
Context-Aware Symptom Checking for Disease Diagnosis
Using Hierarchical Reinforcement Learning

Hao-Cheng Kao∗
HTC Research & Healthcare

haocheng kao@htc.com

Kai-Fu Tang∗
HTC Research & Healthcare

tkevin tang@htc.com

Edward Y. Chang
HTC Research & Healthcare

edward chang@htc.com

Abstract

Online symptom checkers have been deployed by sites such
as WebMD and Mayo Clinic to identify possible causes and
treatments for diseases based on a patient’s symptoms. Symp-
tom checking first assesses a patient by asking a series of
questions about their symptoms, then attempts to predict po-
tential diseases. The two design goals of a symptom checker
are to achieve a high accuracy and intuitive interactions. In
this paper we present our context-aware hierarchical rein-
forcement learning scheme, which significantly improves ac-
curacy of symptom checking over traditional systems while
also making a limited number of inquiries.

Introduction

With the quantity of information available online, self-
diagnosis of health related ailments has become increas-
ingly prevalent. According to a survey in 2012 (Semigran
et al. 2015), 35% of U.S. adults in the U.S. have attempted
to self-diagnose their ailments through online services This
process often starts by searching a particular symptom on a
search engine. While online searches have fast accessibility
and require no cost, search quality can potentially be dis-
satisfactory since search results could be irrelevant, impre-
cise or even incorrect.

As stated in (Ledley and Lusted 1959), there are three
components in a disease diagnosis process: (i) medical
knowledge, (ii) signs and symptoms presented by the pa-
tient, and (iii) the final diagnosis itself. We refer to such
processes as symptom checking, and refer to an agent ca-
pable of performing such diagnoses as a symptom checker.
In a symptom checker, a medical knowledge base serves as
the source of medical knowledge, which depicts the proba-
bilistic relationship between symptoms and diseases. An in-
ference engine is responsible for formulating symptom in-
quiries, collecting patient information, and then performing
diagnosis by utilizing both the individual’s information and
the medical knowledge base. If the prediction confidence is
not high, the inference engine may suggest conducting rel-
evant lab tests to facilitate diagnosis. Finally, the diagnosis
process outputs a list of potential diseases that the patient
may have.
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The primary goal of a symptom checker is to achieve
high disease-prediction accuracy. Attaining the best possi-
ble accuracy requires full information about a patient, in-
cluding not only his/her symptoms, but also his/her medical
record, family medical history, and lab tests. However, an
online symptom checker may only be able to obtain a list of
symptoms, and therefore must rely on partial information.
This lack of information often means the online symptom
checker cannot attain extremely high accuracy. At the same
time, even obtaining a list of symptoms in a user friendly
manner is a challenge, since there are over one hundred dif-
ferent medical symptoms, and few patients may be willing
to fill out such a long symptom questionnaire. Consequently,
this problem leads to the second requirement for an effective
symptom checker, good user experience. The primary con-
sideration in achieving good user experience is for a symp-
tom checker to make only a limited number of inquiries.
The design goal is then to maximize information gain when
only a limited number of symptom inquiries can be made to
achieve high diagnosis accuracy.

In previous works (Kononenko 2001; Kohavi 1996;
Kononenko 1993), Bayesian inference and decision trees as
well as entropy or impurity functions were proposed to se-
lect disease symptoms and to perform diagnoses. However,
these works generally considered only local optimums by
some means of greedy or approximation schemes. These ap-
proaches often result in compromised accuracy. Expert sys-
tems are also used in medical diagnosis systems (Hayashi
1991). In this regime, rule-based representations are ex-
tracted from human knowledge or medical data. The final
inference quality depends on the quality of the extracted
rules. For example, in (Hayashi 1991), if-else rules are ex-
tracted from fuzzy neural networks learned from medical
data. Their rule-based representation focuses on knowledge
acquisition and does not pursue a shorter section of interac-
tions with users. Our prior work (Tang et al. 2016) proposes
neural symptom checking, adopting reinforcement learning
to simultaneously conduct symptom inquiries and diagnose.
The optimization objective captures a combination of in-
quiry length and diagnosis accuracy. Though our top-1 accu-
racy reaches 48% (for 73 diseases), which is higher than the
34% average accuracy achieved by online services surveyed
by a Harvard report (Semigran et al. 2015), substantial room
exists for further improvement. (Table 1 presents details.)
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Online Services #Diseases Accuracy

Esagil 100 20%
MEDoctor 830 5%
Mayo Clinic N/A 36%
WebMD N/A 17%

Harvard Report (Avg.) N/A 34%

Table 1: The current status of online diagnosis services eval-
uated by the Harvard report (Semigran et al. 2015). The top-
1 accuracies of representative sites are shown in percentages.
Note that Esagil and MEDoctor are the only services that ex-
plicitly disclose the number of their supported diseases. The
four listed services require a full list of the patients symp-
toms.

