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Abstract

To recommend the next item to a user in a transactional con-
text is practical yet challenging in applications such as mar-
keting campaigns. Transactional context refers to the items
that are observable in a transaction. Most existing transaction-
based recommender systems (TBRSs) make recommenda-
tions by mainly considering recently occurring items instead
of all the ones observed in the current context. Moreover, they
often assume a rigid order between items within a transaction,
which is not always practical. More importantly, a long trans-
action often contains many items irreverent to the next choice,
which tends to overwhelm the influence of a few truely rele-
vant ones. Therefore, we posit that a good TBRS should not
only consider all the observed items in the current transac-
tion but also weight them with different relevance to build
an attentive context that outputs the proper next item with a
high probability. To this end, we design an effective attention-
based transaction embedding model (ATEM) for context em-
bedding to weight each observed item in a transaction without
assuming order. The empirical study on real-world transac-
tion datasets proves that ATEM significantly outperforms the
state-of-the-art methods in terms of both accuracy and nov-
elty.

Introduction
Nowadays, recommender systems (RSs) play an important
role in real-world business especially in the e-commerce do-
main. However, most existing RS theories face various is-
sues (Cao 2016) such as tending to repeat items that are
similar to what users may have already chosen (Deshpande
and Karypis 2004). In reality, users may prefer items that are
novel and different from that already in hand. To address this
aspect, new recommendation paradigm (Cao 2016) needs to
be made on a transactional context, i.e., what has already
been chosen in a transaction. On one hand, transaction-based
RSs (TBRSs) (Huang and Zeng 2011) incorporate previous
transactions, i.e., inter-transactions, to generate more sensi-
ble and reliable new transactional recommendations, such
as next-basket and next-item recommendations (Wang et al.
2015) through analyzing inter-transaction coupling relation-
ships (Cao 2015). These are quite different from the typi-
cal RS approaches built on user preferences and item prop-
erty. On the other, however, it is still unclear what next-item
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should be recommended when a collection of items has been
placed into a transaction. This generates the need to recom-
mend the next item under a transactional context by analyz-
ing intra-transaction dependency. Here, the context for rec-
ommending the next item refers to the corresponding item-
related transaction, e.g., a shopping-basket record consisting
of multiple chosen items.

Let us illustrate the above problem with an example. A
user first puts three items {milk, apple, orange} into a cart
and then adds bread to the same cart. Subsequently, the
transaction is finalized as {milk, apple, orange, bread}. If
we take the first three items as the context and the last one
as the target to recommend, existing methods may suggest
vegetables like green salad due to the nearest contextual
items (orange and apple). However, the choice of the tar-
get item bread may depend on the first item (milk). In this
case, a TBRS should pay more attention to milk than to
orange and apple, because milk may be more related to
the next choice bread. This example shows the importance
of next-item recommendation which can be misled by irrel-
evant items in a transaction. Moreover, real-world transac-
tional data often only indicates those items co-appear in a
transaction with the order (e.g., the item timestamps) be-
tween items. Therefore, it may not be possible and realistic
to recommend transactional items with a rigid order.

It is quite challenging to learn the relevance and transi-
tion between items in a transactional context. In TBRSs,
a general challenge is to build an attentive context which
outputs the real next choice with a high probability (Ver-
bert et al. 2012). Some existing approaches aim to gener-
ate recommendations by taking a transaction as the con-
text. However, most existing TBRSs utilize a partial con-
text with an ordering assumption. Sequential pattern min-
ing (Yap, Li, and Philip 2012) is used to predict the next
item using associations between items with a rigid order
assumption. However, items in a context may be arbitrary,
which may fail to match any mined patterns. Markov chain
(MC) (Rendle, Freudenthaler, and Schmidt-Thieme 2010;
Cao, Ou, and Yu 2012) is another way to model sequential
data. However, MC only captures the transition from one
item to the next one rather than from a contextual sequence,
i.e., it only captures the first-order transition. Recently, a ma-
trix factorization (MF) based approach (Chou et al. 2016)
factorizes the matrix of transition probability from the cur-
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rent item to the next one into the latent factors. However, MF
easily suffers from sparsity issues due to the power-law dis-
tributed data in the real world (Hu et al. 2016). Inspired by
great success of deep networks, (Hidasi et al. 2015) applied
deep recurrent neural networks (RNN) to model the trans-
action of sequential data but the high computational cost
caused by the complex structures prevents its application to
large data. Moreover, MC, MF and RNN were originally de-
signed for time-series data with a rigid natural order, hence
they do not fit unordered transactions. For example, it makes
no difference whether milk or bread is put into the cart
first. In addition, existing methods do not effectively weight
the items within a context, namely paying more attention to
those relevant items. Such attention distinction is quite im-
portant especially for long transactions which often contain
many items irrelevant to the next choice.

