
FEEL: Featured Event Embedding Learning

I-Ta Lee, Dan Goldwasser
Purdue University

{lee2226, dgoldwas}@purdue.edu

Abstract

Statistical script learning is an effective way to acquire world
knowledge which can be used for commonsense reasoning.
Statistical script learning induces this knowledge by observ-
ing event sequences generated from texts. The learned model
thus can predict subsequent events, given earlier events. Re-
cent approaches rely on learning event embeddings which
capture script knowledge. In this work, we suggest a gen-
eral learning model–Featured Event Embedding Learning
(FEEL)–for injecting event embeddings with fine grained in-
formation. In addition to capturing the dependencies between
subsequent events, our model can take into account higher
level abstractions of the input event which help the model
generalize better and account for the global context in which
the event appears. We evaluated our model over three narra-
tive cloze tasks, and showed that our model is competitive
with the most recent state-of-the-art. We also show that our
resulting embedding can be used as a strong representation
for advanced semantic tasks such as discourse parsing and
sentence semantic relatedness.

Introduction

Many natural language understanding tasks rely on world
knowledge. Such knowledge can help support common
sense reasoning and provide the context needed for dis-
ambiguating text. Scripts, introduced by Schank and Abel-
son (1977), are structured knowledge representations captur-
ing the relationships between prototypical event sequences
and their participants. Scripts model our expectations about
the relevant causal relationships between events, and as a re-
sult can be used to infer how events will unfold in a given
scenario. For example, given the event John shot Jim with
a gun, we can infer that he was arrested by the police is
more probable than he fell asleep. Scripts provide the foun-
dation for automatically making such inferences, support-
ing semantic tasks such as coreference resolution, discourse
parsing and question answering.

As the example above suggests, predicting “what happens
next?”, also known as the Narrative Cloze (NC) task (Cham-
bers and Jurafsky 2008; Granroth-Wilding and Clark 2016),
is the preferred way of evaluating such models. In this pa-
per, we propose a generalization of this task highlighting
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the importance of evaluating inferences over chains of fu-
ture events. We look into two variants of this task, the first
predicts future events, and the second predicts an explana-
tion, connecting the beginning and ending of a longer narra-
tive chain. The following example is a simplified version of
these tasks.

Narrative Cloze
Jenny went to a restaurant and ordered a lasagna plate.
Jenny liked the food and felt satisfied.

Which of the following events could happen next?

a) She scolded the server.

b) She fell asleep.

c) She left a big tip.

d) She ran out of battery.

Narrative Explanation
Jenny went to a restaurant and left a big tip.

Which of the following event chains explain what
happened?

a) She ordered her food and liked it.

b) She hated the food and left angry.

c) She walked to a bus station and got on a bus.

Humans can easily identify that c) and a) are the correct
answers. However, automating this process requires under-
standing the events, their properties and their implications.

While early works focused on manual construction of
script knowledge, the difficulty of scaling these methods to
realistic domains has ignited considerable interest in statis-
tical script learning methods (Chambers and Jurafsky 2008;
Modi and Titov 2014; Rudinger et al. 2015; Pichotta and
Mooney 2016b; Peng and Roth 2016; Granroth-Wilding and
Clark 2016; Modi et al. 2017).

We build on the previous work (Chambers and Juraf-
sky 2008) which used pairs of event predicates and depen-
dency information (corresponding to the subject/object de-
pendency links) to represent events and formed event chains
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based on coreference relationships between these pairs.
Their model assumed a discrete event representation, and
computed the Pairwise Mutual Information (PMI) between
event pairs, in order to support inference tasks. Following
the surge of interest in distributed representations of discrete
objects (Mikolov et al. 2013), most recent approaches repre-
sent events using dense continuous vectors, known as event
embeddings. For example, Pichotta and Mooney (2016a)
and Granroth-Wilding and Clark (2016) both proposed a
neural network model that composes event embeddings with
their predicate, dependency, and argument information (sub-
ject, object, and prepositional object), either using a feed-
forward architecture defined over pairs of events, or using a
Recurrent architecture (in this case an LSTM) to capture the
dependencies between longer sequences of events.