In this work, we introduce two novel enhancements to im-
prove diagnosis accuracy. First, we introduce a latent layer
using anatomical parts. We employ hierarchical reinforce-
ment learning to use a committee of anatomical parts to
make a joint diagnostic decision. While each anatomical part
model is capable of selecting symptoms to inquire and diag-
nose within the expertise of its anatomical part, each can
also inquire about different symptoms in a given state. Our
proposed model utilizes a master model to select the specific
anatomical part on which to perform inquiries at each inter-
action step. Our second enhancement is to introduce con-
text into the model and make our symptom checker context
aware. The contextual information includes, but is not lim-
ited to, three aspects about a patient: who, when, and where.
The who aspect includes a person’s demographic informa-
tion (e.g., age and gender), heredity (characterized by ge-
netic data), and medical history. The when aspect can be
characterized by a distribution of diseases in the time of
year. The where aspect can be characterized by a distribution
of diseases from coarse to fine location granularities (e.g.,
by country, city, and/or neighborhood). Any joint distribu-
tions of any combinations of the who, when and where as-
pects can be formulated and quantified into a context-aware
model. Empirical studies on a simulated dataset show that
our proposed model drastically improves disease prediction
accuracy by a significant margin (for top-1 prediction, the
improvement margin is 10% for 50 common diseases1 and
5% when expanding to 100 diseases).

The rest of this paper is organized into five sections.
We first briefly review formulating symptom checking in
a reinforcement learning problem. We then introduce our
proposed hierarchical ensemble model of anatomical parts.
Next, we present the context-aware model. The experiment
section presents our results. An earlier version of our symp-
tom checker is employed in our DeepQ Tricorder (Chang
et al. 2017), which was awarded second prize in the Qual-
comm Tricorder XPrize Competition (Qualcomm 2017). Fi-
nally, we offer our concluding remarks.

1The term common disease here means frequently occurred dis-
eases from the Centers for Disease Control and Prevention (CDC)
dataset.

Reinforcement Learning Formulation

We regard a symptom checker as an agent solving a sequen-
tial decision problem. This agent interacts with a patient
as follows: Initially, the agent is provided with a symptom
that the patient may have from the set of all symptoms I.
This provided symptom is regarded as the initial symptom.
In each time step, the agent chooses a symptom i ∈ I to
inquire the patient about. The patient then responds to the
agent with a true/false answer indicating whether he/she is
suffering from that particular symptom. At the end of the
diagnosis process, the agent predicts a disease d that the pa-
tient may have from the set of all diseases D.

The goal of the agent is to use as few steps as possi-
ble while achieving high prediction accuracy. To this end,
our prior work in (Tang et al. 2016) employs reinforcement
learning (Sutton and Barto 1998) and formulates this prob-
lem as a Markov decision process (MDP).

Formally, in time step t, the agent receives a state st and
then selects an action at from a discrete action setA accord-
ing to a policy π. In our formulation, A = I ∪ D. In each
time step t, the agent receives a scalar reward rt. If at ∈ I,
the agent performs an inquiry. If the inquiry is repeated, i.e.,
if at = at′ for some t′ < t, rt = −1 and the interaction
is terminated; otherwise rt = 0 and the state is updated ac-
cording to the response from the patient. If at ∈ D, the agent
performs a disease prediction and the interaction is termi-
nated. In this case, rt = 1 if the predicted disease is correct;
otherwise rt = 0.

The goal is to find an optimal policy such that the agent
maximizes the expected discounted total reward, i.e., the ex-
pected return Rt =

∑∞
t′=t γ

t′−trt′ , where γ ∈ [0, 1] is a
discount factor. The state-action Q-value function

Qπ(s, a) = E[Rt | st = s, at = a, π]

is the expected return of performing an action a in a state s
following a policy π. Given that the Q-value is the sum of
an immediate reward and a discounted next-step Q-value, it
can be rewritten as a recursive equation:

Qπ(s, a) = Es′ [r + γEa′∼π(s′)[Q
π(s′, a′)] | s, a, π]

where s′ and a′ are the state and action in the next time step,
respectively.

The optimal Q-value is the maximum Q-value among all
possible policies: Q∗(s, a) = maxπ Q

π(s, a). Also, it can
be shown that the optimal Q-value obeys the Bellman equa-
tion:

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′) | s, a].

A policy π is optimal if and only if for every state and action,
Qπ(s, a) = Q∗(s, a). In finite MDPs, such optimal policy
always exists. Moreover, an optimal policy can be deduced
deterministically by

π∗(s) = argmax
a∈A

Q∗(s, a).

Thus, some of the reinforcement learning algorithms use
a function approximator to estimate the optimal Q-value
through training (Mnih et al. 2015; Wang et al. 2016).
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Tradeoff between Disease-Prediction Accuracy and
Symptom Acquisition

The discount factor γ controls the tradeoff between the num-
ber of inquiries and prediction accuracy. Since in our formu-
lation, a correct disease prediction has a reward of 1 and an
incorrect disease prediction has a reward of 0, the optimal
Q-value of a disease-prediction action (a ∈ D) is the proba-
bility of a patient having the corresponding disease. On the
other hand, the optimal Q-value of an inquiry action (a ∈ I)
equals the current step reward plus the discounted expected
future rewards (by the Bellman equation). When the Q-value
is optimal, the current step reward must be equal to 0 be-
cause no repeated action is occurred. Therefore, the net Q-
value of an inquiry action is the discounted expected future
rewards. This value can also be regarded as the “discounted
prediction accuracy.”

