize a variational
lower bound of

∑N
i=1 log[p(Yi|Xi)] which is given by

L =

N∑
i=1

∑
Ti

p(Ti|Xi) log p(Yi|Ti, Xi) (10)

=

N∑
i=1

∑
Ti

[ |V |∏
j=1

p(ti,j |Xi)

m∑
l=1

log p(yi,l|yi,<l, Ti, Xi)
]

≤
N∑
i=1

log(
∑
Ti

p(Yi|Ti, Xi)p(Ti|Xi))

=

N∑
i=1

log[p(Yi|Xi)]

Let Θ represent the parameters of L and ∂Li(Θ)
∂Θ be the gradi-

ent of L on an example Xi ∈ D, then ∂Li(Θ)
∂Θ can be written

as
∑
Ti

p(Ti|Xi)
[∂logp(Yi|Ti, Xi)

∂Θ
+ log(Yi|Ti, Xi)

∂logp(Ti|Xi)

∂Θ

]

(11)
Enumerating all 2|V | samples of Ti in Equation (11) is in-
tractable. Therefore, we employ the Monte Carlo sampling
technique to approximate ∂Li(Θ)

∂Θ . Suppose that we have S
samples, then the approximation of the gradient can be writ-
ten as

1

S

S∑
s=1

[∂logp(Yi|T̃i,s, Xi)

∂Θ
+ log(Yi|T̃i,s, Xi)

∂logp(T̃i,s|Xi)

∂Θ

]
,

(12)
where T̃i,s ∼ a multivariate Bernoulli distribution({βi}|V |).
To reduce variance, we normalize the gradient with the
length of the response and introduce a moving average
baseline bk to the gradient (Weaver and Tao 2001):

∂Li(Θ)

∂Θ
≈ 1

S

S∑
s=1

[∂logp(Yi|T̃i,s, Xi)

∂Θ

+ ((
1

m

m∑
j=1

logp(yi,j |yi,<j , |T̃i,s, Xi)− bk)
∂logp(T̃i,s|Xi)

∂Θ

]
,

(13)
where bk is the baseline after k-th mini-batch, and bk is up-
dated using the following equation:

bk+1 = 0.9bk+
0.1

mS

∑
Yi∈batch k

S∑
s=1

m∑
j=1

log[p(yi,j |yi,<j , T̃is, Xi)].

(14)
We summarize our training algorithm in Algorithm 1

where we initialize Θ by pre-training an S2S model and
a word prediction model to facilitate convergence and use
a mini-batch training strategy to update it and the baseline
{bk}. We employ AdaDelta algorithm (Zeiler 2012) to train
our model with a batch size 64. We set the initial learning
rate as 1.0 and reduce it by half if perplexity on validation
begins to increase. We will stop training if the perplexity on
validation keeps increasing in two successive epochs. One

5597



Algorithm 1: Optimization Algorithm
Input: D, V , initial learning rate lr, MaxEpoch
Init: Θ

Pretrain a Seq2Seq model with D.
Fix the encoder, and pre-train {Wc, bc} in Equation (8)

by maximizing
∑N

i=1

∑|V |
j=1 log[p(ti,j |Xi)]

while e < MaxEpoch and perplexity does not increase in 2
successive epchos do

foreach mini-batch k do

Compute the sampling probability {βi}|V | with
Equation (8)

for s < S do
Sample a
T̃s ∼ multivariate Bernoulli({βi}|V |)

Compute loss according to Equation (10)
Compute gradient according to Equation (13)

end
Update bk according to Equation (14)
Update parameter Θ with AdaDelta algorithm

end
if perplexity increases then

lr = lr/2
end

end
Output: Θ

advantage of joint learning is that errors in response predic-
tion in training can be backpropagated to vocabulary con-
struction and signals from response can help calibrate word
selection. Therefore, the learning approach can mitigate dis-
crepancy between training and inference in practice. It is
easy to extend DVS2S to handle multi-turn response gener-
ation by replacing its encoder with one that can model con-
texts (e.g., the one in (Serban et al. 2016)), and model learn-
ing can also be enhanced using techniques like adversarial
learning (Li et al. 2017) and reinforcement learning (Li et
al. 2016b) by re-defining the objective function in (10).