This paper addresses the above issues by proposing
an attention-based transaction embedding model (ATEM).
ATEM builds an attentive context embedding over the em-
beddings (Jian et al. 2017) of all the observed items in a
transaction by identifying the contextual items with high rel-
evance to the next choice. Considering the large number of
items, usually over 105, in real-world business, we build a
shallow wide-in-wide-out network (Goth 2016) to reduce
the time and space cost. Specifically, we incorporate the at-
tention mechanism (Shaonan, Jiajun, and Chengqing 2017)
into the shallow network to build an attentive context over
all the observed items in a transaction without the rigid or-
dering assumption. Thanks to the attention mechanism, the
proposed model is able to pay greater attention to more rel-
evant items and less attention to less relevant ones. As a re-
sult, ATEM is more effective and robust to predict the next
item in a transaction with less constraints. The main contri-
butions of this work are as follows:
• An attention-based model learns an attentive context em-

bedding that intensifies relevant items but downplays
those irrelevant to the next choice. Our method does not
involve a rigid ordering assumption over items in a trans-
action.

• A shallow wide-in-wide-out network implements ATEM,
which is more effective and efficient for learning and pre-
diction over a large number of items.

• Our empirical study shows that (1) ATEM significantly
outperforms the state-of-art TBRSs on two real-world
datasets in both accuracy and novelty; and (2) the atten-
tion mechanism makes a significant difference to TBRSs
by comparing the methods with and without the attention
mechanism.

Related Work

Pattern mining-based approaches are an intuitive solution to
TBRSs. (Adda et al. 2005) introduced relation rule mining
to discover the relations between different objects for recom-
mendations. Considering the order between items, (Yap, Li,
and Philip 2012) introduced a personalized sequential pat-
tern mining-based recommendation framework by applying
a novel Competence Score measure for accurate personal-
ized recommendation. Although simple and effective, these

approaches usually lose those infrequent items (Hu et al.
2017a) due to the minimum support constraint. In addition,
the dynamic context containing arbitrary items may fail to
match any mined frequent patterns (Wang, Bao, and Zhou
2017).

Markov chain (MC) models are another solution to cap-
ture transitions in sequential data (Cao, Ou, and Yu 2012).
(Wu et al. 2013) proposed Personalized Markov Embedding
(PME) to first embed users and songs into a Euclidean space
by modeling sequential singing behaviours and then gener-
ate recommendations based on the embeddings. Recently,
a personalized ranking metric embedding method (PRME)
was proposed to precisely model personalized check-in se-
quences for next POI recommendation (Feng et al. 2015).
Both PME and PRME are first-order MC models built
on rigid ordered data to model the transition between se-
quential items from the same transaction. They may lose
higher-order dependencies and the assumed rigid ordered
data may not always be real-world cases. Inspired by the
great power of matrix factorization (MF), Factorized Per-
sonalized Markov Chains (FPMC) (Rendle, Freudenthaler,
and Schmidt-Thieme 2010) combines the power of MF and
MC to factorize the transition matrix over underlying MC
to model personalized sequential behaviours for next-basket
recommendation. Similar to MC and MF, FPMC also suffers
from the unrealistic rigid order assumption and data sparsity
issue.

Recently, the prosperous deep learning technology has be-
gun to be applied in RS. (Hidasi et al. 2015) adopted RNN
that consists of gated recurrent units into transaction-based
RS to effectively model the long sequences of transactions.
Compared to deep architectures (Wang et al. 2016), shallow
networks are more efficient in dealing with such kinds of is-
sues, especially on large datasets. Particularly, the Word2vec
model has achieved great success in learning the probabil-
ity distribution of candidate words conditional on a bag of
words using a shallow and wide network (Goth 2016).