Thus, when we choose an action based on the Q-values
(of I and D), the discounted prediction accuracies (for in-
quiry actions) and the prediction accuracies (for disease-
prediction actions) are compared. From this perspective, per-
forming more inquiries may result in a higher accuracy in
the future but such potential is penalized by the discount fac-
tor γ. As a consequence, a disease-prediction action may be
chosen instead of an inquiry action.

Anatomical Ensemble

To reduce the problem space, we can divide a human body
into parts and the possible symptoms of each part is then
much reduced to conduct inferences. There are at least two
ways to perform this divide-and-conquer: by medical sys-
tems and by anatomical parts. Hospitals divide a body into
systems including nervous, circulatory, lymphatic urinary,
reproductive, respiratory, digestive, skin/integumentary, en-
docrine, and musculoskeletal. However, such division is not
comprehensible by a typical user. Therefore, our prior work
(Tang et al. 2016) devised our model to be an ensemble of
different anatomical part models M = {mp | p ∈ P}.
There are eleven anatomical parts P = {abdomen, arm,
back, buttock, chest, general symptoms, head, leg, neck,
pelvis, skin}. The model mp of each anatomical part p ∈ P
is responsible for a subset of diseases Dp ⊆ D. Similarly,
we denote the subset of the symptoms associated with mp

by Ip ⊆ I. Note that the disease sets as well as symptom
sets may overlap between different parts. For example, the
disease food allergy can happen in parts neck, chest, and ab-
domen.

A neural network is employed as the Q-value estimator
for each anatomical part model mp. The action set of mp is
Ap = Ip ∪ Dp. The state sp for mp is a combination of re-
lated symptom statuses. A symptom can be in one of three
statuses: true, false, and unknown. The status of a symp-
tom is true if the patient has responded positively about the
symptom or the symptom is the initial symptom. If the pa-
tient has responded negatively about a symptom, then the
status of that symptom is false. Otherwise, the status is un-
known. We use a three-element one-hot vector2 bi to en-
code the status of a symptom i. Formally, the state of mp

2A vector v ∈ B
n is one-hot if

∑
j vj = 1.

is sp = [bT1 , b
T
2 , . . . , b

T
|Ip|]

T , i.e., the concatenation of one-
hot encoded statuses of each symptom. Moreover, we denote
the policy of each anatomical part model mp by πmp

.
Our prior work (Tang et al. 2016) chose one anatomical

part model based on the initial symptom and the model was
used throughout the whole diagnosis process. This approach
can bring about several issues. For example, it is possible
that the target disease does not belong to the disease set
of the chosen anatomical part. In addition, if only a single
anatomical part is considered, the other anatomical parts are
not fully utilized. In the subsequent sections, we propose
remedies to address these issues.

Hierarchical Reinforcement Learning

To address the issue of fixing on one anatomical part, we
propose a master agent to assemble models of anatomical
parts. The main idea is to imitate a group of doctors with
different expertise who jointly diagnose a patient. Since a
patient can only accept an inquiry from one doctor at a time,
a host is required to appoint doctors in turn to inquire the
patient. The master agent in our model acts like the host.
At each step, the master agent is responsible for appoint-
ing an anatomical part model to perform a symptom inquiry
or a disease prediction. This approach essentially creates a
hierarchy in our model by introducing a level of abstrac-
tion since the master agent cannot directly perform inquiry
and prediction actions. Instead, the master agent treats those
anatomical part models as subroutines, and the duty of the
master agent is to pick one of the anatomical part models at
each time step.

The concept of this two-level hierarchy can be described
more precisely using reinforcement learning terms intro-
duced in the previous section. The first hierarchy level is a
master agent M . The master M possesses its action space
AM and policy πM . In this level, the action space AM

equals P , the set of anatomical parts. At step t, the mas-
ter agent enters state st, and it picks an action aMt from AM

according to its policy πM . The second level of hierarchy
consists of anatomical models mp. If the master performs
action aM , the task is delegated to the anatomical model
mp = maM . Once the model mp is selected, the actual ac-
tion at ∈ A is then performed according to the policy of mp,
denoted as πmp . With this two-level abstraction, our model
M is denoted asM = {M} ∪ {mp | p ∈ P}.