Experiment

We compare DVS2S with state-of-the-art response genera-
tion models in terms of both efficacy and efficiency.

Experiment Setup

We use the data in (Xing et al. 2016) which consists of
message-response pairs crawled from Baidu Tieba1. Mes-
sages and responses are tokenized by Standford Chinese
word segmenter. There are 5 million pairs in the training
set, 10, 000 pairs in the validation set, and 1, 000 pairs in
the test set. Messages in the test data are used to gener-
ate responses, and responses in the test data are treated as
ground truth to calculate automatic evaluation metrics. Both
the message vocabulary and the response vocabulary contain
30, 000 words that cover 98.8% and 98.3% of words appear-
ing in the messages and in the responses respectively in the
training data. In this work, we take the response vocabulary
in the data as the entire vocabulary for decoding (i.e., V ).

1https://tieba.baidu.com/

We implement our model using Theano (Theano Devel-
opment Team 2016). In our model, we set the word embed-
ding size as 620 and the hidden vector size as 1024 in both
encoding and decoding. In the Monte Carlo sampling, we
set the number of samples S as 5. We follow the method
described in the dynamic vocabulary construction section to
construct target vocabularies. There are 701 function words.
In test, we rank content words according to {βi} and se-
lect top 1, 000 words to form a target vocabulary for a mes-
sage with the function words. This is equivalent to sampling
many times and selecting top 1, 000 words according to their
frequency in the union of all samples. The strategy does not
change the time complexity of decoding and could reduce
variance of the model in inference. We set the beam size as
20 and use the top one response from beam search in evalu-
ation.

Evaluation Metrics

we evaluate the performance of different models with the
following metrics:

Word overlap based metrics2: following previous work
(Li et al. 2015; Tian et al. 2017), we employ BLEU-1,
BLEU-2, and BLEU-3 as evaluation metrics.

Embedding based metrics: following (Serban et al.
2016; Zhao, Zhao, and Eskénazi ), we employ Embedding
Average (Average), Embedding Extrema (Extrema), and
Embedding Greedy (Greedy) as evaluation metrics. These
metrics are based on word embeddings, and they can mea-
sure relevance of a response regarding to a message when
there is little word overlap between them. According to Liu
et al. (Liu et al. 2016), these metrics have higher correlation
with human judgment than BLEUs. We obtain word embed-
dings by running a public word2vec tool3 on the 5 million
training data. The embedding size is set as 200.

Distinct-1 & distinct-2: following (Li et al. 2015; Xing
et al. 2016), we calculate the ratios of distinct unigrams and
bigrams in generated responses, and use the metrics to mea-
sure how diverse and informative the responses are.

3-scale human annotation: in addition to the automatic
metrics, we recruit three human annotators with rich Tieba
experience to judge the quality of the generated responses.
Responses from different models are pooled and randomly
shuffled for each annotator. Each response is rated by the
three annotators under the following criteria: +2: the re-
sponse is not only relevant and natural, but also informative
and interesting; +1: the response can be used as a reply to
the message, but might not be informative enough (e.g., Yes,
I see , Me too, and I dont know); 0: The response makes no
sense, irrelevant, or grammatically broken.

Comparison Methods

S2SA: the standard S2S model with an attention mechanism
(Vinyals and Le 2015). We use the implementation with
Blocks https://github.com/mila-udem/blocks.

2As our model makes prediction on a small vocabulary, per-
plexity is not a proper metric for evaluation.

3https://code.google.com/archive/p/word2vec/
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Table 1: Automatic evaluation results. Numbers in bold mean that improvement from the model on that metric is statistically
significant over the baseline methods (t-test, p-value < 0.01).