Lately, inspired by the psychological cognition scheme,
the attention mechanism has shown surprising potential in
context learning-related areas. (Yang et al. 2016a) presented
stacked attention networks (SANs) for image question an-
swering by searching for the regions in an image that are
related to the answer. Another novel model learns sentence
representation with the guidance of human attention (Shao-
nan, Jiajun, and Chengqing 2017). In view of the great suc-
cess of the attention mechanism for context learning in CV
and NLP, we incorporate some ideas and propose ATEM to
model the attentive context for next item recommendation.

Problem Statement

Before going into the details of our proposed model, we first
define the problem and define basic concepts.

Generally, transaction-based recommendations are built
on shopping basket-based transaction data. For a given trans-
actional dataset, let T = {t1, t2...t|T |} be the set of all trans-
actions, and each transaction t = {i1, i2...i|t|} consists of a
subset of items, where |T | denotes the number of elements
in set T . All the items occurring in all transactions constitute
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Figure 1: The ATEM architecture, which first learns item
embeddings and then integrates them into the context em-
bedding for target item prediction, where ‘A’ represents the
attention model.

the whole item set I = {i1, i2...i|I|}. Note that the items in
a transaction t may not have a rigid order. For a given target
item is ∈ t, all the items in t except is are picked up as its
corresponding context c, namely c = t\is. Particularly, an
attentive context means items within the context contribute
differently to the context embedding for next-item recom-
mendation. Given the context c, our ATEM is constructed
and trained as a probabilistic classifier that learns to predict
a conditional probability distribution P (is|c). A total of |t|
training instances are built for each transaction t by picking
up each item as the target one each time.

Therefore, TBRS is boiled down to rank all candidate
items in terms of their conditional probability over the given
context. Note that in the prediction stage, the conditional
probability is computed based on the attentive embedding
of the context c. Such embedding is built on all the contex-
tual items included in c by utilizing the attention mechanism
to learn the weight of each contextual item.

Modeling and Learning

In this section, we first demonstrate the architecture of the
proposed ATEM model, and then discuss how to train the
model and learn the parameters. Finally, we show how to
make predictions and accordingly generate recommenda-
tions using the trained model.

Attention-based Transaction Embedding Model

Overall, from bottom to top, the proposed ATEM model con-
sists of an input layer, an item embedding layer, a context
embedding layer, an output layer, plus an attention layer be-
tween the item and context embedding layers, as shown in
Figure 1. Next, we explain the working mechanism of the
model layer by layer from the input to the output.

Item Embedding Giving a contextual itemset c to the in-
put layer, the input units in the bottom of Figure 1 constitute
a one-hot encoding vector where only the unit at position ij
(ij ∈ c) is set to 1 and all others are set to 0. For each i ∈ c,
we encode it in the same way as ij . Therefore, a vector with
length |I| is achieved to represent each item in the context
and a total of |c| vectors can be achieved for a given context
c.

The information delivered by the sparse one-hot vectors
is limited. In ATEM, we create an embedding mechanism to
map these vectors to an informative and lower-dimensional
vector representation in the item embedding layer, where a
K-dimension real-valued vector hj ∈ R

K is used to rep-
resent the embedding of item ij . The input weight ma-
trix Wi ∈ R

K×|I| is used to fully connect the input-layer
and item embedding-layer. Note that the jth column of the
weight matrix Wi

:,j actually encodes the one-hot vector of
item ij to the real-valued embedding hj , namely:

hj = Wi
:,j (1)

Transactional Context Embedding with Attention
When the embeddings of all items in context c are ready,
we can obtain the embedding ec ∈ R

K of context c by
integrating the embeddings of all items in c. Specifically,
the attentive context embedding is built as a weighted sum
of hj :

ec =
∑

ij∈c

αtjhj , s.t.
∑

ij∈c

αtj = 1 (2)

where αtj is the integration weight of contextual item ij
w.r.t. the target item it, which indicates the contribution
scale of ij to the occurrence of it. In our model, to better
capture the different contribution scale of various contex-
tual items, we develop an attention layer to learn the inte-
gration weights automatically and effectively. Compared to
assigning the weights manually under certain assumptions,
or directly learning the weights without the attention mecha-
nism, our method not only works more flexibly without such
assumptions but also focuses more on the key items and re-
duces the interference from irrelevant items in a long con-
text. Next, we demonstrate how the attention model achieves
the integration weights.