In the literature of hierarchical reinforcement learning,
there is a framework called option (Sutton, Precup, and
Singh 1999). An option 〈I, π, β〉 contains three components:
I is a set of states where this option is available, π is the
policy of this option, and β determines the probability of
terminating the option in a given state. In this framework, a
master agent selects an option among all available options
in the current state. Then the chosen option gets to execute
for a number of steps according to its policy π. In each time
step we sample on β(s) with the current state s to determine
whether this option should be terminated. Once an option
has been terminated, the master agent selects a next option to
execute. Our approach can be viewed as a simplified version
of option. Each anatomical part model mp can be regarded
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Name Type Input Size Output Size

FC1 Linear + ReLU |I| × 3 1024× ω
FC2 Linear + ReLU 1024× ω 1024× ω
FC3 Linear + ReLU 1024× ω 512× ω
FC4 Linear 512× ω |P|

Table 2: The network architecture of our master model.

as an option 〈I, π, β〉. The input set I is the set of all possi-
ble states because every anatomical part model is available
in all states. The policy π corresponds to πmp

. The termina-
tion condition β always evaluates to be 1 since our master
model re-selects an anatomical model for each step.

Model

As stated in the previous section, an optimal policy can be
obtained through an optimal Q-function. Therefore, to find
the optimal policy, one approach is to find an optimal Q-
function. One challenge of this approach is that the state and
action space are usually high in their dimensions. To address
this issue, Mnih et al. proposed a deep Q-network (DQN)
architecture as a function approximator for Q-functions.

We adopt DQN as a model to approximate the Q-function
of the master agent M . Given a state s, the output layer of the
master model outputs a Q-value for each action a ∈ AM . At
each step, the master model can pick an anatomical model
mp according to the Q-values of the master model. The
model mp = maM is selected when its corresponding ac-
tion aM has the maximum Q-value among all actions.

The master model consists of four fully connected (FC)
layers. The rectified linear units (ReLUs) (Nair and Hinton
2010) are used after each layer except for the last. The width
of each layer is shown in Table 2. Note that since the size
of I varies across our experimental tasks, to cope with these
changes, we can adjust the width of each hidden layer by a
linear factor ω.

Training

Individual anatomical part models are first trained by the
method of (Tang et al. 2016). Then, the master model can
be trained after individual anatomical part models have been
trained because training the master requires the inference re-
sults of the parts.

To train the master model, we use the DQN training al-
gorithm (Mnih et al. 2013). The loss function computes the
squared error between the Q-value output from the network
and the Q-value obtained through the Bellman equation,
which can be written as

Lj(θj) = Es,a,r,s′ [(yj −Q(s, a; θj))
2], (1)

where target yj = r + γmaxa′ Q(s′, a′; θ−) is evaluated
by a separate target network Q(s′, a′; θ−) with parameters
θ− (Mnih et al. 2015). The variable j is the index of train-
ing iteration. Note that if action a terminates the interaction,
yj = r. To evaluate the expectation in the loss function, we
sample a batch of (s, a, r, s′) tuples and use the mean square
error as an approximation. To improve training stability and

Algorithm 1: TrainingMasterModel
Input : {mp | p ∈ P} // Set of anatomical models

{Ip | p ∈ P} // Set of symptom sets
AM // Action set of the master model
DM // Disease set of the master model
ε // Epsilon greedy parameter
γ // Discount factor
δ // Termination threshold

Output : θ // Parameters of the master model
Variable: x, target; // Data and ground truth

s, a, r, s′, aM , cp, scp;
θ−, y, loss;
H; // Inquiry history

1 begin
2 x, target←− DataSampler()
3 s←− InitializeState(x)
4 H ←− φ
5 loss←−∞
6 while loss > δ do
7 if UniformSampler([0, 1)) < ε then

8 aM ←− UniformSampler(AM )
9 else

10 aM ←− argmaxa QM (s, a; θ)
11 end

12 cp←− aM

13 scp ←− ExtractState(s, Icp)
14 a←− argmaxa Qmcp

(scp, a)

15 r ←−
⎧⎨
⎩
−1, if a ∈ H
1, if a = target

0, otherwise
16 if a ∈ DM or a ∈ H then
17 x, target←− DataSampler()
18 s′ ←− InitializeState(x)
19 H ←− φ
20 y ←− r
21 else
22 s′ ←− UpdateState(s, x, a)
23 H ←− H ∪ {a}
24 y ←− r + γmaxa′ QM (s′, a′; θ−)
25 end

26 loss←− (y −QM (s, cp; θ))2

27 θ ←− GradientUpdate(θ, loss)
28 θ− ←− θ for every C iterations
29 s←− s′

30 end
31 return θ
32 end

convergence, the target network is fixed for a number of
training iterations before θ− is updated to be θ. The parame-
ters θ can be updated by the standard backward propagation
algorithm.