BLEU-1 BLEU-2 BLEU-3 Average Extrema Greedy Distinct-1 Distinct-2
S2SA 4.96 1.96 0.81 25.32 11.70 24.73 0.091 0.207
S2SA-MMI 5.82 1.47 0.70 27.16 14.96 25.89 0.151 0.378
TAS2S 6.26 2.11 0.98 27.92 15.86 26.29 0.161 0.401
CVAE 6.33 1.86 0.55 28.92 15.01 26.13 0.143 0.346
S-DVS2S 8.01 2.94 0.93 32.41 20.15 29.89 0.221 0.601
DVS2S 9.89 3.51 1.33 34.05 22.72 31.61 0.233 0.632

S2SA-MMI: the model proposed by Li et al. (Li et al.
2015). We implement this baseline by the code published
by the authors at https://github.com/jiweil/Neural-Dialogue-
Generation.

TA-S2S: the topic-aware sequence-to-sequence model
proposed in (Xing et al. 2016). We implement this base-
line by the code published by the authors at https://github.
com/LynetteXing1991/TAJA-Seq2Seq.

CVAE: recent work for response generation with a con-
ditional variational auto-encoder (Zhao, Zhao, and Eskénazi
). We use the published code at https://github.com/snakeztc/
NeuralDialog-CVAE

In all the baseline models, we set the parameters as sug-
gested by the existing papers. In addition to these methods,
we also compare DVS2S with a simple version of the model.
Following (Weng et al. 2017), we separately learn a gener-
ation model and a word prediction model for target vocabu-
lary construction. The procedure is the same as the parame-
ter initialization step in Algorithm 1. The model shares the
same embedding size, hidden vector size, target vocabulary
size, and the inference process with DVS2S, but differs from
DVS2S in that signals from response prediction in training
cannot be backpropagated to word prediction for vocabulary
construction. We denote the model as S-DVS2S.

Evaluation Results

Table 1 shows the evaluation results on automatic metrics.
DVS2S and S-DVS2S significantly outperform the baseline
methods on most metrics, demonstrating the effectiveness
of the dynamic vocabulary mechanism on response genera-
tion for open domain dialogues. DVS2S also significantly
improves upon S-DVS2S on metrics except BLEU-2 and
BLEU-3. The results verify the advantage of joint learning
of vocabulary and generation. DVS2S is better than all base-
line methods on distinct-1 and distinct-2, indicating that the
model can generate more diverse and informative responses.
This is because with the dynamic vocabulary mechanism,
the model can circumvent the influence from generic pat-
terns when frequent but irrelevant nouns, verbs, adjectives,
and adverbs are excluded from decoding, and pay more at-
tention to useful content words in decoding.

Table 2 reports human evaluation results. DVS2S gen-
erates much more informative and interesting responses (2
responses) and much less invalid responses (0 responses)
than the baseline methods. The results are consistent with
the automatic evaluation results. S-DVS2S is much worse
than DVS2S on 0 responses. This is because the gap be-
tween training and test in S-DVS2S leads to more grammat-

Table 2: Human evaluation results. The ratios are calculated
by combining the annotations from the three judges together.

0 1 2 Kappa
S2SA 0.321 0.564 0.115 0.43
S2SA-MMI 0.302 0.555 0.143 0.42
TAS2S 0.249 0.571 0.180 0.40
CVAE 0.252 0.563 0.185 0.41
S-DVS2S 0.232 0.484 0.284 0.38
DVS2S 0.094 0.581 0.325 0.45

ical broken and irrelevant responses. Fleiss’ Kappa (Fleiss
and Cohen 1973) on all models are around 0.4, indicating
relatively high agreement among labelers. We also conduct
a t-test between DVS2S and the baseline models and results
show that the improvement from our model is statistically
significant (p-value < 0.01).