Specifically, we use a softmax layer to determine the
weights of different contextual items. In this case, those con-
textual items more relevant to the target item are given larger
weights, while the input of the softmax is a transformation
of each item embedding.

αtj =
exp(e(hj))∑

s∈ct
exp(e(hs))

(3)

e(hj) = wαhT
j (4)

where wα is an item-level context vector shared by all con-
textual items as shown in Figure 1. The shared context vector
wα can be seen as a high level representation of a fixed query
“which is the informative item” over the contextual items
like that used in memory networks (Kumar et al. 2016). It is
randomly initialized and jointly learned during the training
stage. As wα serves as a weight vector to connect the item
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embedding layer to the attention model, we also refer to it as
attention weight in the following section to keep it consistent
with input and output weights.

Essentially, we measure the importance of each item ij as
the similarity of its embedding hj with the item level con-
text vector wα and get a normalized importance weight αtj

of item ij w.r.t. the target item it through a softmax func-
tion (Yang et al. 2016b). Consequently, the attentive context
representation vector can be computed using Eq. (2).

Target Item Prediction After getting the representation
of context c, we feed it into the output layer for the predic-
tion task, which is shown in the top of Figure 1. Here the
output weight matrix Wo ∈ R

|I|×K is used to fully connect
the context embedding layer and output layer. With the em-
bedding of the given context c plus the weight matrix Wo,
the score St of a target item it w.r.t. the given context c is
computed as:

St(c) = Wo
t,:ec (5)

where Wo
t,: denotes the tth row of Wo. The resultant score

St(c) quantifies the relevance of the target item it w.r.t. the
given context c. As a result, the conditional probability dis-
tribution PΘ(it|c) can be defined in terms of the softmax
function, which is commonly used in neural network or re-
gression model.

PΘ(it|c) = exp(St(c))

Z(c)
(6)

where Z(c) =
∑

i∈I exp(Si(c)) is the normalization con-
stant and Θ = {Wi,wα,Wo} is the model parameters.
Therefore, a probabilistic classifier modeled by our pro-
posed ATEM is obtained to predict the target item.

Learning and Prediction

In the previous subsection, we have described the construc-
tion of a probability classifier over the transaction data d =
〈c, ic〉, where c is the input, namely the context constructed
on the items within a transaction, and ic is the observed out-
put, namely the corresponding relevant item conditional on
this context. Given a training dataset D = {〈c, ic〉}, the joint
probability distribution can be obtained as:

PΘ(D) ∝
∏

d∈D

PΘ(ic|c) (7)

Therefore, the model parameters Θ can be learned by maxi-
mizing the conditional log-likelihood (cf. Eq. (6)):

LΘ =
∑

d∈D

logPΘ(ic|c) =
∑

d∈D

Sic(c)− logZ(c) (8)

Note that, both the evaluation of LΘ and the computation
of its corresponding log-likelihood gradient involve the nor-
malization term Z(c), which needs to sum exp(Sic(c)) over
the entire item set for each training instance. This means,
it takes O(|I| × |D|) time of computation to get the nor-
malization constant for each iteration to train this model.
Unfortunately, |I| and |D| are usually quite large in real-
world business. For example, the Amazon dataset contains
millions of transactions for more than ten thousand of prod-
ucts. Such a high computation cost makes the training pro-
cess intractable.

Noise Contrastive Estimation To tackle the aforemen-
tioned issue, we adopt a subsampling approach to deal
with the softmax layer, namely noise-contrastive estimation
(NCE) (Gutmann and Hyvärinen 2012) which was proposed
for training unnormalized probabilistic models and has been
broadly used to handle similar issues in NLP etc. NCE does
not directly compute the normalization constant of the soft-
max to avoid the high computation cost, instead it works
with the other approximate objective which is much cheaper
to compute.