Algorithm 1 details the training algorithm of our master
model. Before the interactive process starts, the state s is
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initialized based on the initial symptom of a training exam-
ple. In the initialized state s, except for the initial symp-
tom being true, all other symptoms are unknown. To be-
gin a training iteration, we first infer the master action aM ,
which is essentially the anatomical part selected to be used
in this iteration. In training time, the balance of exploration
(exploring unseen states) and exploitation (utilizing learned
knowledge to select the best action) is important. We choose
to use epsilon greedy to cope with this: With probability ε,
the master action aM is picked uniformly from AM ; other-
wise, aM is assigned to the best action learned so far, i.e.,
aM = argmaxa∈AM

QM (s, a).
The next step is to infer the action of previously selected

anatomical model. For annotation simplicity, we shall de-
note the chosen part as cp = aM , and thus the selected
anatomical model is mcp. The state scp used by mcp is dif-
ferent from the state s used by M . This is because the symp-
tom set Icp is a subset of IM , the one used by the mas-
ter model. We can obtain scp by extracting relevant symp-
toms from s. Therefore, the inferred action given scp is
a = argmaxa∈Acp Qmcp(s

cp, a).
With the action a emitted by mcp, we can interact with the

patient and update the state and the master model. In order
to update the state, the response of the patient is obtained
and the next state s′ is updated accordingly. However, if a is
repeated or a ∈ D, the interaction with the present patient is
terminated. In this case, the next state s′ is set to a new initial
state created by a newly sampled patient. After the state is
updated, we can use Equation 1 to update the master model.
Note that a in Equation 1 is actually aM when we update the
master model.

The algorithm described above is the training procedure
for one example. However, using stochastic gradient descent
with one example can result in unstable gradients. We use a
batch of parallel patients to overcome this problem. At each
step of training, each patient independently receives an in-
quiry or diagnosis and maintains its own state. Since the
length of the interaction is not fixed, each patient can fin-
ish its interaction at a different time. When the interaction
of a certain patient is terminated, we can replace the old pa-
tient with a newly sampled one on-the-fly. Therefore, the
number of inquiries taken by each patient within a batch can
be different. This makes a training batch more diverse and
uncorrelated, resulting in a similar effect of replay memory
(Mnih et al. 2013).

Modeling Context
To model context, we can modify the underlying MDP and
state representation. The state is augmented with an extra en-
coding of contextual information, i.e., s = [bT , cT ]T , where
b denotes the symptom statuses capturing the inquire history
of the interaction and c denotes the contextual information
possessed by a patient. Given a state s = [bT , cT ]T , our mas-
ter model M outputs a Q-value of each action a ∈ AM .

More specifically, the encoding scheme of b is the same
as the original one. The newly enhanced part is the con-
textual information c that currently comprises the age, gen-
der, and season information of a patient. (Any other who,
when, and where information can be easily incorporated.)

Here, we denote c = [cTage, c
T
gender, c

T
season]

T . First, the
age information cage ∈ N is useful because some dis-
eases have higher possibilities on babies whereas some have
higher possibilities on adults. For example, meningitis typ-
ically occurs on children, and Alzheimer’s disease on the
elderly. Second, the gender information cgender ∈ B is im-
portant because some diseases strongly correlate with gen-
der. For example, females may have problems in uterus, and
males may have prostate cancer. Third, the season informa-
tion cseason ∈ B

4 (a four-element one-hot vector) is also
helpful because some diseases (e.g., those transmitted by
mosquitoes such as malaria, dengue, filariasis, chikungunya,
yellow fever, and Zika fever) are associated with seasons.

Given the new state representation, our algorithm requires
to be modified slightly. In our definition, each action a has
two types: an inquiry action (a ∈ I) or a diagnosis action
(a ∈ D). If the maximum Q-value of the outputs corre-
sponds to an inquiry action, then our model inquires the
corresponding symptom to a user, obtains a feedback, and
proceeds to the next time step. The feedback is incorpo-
rated into the next state st+1 = [bTt+1, c

T ]T according to our
symptom status encoding scheme. Otherwise, the maximum
Q-value corresponds to a diagnosis action. In the latter case,
our model predicts the maximum-Q-value disease and then
terminates.

Context-Aware Policy Transformation

Previously, the model directly takes the contextual informa-
tion into consideration. In this subsection, we propose an al-
ternative direction. Given an optimal policy π∗, which does
not consider context, can we transform it to an optimal pol-
icy π∗c , which does consider context? We call this approach
the context-aware policy transformation. We shall prove this
transformation holds under certain assumptions.

Proposition 1. Let d, s, and c denote disease, symptom, and
context, respectively. If we assume s and c are conditionally
independent given d, then

p(d | s, c) = p(d | s)p(c | d)
p(c | s) .

Proof.

p(d | s, c) = p(s, c | d)p(d)
p(c | s)p(s)

=
p(s | d)p(c | d)p(d)

p(c | s)p(s)
=

p(d | s)p(c | d)
p(c | s)

Now, let Q∗c denote the optimal value function consider-
ing context and Q∗ the optimal value function without con-
sidering context. We have the following lemma.

Lemma 2. If π∗c (s) ∈ D, then

π∗c (s) = argmax
a∈D

Q∗(s, a)p(c | a).
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Proof. If argmaxa Q
∗
c(s, a) ∈ D, then

argmax
a

Q∗c(s, a) = argmax
a∈D

E[1a=y | s, c]
= argmax

d
p(d | s, c)

= argmax
d

p(d | s)p(c | d)
= argmax

a∈D
Q∗(s, a)p(c | a).