In addition to response quality, we also compare DVS2S
with baselines on efficiency of decoding. We calculate the
average time per word in generating responses for the test
messages with a beam size 20. To make sure that the ef-
ficiency comparison is conducted under the setting with
which all baselines achieve their best performance on re-
sponse quality, we use the published codes and the param-
eters suggested by their papers. S2SA, TAS2S and DVS2S
are all implemented on top of Theano, so comparison among
them is fair. S2SA-MMI is implemented with Torch, and
CVAE is implemented with Tensorflow. Their efficiency
might be influenced by the implementation libraries, but
they are theoretically not faster than S2SA. We also show
their efficiency for reference. The efficiency comparison is
conducted on both a GPU environment with a single Tesla
K80 and a CPU environment with 6 Intel Xeon CPUs E5-
2690 @ 2.6GHz. Figure 3 gives the comparison results.
We can see that because of the small target vocabularies,
DVS2S can save 40% decoding time on both environments
compared to S2SA. TAS2S is better than S2SA on response
quality, but it sacrifices efficiency. From the comparisons on
both efficiency and efficacy, we can conclude that DVS2S
can achieve high quality response generation and fast de-
coding at the same time.

Discussions

Dynamic vocabulary coverage. The first problem we in-
vestigate is how many words from the ground truth re-
sponses (i.e., responses from human) in the test data are
covered by the vocabularies allocated by our algorithm in
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Figure 2: Case Study. We translate Chinese examples to English, and list top three content words according to βI(c).

Figure 3: Efficiency comparison

inference. We measure the coverage by this metric:

Recall =
1

Nt

Nt∑
i=1

|{w|w ∈ T i ∧ w ∈ Yi}|
|{w|w ∈ Yi}| , (15)

where Nt is the number of instances in the test set (i.e.,
1000), w represents a word, Yi is the ground truth response
in the i-th instance, T i is the target vocabulary predicted by
DVS2S, and | · | means the number of elements in a set.

Table 3: Ground truth word coverage.
N 0 100 1k 3k 5k 10k

Recall 63.02 72.25 79.54 85.21 88.39 92.60

Table 3 reports the metrics varying with respect to the
number of content words in the target vocabularies (note that
all vocabularies share the same function words). We can see
that when selecting top 1000 content words, the target vo-
cabularies on average can cover about 80% words appear-
ing in the ground truth responses, which is a good balance
between efficiency and efficacy. The numbers in the table
indicate that useful words can be accurately predicted by the
word selection model in DVS2S, and the learning approach
generalizes well on the test data. The results are also consis-
tent with the good performance of DVS2S on BLEUs.

Performance across different dynamic vocabulary
sizes. Next, we examine how the performance of DVS2S
changes with respect to the size of the target vocabular-
ies. We vary the number of content words selected from

the entire vocabulary according to {βi} in a range of
{0, 100, 1000, 3000, 5000, 10000}, and then check how the
embedding based metrics change on the test data. Table 4
shows the results. The results are consistent with our intu-
ition: we may lose important words for response generation
when the number of selected words is too small (e.g., less
than 100), but we cannot let the target vocabulary become
too large either (e.g., larger than 1000) because that may
involve many irrelevant words into generation. 1000 is the
best choice as the performance of the model reaches its peak.

Table 4: Performance in terms of content word number.
N 0 100 1k 3k 5k 10k

Average 23.43 33.87 34.05 29.56 27.63 26.30
Greedy 23.20 30.76 31.61 28.91 27.32 25.29
Extrema 10.20 22.51 22.72 16.89 14.32 12.34

Case study. Finally, we qualitatively analyze DVS2S
with some examples from the test data given in Figure 2.
In each example, we also list the top three content words
according to the estimated multivariate Bernoulli distribu-
tion under the response of our model. Because our model
can focus on high quality content words given by the word
prediction module in decoding, it can avoid safe responses
(e.g., Case 3) and promote responses that are more informa-
tive (e.g., Case 1) and more relevant (e.g., Case 2) to top
position in beam search of decoding.

Conclusion and Future Work

We consider dynamically allocating a vocabulary to an in-
put in the decoding stage for response generation in open
domain conversation. To this end, we propose a dynamic vo-
cabulary sequence-to-sequence model, and derive a learning
approach that can jointly optimize vocabulary construction
and response generation through a Monte Carlo sampling
method. Experimental results on large scale conversation
data show that DVS2S can significantly outperform state-
of-the-art methods in terms of response quality and at the
same time accelerate the decoding process.
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