In this paper we contribute to this body of work, and in-
troduce FEEL—Featured Event Embedding Learning. Our
model is designed to capture fine-grained event properties,
that can be exploited to reduce ambiguity when inferring fu-
ture events. For example, the sentiment polarity of a given
event (e.g., “Jenny liked the food” implies positive senti-
ment), can impact the probability of future events (e.g., the
probability of negative-sentiment events, such as a), should
decrease). The animacy of the event’s arguments can also
provide valuable information, as some actions can only be
performed by living entities, and some events change mean-
ing when taking inanimate objects as arguments (e.g., “this
song is sick!” vs. “this person is sick!”). In our example
above, option d) can be ruled out based on this information.

We focused on these two features, as they provide a use-
ful abstraction, of the specific event (sentiment) or specific
argument (animacy). However, there are many other event
properties useful for language understanding. Our goal is to
provide a general framework for including such information.
Specifically, our model makes three contributions.

(1) Novel Neural Architecture for Event Learning We sug-
gest to set up learning for event embeddings as multi-task
representation learning. The joint objective combines both
intra-event learning objectives (e.g., representing prototypi-
cal connections between arguments and predicates, such as
policeman and arrest), and an inter-event objective which
captures prototypical connections between events.

(2) Features Enriched Event Embedding Our architecture
provides a highly flexible framework for injecting world
knowledge and relevant contextual information needed to
accurately represent events. This information is injected into
the embedding learning step, resulting in a richer event rep-
resentation. We specifically looked into higher level abstrac-
tions of events—the overall sentiment of the event and ani-
macy information of the event arguments.

(3) Structured Event Chain Evaluation We evaluated our
model in several settings, using both intrinsic and extrin-
sic tasks. We followed the evaluation settings created by
Granroth-Wilding and Clark (2016), and showed that us-
ing the same resources, our architecture leads to improved
performance. Our feature-enriched model resulted in further
improvement. Since looking at single-event transitions can
fall short of evaluating full scripts, we also defined two ad-
ditional narrative inference tasks over event sequences. Fi-

nally, we evaluated our model by using the generated repre-
sentation as features for two semantic prediction tasks.

Related Work

Early works conducted in the 1970s defined a script as a
sequence of structured events organized in temporal order
(Schank and Abelson 1977). While these early works pro-
vided the core concepts of script knowledge, the manual
methods employed were difficult to scale to complex do-
mains. Interest in script learning was revived by Cham-
bers and Jurafsky (2008; 2009)’s work, which introduced
a statistical approach to obtaining script knowledge. They
proposed an unsupervised framework to model event se-
quences. Building on the outputs of a coreference resolution
system and a dependency parser, narrative event chains were
automatically extracted, by following mentions of an entity
through the narrative text. The relationship between events
was computed using the PMI score. The model’s ability to
capture commonsense knowledge was evaluated using the
NC task, in which one event is removed from the event chain
and the model is evaluated by ranking all candidate events.

Despite the popularity of the NC test (Pichotta and
Mooney 2016b; 2016a; Peng and Roth 2016; Wang, Zhang,
and Chang 2017), it raises several difficulties. First, there is
no standard dataset, making the comparisons between differ-
ent models much harder. Second, for any given event there
are multiple plausible choices for subsequent events. Eval-
uating based on a specific one is somewhat arbitrary. Pi-
chotta and Mooney (2016a) used human evaluation to de-
termine the chosen candidate plausibility. While providing
good intuition, it is difficult to do at scale. Third, the ex-
tremely large vocabulary size leads to computational issues.
Early works (Jans et al. 2012; Chambers and Jurafsky 2008;
2009) represent events as simple (predicate, dependency)
pairs, resulting in a relatively manageable event vocabu-
lary size. More recent works (Granroth-Wilding and Clark
2016; Pichotta and Mooney 2014; 2016a; Wang, Zhang,
and Chang 2017) explore rich representation over multi-
argument events, which increase the vocabulary size by or-
ders of magnitude, leading to computational issues. Previous
work (Pichotta and Mooney 2016a) addressed this problem
by significantly reducing the vocabulary at test time.