From Lemma 2, we can see that if the action a chosen
from π∗c is a diagnosis action (a ∈ D), the optimal policy
π∗c (considering context) can be obtained from the optimal
value function Q∗ (without considering context) by using
the posterior probability distribution p(c | d). Next, we ana-
lyze another case when the action is an inquiry action.

Lemma 3. Assume γ = 1. If π∗c (s) ∈ I, then

π∗c (s) ≈ argmax
a∈I

Q∗(s, a)p(c | s′)p(ŝ
′ | s, c, a)

p(ŝ′ | s, a) .

Proof. Let y be the target disease. If argmaxa Q
∗
c(s, a) ∈I, then

argmax
a

Q∗c(s, a) = argmax
a∈I

Es′∼p(s′|s,c,a)[p(y | s′, c)]

= argmax
a∈I

Es′∼p(s′|s,c,a)

[
p(y | s′)p(c | y)

p(c | s′)
]

= argmax
a∈I

Es′∼p(s′|s,a)

[
p(s′ | s, c, a)
p(s′ | s, a)

p(y | s′)
p(c | s′)

]

≈ argmax
a∈I

p(ŝ′ | s, c, a)
p(ŝ′ | s, a)p(c | s′)Q

∗(s, a).

Lemma 3 states that when π∗c selects actions from I, the
transformation will require three probability distributions
p(c | s), p(s′ | s, a), and p(s′ | s, c, a). From Proposition 1,
we have

p(c | s) =
∑
d∈D

p(d | s)p(c | d)

=
∑
d∈D

Q∗(s, d)p(c | d).

In practice, p(c | d) can be available and therefore p(c | s)
can also be available. However, the other two distributions
p(s′ | s, a) and p(s′ | s, c, a) are the transitions of MDPs
with and without context which may not be available.

Remark 1. Although the theoretical result of policy trans-
formation from π∗ to π∗c is established, in practice, the MDP
transitions p(s′ | s, a) and p(s′ | s, c, a) may not be avail-
able, and γ may be unequal to 1. In these cases, we can still
use Lemma 2 to transform the disease-prediction probability
in the last diagnosis step.

Task |Dp| |⋃pDp| |⋃p Ip| ω

Task 1 25 73 246 1
Task 2 50 136 302 2
Task 3 75 196 327 3
Task 4 100 255 340 4

Table 3: The settings of our four experimental tasks.

Experiments

Medical data is difficult to obtain and share between re-
searchers because of privacy laws (e.g., the Health Insur-
ance Portability and Accountability Act; HIPAA) and secu-
rity concerns. While there are some publicly available elec-
tronic health record (EHR) datasets, these datasets often lack
symptom-related information. For example, the MIMIC-III
dataset (Johnson et al. 2016) was collected at intensive care
units without full symptom information. To evaluate our al-
gorithm, we generated simulated data based on SymCAT’s
symptom-disease database (AHEAD Research Inc 2017)
composed of 801 diseases.

Each disease in SymCAT is associated with its symptoms
and probabilities, i.e., p(s | d). We further cleaned up the set
of diseases by removing the ones that do not appear in the
Centers for Disease Control and Prevention (CDC) database
(Centers for Disease Control and Prevention 2017) and the
ones that are logical supersets of some of the other diseases
indicated in the UMLS medical database (National Institutes
of Health 2017). The resulting probability database consists
of 650 diseases.

Next we assembled four sub-datasets for four experimen-
tal tasks, each containing a different number of diseases.
With the aid of experts, we manually classified each dis-
ease into one or more anatomical parts. For each anatom-
ical part, we reserved its top 25, 50, 75 and 100 diseases
in terms of the number of occurrences in the CDC records.
Table 3 shows the detailed numbers of our four tasks. The
five columns depict the task name, the number of diseases in
each anatomical part, the number of diseases in the union of
all anatomical parts, the number of symptoms in the union
of all anatomical parts, and the value of parameter ω in our
network. Note that a disease may occur in more than one
anatomical part, which is the reason why the number of dis-
eases in the union set is less than the sum of diseases in all
parts.

For training, we generated simulated patients dynamically
by the following process. We sampled a target disease uni-
formly. Then for each associated symptom, we sampled a
Boolean value indicating whether the patient suffers form
that symptom using a Bernoulli distribution with the proba-
bility taken from the database. For those symptoms that are
not associated with the chosen disease, we performed the
same sampling process with a probability of 0.0001 to intro-
duce a floor probability so as to mitigate the negative effect
of a erroneous response. If the given patient does not have
any symptoms, the symptom generation process starts from
scratch again. Otherwise, an initial symptom is picked uni-
formly among all sampled symptoms. In all tasks, we used
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Tasks Task 1 Task 2 Task 3 Task 4
Best Prior Work