The main idea of NCE is to use a binary classifier to dis-
tinguish samples from the data distribution from those with
a known noise distribution Q. In our case, given a training
example 〈c, ic〉, the probability of sampling from either a
positive example or K noise examples is represented as a
mixture of these two distributions (Mnih and Teh 2012):

PΘ(y, ic|c) = 1

K + 1
PΘ(ic|c) + K

K + 1
Q(ic) (9)

Then the posterior probability of a sample ic coming from
the data distribution, namely the probability of a positive ex-
ample, is calculated as:

PΘ(y = 1|ic, c) =
PΘ(ic|c)

PΘ(ic|c) + KQ(ic)
≈ exp(Sic (c))

exp(Sic (c)) + KQ(ic)
(10)

where the normalization term Z(c) is dropped from
PΘ(ic|c). This is because the NCE is a normalized estima-
tor where the objective encourages PΘ(ic|c) to be approx-
imately self-normalized (Gutmann and Hyvärinen 2012).
Hence, the probability of ic coming from the noise sam-
ples is PΘ(y = 0|ic, c) = 1 − PΘ(y = 1|ic, c). Subse-
quently, instead of maximizing the original log-likelihood in
Eq. (8), we can maximize the likelihood of the training sam-
ples against K noise samples as (Mnih and Kavukcuoglu
2013):

JΘ(ic, c) = logPΘ(y = 1|ic, c) + KEik∼Q[logPΘ(y = 0|ic, c)]

≈ logPΘ(y = 1|ic, c) +
K∑

k=1

logPΘ(y = 0|ik, c) (11)

Substituting Eq. (10) into Eq. (11), the gradient of JΘ(ic, c)
can be immediately obtained. It approaches the original
maximum likelihood (Eq. (8)) gradient when K increases
(Mnih and Teh 2012). K is empirically set to 8 in our exper-
iments.

∇JΘ(ic, c) =
KQ(ic)

exp(Sic(c)) +KQ(ic)
∇Sic(c)

−
K∑

k=1

exp(Sik (c))

exp(Sik (c)) +KQ(ik)
∇Sik (c) (12)

Learning and Ranking After we get the gradient of
JΘ(ic, c) as illustrated in Eq. (12), all the parameters Θ are
learned by back-propagation. Algorithm 1 briefly summa-
rizes the learning process. Note that ∇e(hj)αtj is the gra-
dient of a softmax function (cf. Eq. (3)) and it can be well
computed (Buntine and Weigend 1994).

In Algorithm 1, � denotes the element-wise product. In-
dex t corresponds to the output item it which includes both
the positive sample ic and all noise ones {ik} and ij ∈ c
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Algorithm 1 ATEM Parameter Learning Using SGD
1: l ← 0
2: while not converged do
3: Compute output weight wo

t,:-gradient (Eq. (5)):
gwo

t,:
← ec

4: Compute attention weight wα
tj-gradient (Eq. (2-5)):

gwα
tj
← Wo

t,: � h2
j �∇e(hj)αtj

5: Compute input weight wi
:,j-gradient (Eq. (1-5)):

gwi
:,j

← Wo�
t,: � (αtj +∇e(hj)αtj �wα � hj)

6: Perform SGD-updates for wo
t,:, w

α
tj and wi

:,j :

wo
t,: ← wo

t,: + Sl
t(g)gwo

t,:
(output weight update),

wα
tj ← wα

tj + Sl
tj(g)gwα

tj
(attention weight update),

wi
:,j ← wi

:,j + Sl
j(g)gwi

:,j
(input weight update)

7: l ← l + 1
8: end while

is one of the input items from the context. w:,j is the cor-
responding input weight (cf. Eq. (1)). A specific gradient-
based update process for the parameter is achieved after we
substitute the gradients demonstrated in Algorithm 1 (cf.
Steps 3-5) into Eq. (12). To reduce the high computation cost
caused by the large number of training samples, we adopt a
mini-batch scheme to train the model, where each batch con-
tains 50 training instances. The details to build the instances
are given in the experimental part. Our experimental results
are achieved by using Adam (Kingma and Ba 2014) for the
specific gradient descent operation.