The NC task was refined by Granroth-Wilding and
Clark (2016) to include a closed set of options for re-
placing the missing event. The multiple-choice variant is
a better fit for evaluating multi-argument events as it tests
the quality of the model’s commonsense judgments with-
out searching the entire event vocabulary. Indeed, many
recently proposed tasks evaluating script knowledge have
followed this approach, and use multiple-choice evalua-
tion. For instance, Story Cloze (Mostafazadeh et al. 2017;
Chaturvedi, Peng, and Roth 2017), a multiple-choice eval-
uation over possible story endings, and SemEval-18 Task
111, which looks at multiple-choice evaluation based on
commonsense script knowledge inferences. While relevant,
these tasks do not directly evaluate the learned model qual-
ity, leading to our evaluation task decision.

1http://alt.qcri.org/semeval2018/
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In this paper, we re-create Granroth-Wilding and
Clark (2016)’s settings, but also introduce two additional
intrinsic evaluation tasks—Multiple-Choice Narrative Se-
quence (MCNS) and Multiple-Choice Narrative Explanation
(MCNE). These tasks were designed to evaluate the model’s
ability to infer longer events sequences, which better ac-
count for narrative structures. This approach joins other re-
cent attempts to include reasoning over narrative structures
as part of script knowledge evaluation (Modi et al. 2017).

Multiple neural-network based methods were proposed
to improve the quality of the commonsense event patterns
captured by the model. These works suggest replacing the
symbolic event representation used by Chambers and Ju-
rafsky (2008) with a dense vector representation. Granroth-
Wilding and Clark (2016) applied Word2Vec (Mikolov et
al. 2013) and a compositional neural network to learn event
embeddings on narrative event chains, where each event to-
ken in the chain is either a predicate word or an argument
word. Pichotta and Mooney (2016a) proposed a Long Short
Term Memory Recurrent Neural Networks (LSTM-RNN),
coupled with Beam Search algorithm, which conditions the
event representation on longer sequences of previous events.

The fact that argument information is very useful for im-
proving the learned event embedding was implicitly cap-
tured in these works. Some other works (Ahrendt and Dem-
berg 2016) explicitly identified this fact. Following this in-
tuition, we suggest that representing richer event properties,
such as arguments, sentiment, animacy, or even event time
and location information, can potentially improve the event
representation. These act as event modifiers and should be
considered by script learning models. The multi-task ap-
proach to learning embedding models has been previously
explored when constructing social embeddings (Li, Ritter,
and Jurafsky 2015), where the authors learned embeddings
for users co-located in a network graph with their proper-
ties. FEEL follows this direction and develops such exten-
sions for general statistical script learning, which can take
rich event properties into consideration.

Model

Model Overview

From a high-level perspective, learning for narrative event
models can be broken down into two phases.

First, large amounts of narrative text are preprocessed
and event chains are extracted. Early systems (Chambers
and Jurafsky 2008) used a dependency parser (for con-
necting verbs and their typed arguments, resulting in a
(predicate, dependency type) event representation) and a
coreference resolution system (for forming chains with the
same protagonist). For example, “Jessie killed a man. She
was arrested.” has an event chain (kill, subj), (arrest, obj)
for the protagonist Jessie. Later systems (Granroth-Wilding
and Clark 2016; Pichotta and Mooney 2016a) included the
argument words, as well as prepositional phrases. Second,
these chains are used for training statistical script mod-
els. Initially this is done by computing the PMI between
events (Chambers and Jurafsky 2008) to capture event co-
occurrence statistics. Later systems constructed event em-

beddings, connecting event tokens with their argument in-
formation to form the event representation.

FEEL follows this setup, but also adds an event property
extraction step in between, which helps inform the training
process. In the following subsections we describe the three
phases in FEEL: (1) Narrative Event Chain Extraction, (2)
Event Property Extraction, and (3) Model Training.

Narrative Event Chain Extraction

We first preprocess the text using Stanford CoreNLP (Man-
ning et al. 2014), extracting dependency parses and coref-
erence chains. We follow the coreference chains to form
the event chains, by associating each entity mention in the
chain with an event defined as a tuple (tok(e), subj(e), obj(e),
prep(e)), where tok(e) = (predicate, dependency type) is a
token generated by concatenating the predicate and its de-
pendency relation to the protagonist of the event e; subj(e),
obj(e), prep(e) are the subject word, object word, preposi-
tional object word respectively of the event e.