(Tang et al. 2016)
Hierarchical

Model
Best Prior Work

(Tang et al. 2016)
Hierarchical

Model
Best Prior Work

(Tang et al. 2016)
Hierarchical

Model
Best Prior Work

(Tang et al. 2016)
Hierarchical

Model

Top 1 48.12± 0.15 63.55± 0.15 34.59± 0.11 44.50± 0.11 25.46± 0.08 32.87± 0.09 21.24± 0.07 26.26± 0.07
Top 3 59.01± 0.15 73.35± 0.13 41.58± 0.11 51.90± 0.11 29.63± 0.08 38.02± 0.09 24.56± 0.07 29.81± 0.07
Top 5 63.23± 0.15 77.94± 0.13 45.08± 0.11 55.03± 0.11 31.82± 0.09 40.20± 0.09 26.15± 0.07 31.42± 0.07
#Steps 7.17± 0.02 7.15± 0.01 7.06± 0.01 5.73± 0.01 5.98± 0.01 5.14± 0.00 6.94± 0.01 5.01± 0.00

Table 4: Experimental results on anatomical model (Tang et al. 2016) and our proposed hierarchical model. The top-n accuracies
are shown in percentage with a 99% confidence interval.

Inquiry Stage

Step Selected Part Inquired Symptom Response

1 General symptoms Symptoms of prostate False
2 Chest Painful urination False
3 Chest Side pain True
4 Back Fever False
5 Back Blood in urine True
6 Back Nausea True

Diagnosis Stage

Top 5 Disease

1 Kidney stone

2 Urinary tract infection
3 Problem during pregnancy
4 Sprain or strain
5 Acne

Table 5: An interaction sequence. The target disease is kid-
ney stone and the initial symptom is frequent urination.

ten million mini-batches, each consisting of 128 samples for
training.

We separately produced a testing dataset using the above
procedure without generating the floor probability (i.e., the
probability for symptoms that are not associated with the
chosen disease is 0). We sampled 10, 000 simulated patients
for each disease in the testing dataset for each task.

Since training our 11 part models is time-demanding, we
used DeepQ Open AI Platform (Zou et al. 2017) to manage
our training process. The auto-scaling and task management
features of this platform enabled us to conduct our experi-
ments in parallel. Also, the visualization feature helped us
monitor the progress of training conveniently.

Table 4 compares the experimental results of our proposed
model with the best results of our prior work (Tang et al.
2016), which enjoys the top result published thus far. For
each task, four numbers are reported. They are top-1 accu-
racy, top-3 accuracy, top-5 accuracy, and the average number
of inquiries over all symptom-checking interactions. Each
of the top-n accuracy numbers represents the percentage of
top-n predictions containing the target disease. All numbers
are reported along with 99% confidence intervals.

As shown in Table 4, the accuracy of our proposed ensem-
ble scheme is significantly higher than that of the previous
model. The average number of symptom inquiries made is
also slightly lower. When the number of candidate diseases

# Without Context Context-Aware

1 Urinary tract infection Kidney stone

2 Kidney stone Benign blood in urine
3 Benign blood in urine Venous insufficiency
4 Gastroesophageal reflux disease Abdominal hernia
5 Venous insufficiency Metastatic cancer

Table 6: Top-5 diagnosis with/without context. The patient
is a man whose age is between 45 and 59 and suffers from
kidney stone.

is small (25 and 50), our model outperforms our prior work
by at least ten percentage points in top-1, top-3, and top-5
results. When the number of candidate diseases is large (75
and 100), our accuracy outperforms by at least five percent-
age points.

Example

To demonstrate that our master model utilizes the power of
different anatomical part models, we display the details of
one diagnosis session in Table 5. Note that our prior work
(Tang et al. 2016) fails to diagnose this patient. Table 5
shows that our master model first chooses to use general
symptoms. After three rounds, our master model is able to
focus on the most relevant part, back, and select that model
to produce a correct prediction.

Context-Aware Policy Transformation

We evaluate the context-aware policy transformation by us-
ing Lemma 2. The context considered in our experiment in-
cludes age and gender3. To transform a policy, we are re-
quired to evaluate p(c | d). Assuming age and gender are
independent given that the target disease is known, p(c | d)
equals p(age | d)p(gender | d). Note that age is a non-
negative real number, which makes the probability continu-
ous and hard to evaluate. To make p(age | d) discrete, we
quantized ages into several bins, each representing a non-
overlapping range of ages. We then obtained those probabil-
ities from SymCAT’s disease database. After that, for each
simulated patient in the test dataset, we sampled a gender
and an age range according to the probabilities p(gender |
d) and p(age | d). We next show some examples demon-
strating how context can influence diagnosis, and then pro-

3Note that other contextual information such as season can be
applied using the same methodology as well.
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# Without Context Context-Aware

1 Metastatic cancer Osteoporosis

2 Chronic constipation Metastatic cancer
3 Abdominal hernia Chronic kidney disease
4 Chronic kidney disease Decubitus ulcer
5 Gastroesophageal reflux disease Venous insufficiency

Table 7: Top-5 diagnosis with/without context. The patient
is a 75+ woman suffering from osteoporosis.