After all the parameters have been learned by the train-
ing process, the model can be used as a transaction-based
recommender system, which is ready to make predictions
and accordingly generate recommendations. To be specific,
given an arbitrary transaction-based context c containing all
the items chosen in a certain transaction, the probabilities of
choosing each next candidate item can be calculated accord-
ing to Eq. (6) immediately, and then the ranking over all of
them can be achieved accordingly.

Experiments and Evaluation

The empirical study of the proposed ATEM is given in
this section. Specifically, we first setup the experiments
by preparing the experimental datasets and introducing the
comparison methods, and then evaluate the performance in
terms of recommendation accuracy and novelty.

Experimental Setup

Data Preparation We evaluate our method on two real-
world transaction data sets: IJCAI-15 1 and Tafang 2.

First, a shopping-basket-based transaction table is ex-
tracted from each of the original datasets []. The transac-
tion table contains multiple transactions and each transac-
tion consists of multiple items. Note that those transactions

1https://tianchi.aliyun.com/datalab/dataSet.htm?id=1
2http://stackoverflow.com/questions/25014904/download-link-

for-ta-feng-grocery-dataset

Table 1: Statistics of experimental datasets
Statistics IJCAI-15 Tafang

#Transactions 144,936 19,538
#Items 27,863 5,263
Avg. Transaction Length 2.91 7.41
#Training Transactions 141,840 18,840
#Training Instances 412,679 141,768
#Testing Transactions 3,096 698
#Testing Instances 9,030 3,150

containing only one item are removed as they do not fit our
model as we use at least one item as context and another as
the target. Second, the transaction table is split into train-
ing and testing sets. Specifically, we randomly choose 20%
from the transactions happened in last 30 days as the testing
set, while the remainder is for training. Finally, to build the
training and testing instances of format d = 〈c, ic〉 as illus-
trated in last section, for a transaction t, each time one out of
which is picked up as the target item ic and all the remaining
ones are used as the corresponding context c. Subsequently,
for a transaction containing |t| items, |t| instances are built
in total. The characteristics of the datasets are shown in Ta-
ble 1.

During the training stage, transactions in the training set
are imported into the model in batches to learn the context
embeddings. In the testing process, the learned embeddings
are used to predict the target item. The true target item is
used as the ground truth. We calculate the accuracy mea-
sures Recall@K and MRR (Chou et al. 2016) by comparing
the predicted results to the ground truth. However, it is not
enough to evaluate a recommender system only using accu-
racy metrics (Ge, Delgado-Battenfeld, and Jannach 2010).
Considering the fact that an increasing number of customers
prefer to enjoy a more surprising experience by discovering
novel products which they have not chosen before, we also
measure the recommendation novelty by comparing the rec-
ommendation list to the corresponding contextual itemset.

Comparison Methods We use the following representa-
tive start-of-the-art methods as the baselines for the experi-
ments.

• PBRS: A typical pattern-based recommender system
which uses mined frequent patterns to guide the recom-
mendations (Li et al. 2008).

• FPMC: A model that combines matrix factorization and
first-order Markov chains for next-basket recommenda-
tion. The model factorizes the personalized transition
matrix between items with a pairwise interaction model
(Rendle, Freudenthaler, and Schmidt-Thieme 2010).

• PRME: A personalized ranking metric embedding
method (PRME) to model personalized check-in se-
quences in a Markov chain framework. The learned
PRME is used to recommend the next POI of users (Feng
et al. 2015).
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Table 2: Accuracy comparisons on IJCAI-15
Model REC@10 REC@50 MRR

PBRS 0.0780 0.0998 0.0245
FPMC 0.0211 0.0602 0.0232
PRME 0.0555 0.0612 0.0405
GRU4Rec 0.2283 0.3021 0.1586

ATEM 0.3542 0.5134 0.2041
TEM 0.3177 0.3796 0.1918

Table 3: Accuracy comparisons on Tafang
Model REC@10 REC@50 MRR

PBRS 0.0307 0.0307 0.0133
FPMC 0.0191 0.0263 0.0190
PRME 0.0212 0.0305 0.0102
GRU4Rec 0.0628 0.0907 0.0271

ATEM 0.1089 0.2016 0.0347
TEM 0.0789 0.1716 0.0231

• GRU4Rec: A RNN-based approach for session-based rec-
ommendations by modeling the session using a deep RNN
which consists of GRU units (Hidasi et al. 2015).