All the words are in lower-case and lemmatized, and we
represent multi-word noun phrases, using their head word.
For the running example given in Introduction, the chain as-
sociated with Jenny in the sentence “Jenny went to a restau-
rant and ordered a lasagna plate”, will be ((go, subj), jenny,
NONE, restaurant), ((order, subj), jenny, plate, NONE).

Several additional detailed processes are listed below:
• Predicates are not limited to verbs, and include predica-

tive adjectives, which can provide important causal infor-
mation. For example, Jame was hungry. He ate a burger.

• Verbs such as go, have and get, are too weak to express nu-
anced event semantics. We address this issue by including
their particles and clausal complements (xcomp) in the
predicate representation. For example, go to sleep will be
represented as one token go to sleep.

• We include negations in the predicate, e.g., didn’t enjoy
hiking is represented as not enjoy hike.

• The possible dependencies of d(e) are limited to subject,
object, and indirect object.

• We filter out high-frequency and low-frequency events
empirically by removing the 10 most frequent events and
the events that appear less frequently than a threshold t,
where t = 50 in our case.

Event Property Extraction

FEEL provides a general framework for including event
properties into its representation. Our first step is to include
the argument information as a type of event properties; how-
ever, the true strength of the model is in modeling higher
level abstractions of events. In this work we focused on two
abstractive properties: sentiment, which captures the overall
tone surrounding the event, and argument animacy informa-
tion, which can help identify nuanced language use, such
as idiomatic expressions. The motivation for putting senti-
ment and animacy in the same model is that both provide an
abstraction, of the specific event (in the case of sentiment)
or specific argument (animacy). The contribution of the dif-
ferent properties depends on the specific task. We designed
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Embeddings

tok(e1) sub(e1) obj(e1) prep(e1) f1(e1) fn(e1)

…

Events

Intra-Event 
Objectives

tok(e2)) sub(e2) obj(e2) prep(e2) f1(e2) fn(e2)

…

Inter-Event 
Objective

P(fn(e2) | tok(e2))P(sub(e2) | tok(e2)) …

P(tok(e1) | tok(e2))

Figure 1: FEEL Model Objectives

our framework to incorporate additional properties allowing
users to adapt their embedding to their specific task.

To incorporate sentence-level sentiment information, we
use Vader sentiment analyzer (Hutto and Gilbert 2014) from
NLTK (Bird, Klein, and Loper 2009). The raw sentiment
scores range from -1 (negative) to 1 (positive). We discretize
the scores into sentiment labels–Negative, Neutral, and Pos-
sitive–by setting up two thresholds on -0.5 and 0.5. Animacy
information is added by observing the animacy of the argu-
ment associated with the event token. There are three possi-
ble animacy types: Animate, Inanimate, or Unknown.

When adding the two event properties, the event 4-tuple is
re-written as a 6-tuple (tok(e), subj(e), obj(e), prep(e), f1(e),
f2(e)), where f1(.) and f2(.) refer to the sentiment and ani-
macy extractors respectively.

Model Training

As illustrated in Figure 1, FEEL uses a hierarchical multi-
task model for constructing the event representation, jointly
learning for an inter-event (contextual) objective and several
intra-event (local) objectives.

On one hand, the inter-event objective, defined over
two events e1 and e2, captures the dependencies be-
tween subsequent events in a given narrative. In our run-
ning example, this objective can capture the relation-
ship between the event ((go, subj), jenny, NONE, restau-
rant, NEUTRAL, ANIMATE) and the event ((order, subj),
jenny, plate, NONE, NEURTRAL, ANIMATE) for the pro-
tagonist Jenny. On the other hand, the intra-event ob-
jectives are defined over the event properties, namely
tok(e), sub(e), obj(e), prep(e), f1(e), and f2(e), for the
event e. Each will learn an embedding, represented in the
embedding layer of Figure 1. This formulation allows the
different properties and the event token to share information.
Lastly, combining the inter-event and intra-event objectives
forms the FEEL global objective function.