# Without Context Context-Aware

1 Osteoporosis Decubitus ulcer
2 Spondylosis Venous insufficiency
3 Lumbago Chronic ulcer
4 Decubitus ulcer Colorectal cancer
5 Venous insufficiency Spondylosis

Table 8: Top-5 diagnosis with/without context. The patient
is a 75+ man suffering from osteoporosis.

vide the result of an ablation study on the effect of context-
aware transformation.

Table 6 demonstrates a case where context refines the re-
sult. Without contextual information, the top-1 prediction
based solely on the interaction process is inaccurate. If we
consider the gender of this patient, we can rule out urinary
tract infection since it is relatively rare in males. As a result,
the target disease kidney stone becomes the top-1 after the
context-aware transformation.

In Table 7, we show another case in which context fixes
the incorrect diagnosis result. If the predictions do not con-
sider context, the top-5 predictions do not include the target
disease. When context is considered, osteoporosis is boosted
since instances of osteoporosis have a distribution that tends
towards women rather than men. In this case, the context-
aware prediction results in a correct top-1 prediction.

Conversely, in Table 8 we provide a failure case due to
context-aware transformation. In this case, osteoporosis is
successfully diagnosed without context. However, due to the
fact that this patient is a male, which is relatively less often
to have osteoporosis, the context-aware transformation mis-
leads the diagnosis by suppressing the probability of osteo-
porosis.

We further conducted an ablation study to investigate the
usefulness of the context-aware policy transformation. In
this study, we chose a set of diseases that are influenced by
contextual information, and did not include diseases that are
evenly distributed among genders and age ranges. The cho-
sen diseases in this study were problem during pregnancy,
prostate cancer venous insufficiency, actinic keratosis, lung
cancer, skin cancer, chlamydia, and heart failure. As exam-
ples of contextual influence, problem during pregnancy is
only associated with females, while prostate cancer is only
attributable to males. Venous insufficiency is unlikely to oc-
cur in children. We created another test set that only con-
tains the chosen context-influenced diseases and evaluated
the top-5 accuracy of our hierarchical models trained pre-

Models Task 1 Task 2 Task 3 Task 4

Hierarchical Model 76.16 57.51 32.18 33.76
Context-Aware Model 83.62 63.37 36.58 37.96

Table 9: An ablation study of context-aware policy transfor-
mation and a comparison of top-5 accuracy on hierarchical
and context-aware model.

viously. The comparison of hierarchical model and context-
aware model on the chosen diseases is presented in Table 9.
We can see that the accuracy is improved by at least three
percentile with context-aware policy transformation in this
ablation study.

Conclusion

We have shown that the proposed master model can orches-
trate anatomical part models to jointly perform symptom
checking. This hierarchical ensemble scheme significantly
improves diagnosis accuracy compared to our prior work
(Tang et al. 2016), while making a similar or fewer number
of symptom inquiries.

When considering contextual information, we have shown
that there are two different ways to integrate contextual in-
formation. One way is to treat context as an input to the
model, the other is using context-aware transformation. We
demonstrated the benefit of such transformation by some
qualitative cases when the result can be refined by strong
hints from context.

Figure 1: XPRIZE DeepQ Tricorder. DeepQ consists of
four compartments. On the top is a mobile phone, which
runs a symptom checker. The drawer on the right-hand-side
contains optical sense. The drawer on the lower-front con-
tains vital sense and breath sense. The drawer on the left-
hand-side contains blood/urine sense. The symptom checker
guides a patient on which tests to conduct.

In our future work, we plan to further improve accuracy
by exploring three approaches.
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• Incorporating more information for diagnosis. As we
stated in the introduction section, without information
such as medical records, family history, and lab tests,
symptoms alone cannot achieve the optimal diagnosis ac-
curacy. Therefore, our first logical step is to incorporate
more information into our model. We will also actively
seek for or develop real-world datasets that we can use to
conduct practical experiments.

• Suggesting lab tests before diagnosis. We can use the
symptom checker as a tool to suggest collecting missing
information when it can improve diagnosis accuracy. For
instance, when our model cannot decide between two dis-
eases, it can suggest lab tests to provide missing infor-
mation for disambiguation. Once additional useful infor-
mation has been collected, we believe that diagnosis ac-
curacy will be further improved. In our XPRIZE DeepQ
Tricorder device (Chang et al. 2017), we indeed employ a
symptom checker (see Figure 1) to suggest lab tests for a
patient to conduct before a diagnosis.

• Experimenting with other latent layers. In this paper, we
define our latent layer by separating diseases into dif-
ferent body parts. The user interface of our DeepQ Tri-
corder (Chang et al. 2017) benefits from this body-part-
grouping method. There are also other potential ways to
define our latent layer, such as grouping by systems (e.g.,
digestive, nervous, circulatory, lymphatic urinary, repro-
ductive, respiratory, and digestive). We believe that pur-
suing the best latent layer using a data-driven approach
could be a promising direction of research.
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