• TEM: A model similar to ATEM except that it utilizes
distance-based exponential decay (Hu et al. 2017b) to re-
place the attention mechanism to assign the weights man-
ually. The contextual items near to the target one are given
larger weights. This model is built by us to test the effect
of the attention mechanism.

Performance Evaluation

In this section, the accuracy evaluation is first given, fol-
lowed by the novelty evaluation.

Accuracy Evaluation The following commonly used ac-
curacy metrics for transaction-based RS are used for eval-
uation. Note that rating-based RS evaluation metrics, e.g.,
MSE, are not applicable in our work as we do not work on
rating data to predict the ratings.

• REC@K: It measures the recall of the top-K ranked items
in the recommendation list over all the testing instances.
Recall that in the real world, most customers are only in-
terested in the items recommended on the first one or two
web pages, so here we choose K ∈ {10, 50}. In practice,
it is a significant challenge to exactly find the one true
item from thousands of candidates.

• MRR: It measures the mean reciprocal rank of the pre-
dictive position of the true target item on all the testing
instances.

Table 2 and Table 3 demonstrate the results of REC@10,
REC@50 and MRR over the testing sets on two real-world
datasets, respectively. For PBRS, we empirically set the min-
imum support to 0.01 and 0.008 on IJCAI-15 and Tafang
dataset respectively. As it only focuses on those frequent

items and filters out infrequent ones, the performance is not
so good. The number of factors is set to 10 for training the
FPMC to achieve the best performance. However, the ac-
curacy performance of FPMC on both datasets is quite poor.
This is due to the fact that both datasets are extremely sparse
and thus a very large but quite sparse item transition matrix
is constructed on each dataset to train the MF model. For
example, in IJCAI-15 dataset, each transaction only contains
an average of 2.91 items from over 27,000 ones (cf. Table 1).
This indicates each row of the built matrix contains less than
two items. In practice, the non-empty entries account for
less than 0.01%. We set the embedding dimensions to 60
as suggested in (Feng et al. 2015) when training the PRME
model. Compared to FPMC, the performance of PRME is a
little better, but it is still poor. This is because PRME is a
first-order MC model, which learns the transition probabil-
ity over the successive item rather than the whole context.
This may lead to information loss. Furthermore, in the real
word, the purchase of goods does not always follow a rigid
sequence assumed by such kind of models. Benefiting from
the deep structure, GRU4Rec achieves much better perfor-
mance compared to FPMC and PRME.

For our ATEM model, the batch size is empirically set
to 50 and the number of hidden units for item embeddings
is set to 128 and 40 on IJCAI-15 and Tafang dataset re-
spectively. We run 20 epochs to train the model. It clearly
achieves a better performance than GRU4Rec, where the
REC@10 and REC@50 exceed 35% and 50% respectively
on IJCAI-15 dataset. The highest MRR also proves that our
model can effectively put the users’ desired items in the front
of the recommendation list, the reason being that, different
from the previous models which either capture only first-
order dependency between items or capture the dependency
between each contextual item and target one respectively,
ATEM builds an embedding of the context by treating all
the contextual items as a whole. Therefore, the complex de-
pendency relations (e.g., intra-context dependency, context-
target dependency) can be better captured. More impor-
tantly, the attention mechanism is applied here to discrim-
inate the contributions of different contextual items to the
prediction of a certain target item. This actually helps greatly
to build a more informative context embedding for different
target items. From the point of view of real-world applica-
tions, our model has a very shallow and concise structure
for easy training, which makes it more efficient to recom-
pute the scores for ranking all candidate items when con-
texts keep updating in online recommendations, compared
to those complex and deep models (e.g., GRU4Rec).

The settings of TEM are kept the same as ATEM and
the parameter λ in exponential decay is set to 0.75 to ob-
tain the best performance. The performance of TEM is ob-
viously weaker than ATEM. This is caused by the distance
assumption used in TEM, which essentially still has an order
assumption over items within a transaction. This may not be
consistent with real-word cases, as previously stated.