For the inter-event objective, we use the Skip-gram model
(Mikolov et al. 2013), defined as follows:

p(C(e)|e) =
∏

e′∈C(e)

p(e′|e)

=
∏

e′∈C(e)

exp(ve′ · ve)∑
e∗∈E exp(ve∗ · ve) , (1)

where e is the current event; C(e) is the context event set
in a pre-defined window size k; E is the event vocabulary;
and ve is the vector representation of the event e. This can
be learned by minimizing the margin-based ranking loss:

LC(e) =
∑

e′∈C(e)

∑

e∗ /∈C(e)

max(0, δ − ve · ve′ + ve · ve∗),

(2)

where δ is the margin; (e, e′) is a positive event pair; e∗ is the
negative example sampled from the noise distribution, form-
ing the negative pair (e, e∗). The Negative Sampling strategy
(Mikolov et al. 2013) is used here. In our experiment, we use
the uniform noise distribution over the event vocabulary, and
set the window size k = 5 and the negative ratio r = 10.

The intra-event objectives model local information for
each event independently. Each property is trained with the
base event token tok(e), which biases the learned embed-
dings to become more similar if the property tends to occur
together with the token. The loss function is the same as the
Equation (2), but, instead, takes the e′ as the positive event
property and the e∗ as the sampled negative property.

FEEL jointly learns for all the objectives by taking a
weighted summary:

L(e) =
∑

i∈{C,S,O,P,T,A}
λiLi(e) + λr‖w‖2, (3)

where LC(e) means the inter-event (context) objective of
the event e; LS(e), LO(e) and LP (e) refer to the intra-event
objectives between the e and its subject, object and prepo-
sitional object, respectively; LT (e) refers to the local objec-
tive between the e and the sentence-level sentiment; LA(e)
refers to the local objective between the e and the entity an-
imacy; λi is the weight for the objective Li(e); λr is the
weight for the regularization term ‖.‖ and w refers to all the
trainable parameters2.

Experiments

We train the event embedding model over the New York
Times (NYT) section of the English Gigaword (Parker et al.
2011). It contains about 2M documents of newswire texts
and about 1.4M words. We replicate the experimental set
up described in the previous work (Granroth-Wilding and

2For simplicity, λi and λr are fixed to 1 in this paper.
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Clark 2016), splitting the data into training/dev/testing sets
accordingly. For FEEL, we use a 300-dimensional space to
embed each property. Our full model (which includes the
event token, subject, object, prepositional object, sentiment,
and animacy) represents each event with the concatenation
of all its property embeddings, which is 1800-dimensional.

The FEEL embeddings are evaluated over three intrin-
sic tasks: (1) Multiple-Choice Narrative Cloze (MCNC),
(2) Multiple-Choice Narrative Sequences (MCNS), and (3)
Multiple-Choice Narrative Explanation (MCNE); and two
extrinsic tasks: (1) Semantic Relatedness on Sentences In-
volving Compositional Knowledge (SICK), and (2) Implicit
Discourse Sense Classification (IDSC).

Multiple-Choice Narrative Event Cloze (MCNC)

MCNC task is a multiple-choice variant of the NC task,
which addresses the issues incurred by the evolution of
multi-argument events, as described in Related Work. We
follow the evaluation settings proposed in the previous work
(Granroth-Wilding and Clark 2016), which randomly sam-
pled four extra choices from the vocabulary (the random
guess baseline will have a 20% accuracy).

Accuracy MRR
Granroth-Wilding et al., 2016 0.4957 -
Wang et al., 2017 0.5512 -
PredDep 0.4232 0.6271
PredDep+Args 0.5135 0.6827
PredDep+Args+S 0.5166 0.6844
PredDep+Args+A 0.5503 0.7096

PredDep+Args+S+A 0.5418 0.7031

Table 1: The results of multiple-choice narrative cloze test.
Accuracy and Mean Reciprocal Rank (MRR) scores are both
reported. PredDep, Args, S, A respectively mean that the
event token, argument, sentiment, and animacy properties
are included in the training.

Table 1 shows the accuracy and Mean Reciprocal Rank
(MRR) scores of our model over the test data. The first row
lists the best score reported in the previous work (Granroth-
Wilding and Clark 2016). The results obtained by Wang,
Zhang, and Chang (2017) are reported in the second row.
This very recent model exploits information about longer
events chains using an LSTM. This approach follows a dif-
ferent intuition than ours, and we hypothesize that combin-
ing the two methods would result in an even better model.
The rest of the table describe the results obtained by the
variants of our model. PredDep is trained with the con-
text (inter-event) objective only; the PredDep+Args model
includes the arguments (subject, object, prepositional ob-
jects) in the objective; the PredDep+Args+S and Pred-
Dep+Args+A models include the sentence-level sentiment
information and protagonist’s animacy respectively; and the
PredDep+Args+S+A model contains all the information
mentioned.

The results show that PredDep performs worse than
Granroth-Wilding et al., 2016. This is not surprising as

it does not model the event argument information. When
this information is used (PredDep+Args), our model out-
performs Granroth-Wilding et al.’s model. Moreover, when
additional properties are used, our model’s performance is
improved, most significantly when using the animacy infor-
mation. Wang et al.’s work gives the competitive result to
FEEL by integrating event order information, which indi-
cates that there are many more event properties that could
be considered by FEEL.

Interestingly, the results show that including too many
properties might hurt performance, as illustrated in the last
row. The combination of sentiment and animacy informa-
tion tends to lead to lower performance. After doing error
analysis, we found that in MCNC task if the protagonist
is inanimate, usually the model will prefer selecting inan-
imate choices for other arguments as well (generally cor-
rect). However, when adding sentiment information, it will
prime the model to select animate options, as animate en-
tities are associated with sentiment more often. This tells
us that the two properties sometimes lead to conflicts when
making the decisions. Therefore, carefully choosing the ap-
propriate properties for the target application is important.

Multiple-Choice Narrative Sequences (MCNS)

MCNC evaluates the model’s ability to infer an event from
its context. A natural generalization of this task is to consider
inferences over longer sequences of events, as these can
better account for narrative structure, rather than pair-wise
event relationships. We propose a new evaluation task—
MCNS, and set it up by following these steps:

1. We sample n questions of length l from the MCNC.

2. We generated x choices for each event, except the first
event. Note the difference from the MCNC, as a multiple-
choice question is associated with each time stamp.

3. We modeled each event chain as a Markov Chain with l
time stamps and x+1 states at each time stamp, where the
first time stamp only contains the starting state. We used
an inference algorithm Viterbi (Viterbi 1967) to identify
the highest scoring event chain.

MCNS evaluates the model’s ability to make longer com-
monsense inference, instead of just predicting one event. In
this paper we used a simple inference algorithm (a sequence
model), but we consider incorporating advanced reasoning
algorithms as a very promising direction for future work. In
order to evaluate this approach, we used this algorithm over
all of our script models. We also replaced the inference al-
gorithm with a simple greedy baseline and perfect skyline.

• Baseline: No inference. Instead of Viterbi, for each time
stamp, greedily pick the best transition and move to the
next time stamp.

• Skyline: Break down a sequence of predictions into in-
dividual decisions, and give the correct previous state for
each decision.

We also included a strong baseline text similarity model.
The popular word embedding model—GloVe (Pennington,
Socher, and Manning 2014)—is used to score the transitions
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between events by computing the similarity between the av-
eraged vectors of the event words. The contribution of the
embedding generated by FEEL is observed by the perfor-
mance difference when these embeddings are concatenated
with the base GloVe event representation.

In this experiment, 1000 length-5 questions with 4 ex-
tra choices at each time stamp are sampled. Accuracy
is used as the evaluation metric. The three columns on
the left of Table 2 show the results, which indicate that
in all cases FEEL embeddings offer performance gains
when added to GloVe, even when only the event to-
ken information (PredDep) is provided. Both the senti-
ment and animacy property provide helps in this task.
The best model (GloVe+PredDep+Args+S) brings the per-
formance up to 0.416 from 0.332 using Viterbi. Similar
to the MCNC results, using all event properties jointly
(GloVe+PredDep+Args+S+A) does not improve perfor-
mance, because of the decision conflicts stated previously.

Multiple-Choice Narrative Explanation (MCNE)

We suggest an additional extension to the MCNC task. The
MCNE is also designed to evaluate reasoning over longer
event sequences, similarly to MCNS. However, instead of
just providing the initial event as input, in the MCNE task
both the starting and the ending events are provided, and the
prediction task is to infer what happened in between. Hu-
man commonsense can build an explanation that connects
the two points. For example, given a beginning “Jenny went
to a restaurant” and an ending “She felt satisfied”, can a hu-
man figure out what might happen in the restaurant? One
might guess that “she liked the food” is more likely than
“she waited for an hour”. MCNE provides a platform for
script models to demonstrate such deeper understanding of
world knowledge. The setup is exactly the same as MCNS,
except leaving for the prediction at the final time stamp that
is given as an input.