The Effect of Context Length Although longer transac-
tional contexts consisting of more items may be more in-
formative, they may be more fragile and contain irrelevant
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Table 4: Accuracy on disordered IJCAI-15
Model REC@10 REC@50 MRR

PBRS 0.0500 0.0559 0.0185
FPMC 0.0151 0.0412 0.0183
PRME 0.0346 0.0389 0.0351
GRU4Rec 0.1636 0.2121 0.1022

ATEM 0.3423 0.4981 0.1960
TEM 0.2660 0.3012 0.1431

items, resulting in reduced recommendation accuracy when
these are not identified. To show the advantages of our model
under varies lengths of contexts, we test the effect of context
length. Figure 2 illustrates that longer contexts benefit accu-
racy, and our method clearly outperforms the others under
longer contexts, such as a context consisting of four items
(denoted as Len-4). Note that PBRS, FPMC and PRME are
mainly first-order dependency based and thus are not sensi-
tive to context length. Hence, they are not included in this
test.
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Figure 2: ATEM achieves higher REC@10 and MRR than
the other approaches, especially under long contexts.

The Effect of Item Order To test the effect of the order
of items within a transaction on recommendation accuracy,
we randomize the default item order in the IJCAI-15 data
to build a disordered dataset. Table 4 shows the accuracy of
different methods on this new data. Compared to the results
in Table 2, other approaches experience much more perfor-
mance degradation than ATEM. This indicates the stronger
ability of ATEM compared to the other methods in handling
disordered data.

Novelty Evaluation Except for accuracy, novelty is an-
other important quality which should be considered in real-
world RS (Wang, Hu, and Cao 2017). Recall that by con-
sidering what a customer has already chosen in a trans-
action (transactional context), our proposed TBRS can ef-
fectively avoid recommending duplicate items and suggest
some novel items which can result in a surprising experi-
ence. Therefore, we define a novelty measure to quantify
the difference between the given context and the recommen-
dation list. The larger the difference, the higher the novelty.
It should be noted that the aforementioned accuracy guaran-
tees the relevance of recommended items, so highly novel
items are also of high relevance.

MCAN@K: In our model, the items which have already
been chosen correspond to the context c used for recom-
mendation R. Subsequently, this novelty measures the mean
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Figure 3: ATEM achieves higher novelty than the other ap-
proaches.

non-overlap ratio between each context-recommendation
pair 〈ci, Ri〉 over all N top-K recommendations.

MCAN =
1

N

N∑

i=1

(1− |Ri ∩ ci|
|Ri| ) (11)

Figure 3 illustrates the results of novelty comparison on the
two datasets. PBRS only results in frequent patterns, hence
it is difficult to match the whole context exactly, especially
for long contexts. Subsequently, low novelty is achieved
without considering all the contextual items. FPMC does
not learn its parameters well on such sparse datasets, so it
outputs relatively random recommendations. Accordingly,
FPMC obtain low novelty. PRME is a first-order MC model
which makes recommendations by only considering the ex-
act prior item while ignoring other contextual items, so it
may recommend duplicate items and thus lead to low nov-
elty. GRU4Rec can accumulate the influence of all the se-
quential items from the context to make relatively reliable
and novel recommendations. Compared to the aforemen-
tioned methods, our model not only considers the whole
context but also tries to build an attentive context embedding
utilizing attention mechanism. Consequently, it is easier for
us to generate novel and relevant recommendations.

In summary, the higher accuracy and novelty of the next-
item recommended by ATEM than the baselines verifies the
significance of weighting all the contextual items in building
an attentive context embedding for transaction-based rec-
ommender systems. In addition, the power of the attention
mechanism is further justified by the comparison between
ATEM and TEM.

Conclusions
To effectively recommend the next item within a trans-
actional context, which cannot be addressed by existing
next-basket and next-items recommender systems, this work
proposed an attention-based transaction embedding model
ATEM. ATEM is a shallow wide-in-wide-out neural net-
work. It learns an attentive context embedding that is ex-
pected to be the most relevant to the next choice over all the
observed items in a transaction. The empirical evaluation on
the real-world transactional data shows its significant supe-
riority in addressing gaps in state-of-the-art approaches. We
will explore the application of ATEM to other problems such
as the author-topic relation learning (Rosen-Zvi et al. 2010).
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