We use the same inference models as in MCNS. Note that
when calculating the accuracies we did not include the end-
ing state in both MCNS and MCNE, so the same baseline
and skyline used in MCNS are applicable for this task. The
right-most column of Table 2 summarizes the results.

We observe a very similar trend in the results to MCNS’s,
but with higher overall accuracies, since additional informa-
tion is provided to the model during inference. The results
also show our models’ ability to improve commonsense rea-
soning using inference. Similar to MCNS, both the senti-
ment and animacy information help inferences, while the
all-featured model results in a small performance drop. The
main reason for this is the same as before.

The results from MCNC, MCNS, and MCNE show that
each property (sentiment or animacy) individually con-
tributes more than the combination, and depending on the
task the contribution of each type of information varies.
For example, animacy makes the highest improvement in
MCNC, but the sentiment information helps more in MCNS
and MCNE for event sequences. This is because the senti-
ments have variable patterns along the sequences, while the
animacy of the protagonist is almost fixed along the chain.

Semantic Relatedness on Sentences Involving
Compositional Knowledge (SICK)

We also evaluate our embedding model as a feature repre-
sentation for the SICK task.

This dataset was used as the popular shared task in
SemEval-2014 (Marelli et al. 2014). It measures the seman-
itc relatedness of a given sentence pair. The gold related-
ness score is averaged across ten human-annotated scores
for each sentence pair, ranging from 1.0 to 5.0, where 1.0
means completely unrelated and 5.0 means very related. The
training/dev/testing splits are available on the task website.

Our goal in these experiments is to evaluate whether the
event embeddings can help capture the structural properties
of sentence. To evaluate this property we augment a baseline
system, which uses the GloVe word embedding, with our
event embedding, and compare the performance over differ-
ent variants of our embedding model.

Obtained a performance improvement over GloVe is not
trivial. GloVe leverages global matrix factorization and lo-
cal context windows methods to build general-purpose word
embeddings, which have been shown to have better per-
formance than the other popular word embedding model—
Word2Vec (Mikolov et al. 2013)—in word similarity tasks.
We use their 300-dimensional version, pre-trained on Giga-
word and Wikipedia.

To construct the input sentence representation for both
GloVe and FEEL, first, all the available embeddings in
the input sentences are extracted and summed (word and
event embedding separately). Second, these representations
are fed into a neural-network-based regression model (Tai,
Socher, and Manning 2015) for predicting the related scores.
The network architecture is designed for text similarity tasks
and is shown below:

h∗ = vs1 ⊗ vs2
h� = |vs1 − vs2 |
h = h∗ ⊕ h�
p = softmax(W · h),

where vs1 ∈ Rk and vs2 ∈ Rk are vector representations of
the first and second inputs respectively; ⊗ means element-
wise multiplication; ⊕ is the vector concatenation operator;
W ∈ R5×2k is the weight matrix to be trained; the 5 soft-
max outputs corresponds to scores 1-5. The cross-entropy
loss function and Adam (Kingma and Ba 2014) with mini-
batches are used to optimize the model. The final score is
calculated by taking the expectation of the softmax outputs.

Table 3 shows Pearson Correlation between the gold and
predicted scores. The first row denotes the classification
quality with using GloVe-only. It turns out that this simple
representation is sufficient to provides a reasonably good re-
sult (Pearson Correlation of 0.71). Using FEEL alone does
not lead to the optimal results (Predicate + Args + S
has the best result among the variants, which is 0.68). This
is because when constructing FEEL, some input compo-
nents, like noun modifiers, are not considered. This simpli-
fies model training by modeling only high-level event con-
cepts while incurs losing some details. However, this does
help FEEL captures more “structured” event semantics. The
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MCNS-Viterbi Baseline Skyline MCNE-Viterbi
GloVe 0.353 0.297 0.356 0.385
GloVe+PredDep 0.359 0.302 0.362 0.389
GloVe+PredDep+Args 0.332 0.366 0.434 0.37
GloVe+PredDep+Args+S 0.416 0.385 0.460 0.448

GloVe+PredDep+Args+A 0.399 0.396 0.465 0.429
GloVe+PredDep+Args+S+A 0.365 0.383 0.452 0.403

Table 2: Results of MCNS (left) and MCNE (right) using Viterbi, the skyline, and the baseline on FEEL and GloVe

Pearson PredDep PredDep+Args PredDep+Args+S PredDep+Args+A PredDep+Args+S+A
GloVe 0.7102
FEEL 0.4452 0.6574 0.6791 0.6714 0.6714
GloVe+FEEL 0.7382 0.7572 0.7518 0.7676 0.7604

Table 3: Pearson scores of SICK task on GloVe and FEEL

third row of the table indicates the result of using both GloVe
and FEEL together, by concatenating them to form the input
representations. The results are far better than the previous
two representations and go up to 0.77.

We also observe that while animacy information was very
useful, the sentiment information generally does not provide
additional information for this task. This might be due to the
word embedding already capturing this information. Also,
since many examples in this dataset have neutral sentiment
this contribution of this property is likely to be small. This
is not always the case, as we can see in our next task.

Implicit Discourse Sense Classification (IDSC)

Our final evaluation task is the CoNLL 2016 Shared Task
(Xue et al. 2016) on discourse parsing. The original goal
is twofold: (1) locate discourse connectives and their argu-
ments and (2) classify discourse senses. In this evaluation,
we focus on the highly challenging IDSC task. Unlike ex-
plicit discourse senses, where discourse connectives, e.g.,
because and however, provide strong cues that help iden-
tify the correct sense, implicit discourse senses can only be
inferred from the two given argument spans, and as a result
relies heavily on modeling the semantic relationships.

The dataset used is based on the Penn Discourse Tree
Bank (PDTB) (Prasad et al. 2007), where all the arguments,
connectives, and senses are annotated. We used the same set-
tings as the CoNLL shared task: the data splits include train-
ing, development, test, and blind test sets; four relation types
(non-explicit) and fifteen valid sense classes are used. More
detailed information can be found in (Prasad et al. 2007).

Similar to the SICK task, GloVe and FEEL are evalu-
ated together. We use the same method for building the sen-
tence (argument span) representations. The two span rep-
resentations are concatenated to form the input example to
a multi-class classifier. It is a two-hidden-layer neural net-
work, where the activation functions are Rectified Linear
Unit (ReLU) and the objective function is the cross-entropy
loss. Adam (Kingma and Ba 2014) with mini-batches is used
for optimizing the parameters.

Table 4 shows the micro average F1 scores across all the

Micro Average F1 Test Blind Test
GloVe 0.2982 0.2815
GloVe+PredDep 0.2921 0.2886
GloVe+PredDep+Args 0.2983 0.2862
GloVe+PredDep+Args+S 0.2996 0.3102
GloVe+PredDep+Args+A 0.3063 0.3111

GloVe+PredDep+Args+S+A 0.3174 0.3111

Table 4: Micro average F1 scores across all the discourse
senses under the setting of CONLL 2016 shared task.

senses. Like SICK task, GloVe performs reasonably well
here, as it captures general semantics at the word level.

We can observe the performance improvement obtained
by adding event properties introduced by FEEL to GloVe.
Specifically, GloVe+PredDep+Args+S+A performs the best
over both the test and blind test sets. This suggests that the
benefit of using specific properties to enrich the event repre-
sentation is task-specific.

Conclusion

In this paper, we present a feature-enriched script learn-
ing model, FEEL. Our multi-task model learns robust event
embeddings by jointly conditioning the event representa-
tion on neighboring events and the inner properties of the
event. Our architecture provides a framework for inject-
ing world knowledge and relevant contextual information
needed to accurately represent events. This highly flexible
approach can easily be adapted to the specific needs of
different end applications. We specifically looked into two
event properties—the sentence-level sentiment and the ani-
macy information of the event protagonist.

The trained event embeddings are evaluated on three in-
trinsic tasks, including two newly proposed tasks highlight-
ing the importance of evaluating narrative inferences. We
also evaluate our model over two extrinsic tasks, by using
it as the input representation. Our results show that FEEL
can indeed utilize event properties and better account of the
structured event semantics.
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