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Abstract

In this paper, we propose solutions to advance answer se-
lection in Community Question Answering (CQA). Unlike
previous works, we propose a hybrid attention mechanism
to model question-answer pairs. Specifically, for each word,
we calculate the intra-sentence attention indicating its local
importance and the inter-sentence attention implying its im-
portance to the counterpart sentence. The inter-sentence at-
tention is based on the interactions between question-answer
pairs, and the combination of these two attention mechanisms
enables us to align the most informative parts in question-
answer pairs for sentence matching. Additionally, we exploit
user information for answer selection due to the fact that users
are more likely to provide correct answers in their areas of ex-
pertise. We model users from their written answers to allevi-
ate data sparsity problem, and then learn user representations
according to the informative parts in sentences that are useful
for question-answer matching task. This mean of modelling
users can bridge the semantic gap between different users, as
similar users may have the same way of wording their an-
swers. The representations of users, questions and answers
are learnt in an end-to-end neural network in a mean that best
explains the interrelation between question-answer pairs. We
validate the proposed model on a public dataset, and demon-
strate its advantages over the baselines with thorough experi-
ments.

Introduction

One of the important task in CQA is automatically select-
ing the correct answer for a specific question, given the fact
that the CQA forums have accumulated a large quantity of
questions and the corresponding answers (Zhang et al. 2017;
van Dijk, Tsagkias, and de Rijke 2015). Selecting the correct
answer can also maximize user engagement with the site and
minimize the time for satisfying users seeking for correct an-
swers to their questions (Elkahky, Song, and He 2015).

Many latest research leverage deep learning methods to
model the latent representations of question answering (QA)
text pairs for texts matching. The deep learning methods
can avoid feature engineering and bridge the lexical gap be-
tween text pairs. However, there are some shortcomings in
the those neural networks based methods. To begin with,
some solutions (Severyn and Moschitti 2015; Hu et al. 2014;
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Wang and Nyberg 2015) propose to model the latent rep-
resentations of question and its answer independently and
defer their interactions later in the softmax or classification
layer (Yang et al. 2016). The later interactions between QA
text pairs hinder the model to learn the distributed represen-
tations of words, hence the latent representations of QA text
pairs are not semantic enough to mitigate the lexical gap.
To overcome this limitation, some other methods (Yang et
al. 2016; Shen et al. 2017) calculate the matching matrix
that represents the interactions of sentence word pairs, and
employ neural networks on top of it to derive the seman-
tic similarity between QA pairs. However, those methods do
not learn the representations of QA pairs, and the interaction
matrix is static through the learning process, so the perfor-
mance of the models is limited by the way that the interac-
tion matrix is calculated.

To deal with the shortcomings of the aforementioned so-
lutions, in this paper, we propose a hybrid attention mech-
anism for semantic QA pairs matching. The basic idea un-
derlying this method is that, useful parts in sentences for
sentence matching need to be locally important (e.g. key-
words) and mutually important at the same time. We first
calculate individual attentions for each question and answer
independently, and then for each word, we calculate its at-
tentions over the words in the counterpart sentence. The for-
mer attention (individual attention) indicates local impor-
tance of a word while the entropy of the later (interactive
attention) implies the importance of a word with respect
to the counterpart sentence. By combining these two at-
tention mechanisms together, we can align the most infor-
mative parts in each sentence for the matching task. The
interactive attentions are calculated based on the interac-
tions between representations of QA pairs, and the inter-
actions are expressed by the way how the words attend
to each other. This coupled interaction and attention pro-
vides a deep insight of soft-alignment between QA text
pairs. Although attentive neural networks have been applied
in answer selection in previous works (Zhang et al. 2017;
Yin et al. 2015), they simply compute attention weights
for each sentence separately. Specifically, they use atten-
tion mechanism to model local importance of each word and
summary a sentence based on the weighted word represen-
tations.

Furthermore, most of the existing works only model the
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semantic similarity between QA pairs for answer selection,
while we also exploit other latent factors underlying the
correct answer. The motivation is that, answerers are more
likely to provide correct answers for questions on their in-
terested topics or in their areas of expertise. Therefore, by
modelling users, we can bridge the gap between different
users may have the same way of expressing their answers
for a same question. Unlike the previous work (Zhao et al.
2017) that also exploits user information, we model users
from user-generated answers to alleviate the data sparsity
problem, and learn user representations in a way that they
can attend to informative parts in questions for answer selec-
tion. This joint modelling of users and questions is capable
of finding composite and conclusive user representations for
a specific answer selection task.

This paper makes the following contributions:

• We propose a hybrid attention mechanism for answer se-
lection in CQA, which takes into consideration the local
and mutual importance of the words in QA pairs, and can
align the most informative parts for sentence matching.

• We jointly model users and questions in our neural net-
work. The user representations are learnt by explicitly at-
tending to the informative question parts for answer se-
lection task. Therefore, user representations are learnt in
a way that best explains user expertise on question topics.

• We demonstrate the effectiveness of the proposed method
with thorough experiments on publicly available dataset,
and valid the advantage of the proposed method by com-
paring with the state-of-the-art methods.

Model

In this paper, we formulate answer selection as classification
problem. That is given a question q = {wq

t }L
q

t=1, a candidate
answer a = {wa

t }L
q

t=1 and a text u = {wu
t }L

u

t=1 of the user
who provides the answer, our model is to learn a scoring
function f(q, a, u) ∈ [0, 1] that produces 1 if an answer a is
a correct answer to a question q and 0 otherwise, where wq

t ,
wa

t and wu
t are the t−th word in the question, the answer

and the user text respectively, and Lq , La and Lu are their
lengths. In this paper, a user text is all the answers provided
by the user. Fig. 1 shows the overview architecture of the
proposed model. Generally, the input data goes through the
embedding layer, latent representation layer, attention and
interaction layer, hidden layer and finally output layer. The
detail of each layer is described in the following subsections.

Embedding

We first convert words in the sentences of questions and an-
swers into their corresponding word-level embeddings with
Glove (Pennington, Socher, and Manning 2014). The row-
rank embedding vectors are able to capture the distribu-
tional syntactic and semantic information via the word co-
occurrence statistics (Bengio et al. 2003), and the words with
similar context are positioned in close proximity to each
other in the embedding space.

In this paper, the embedding vectors of words in the train-
ing set are initialized with Glove, and remain unchanged

during the learning process. To conclude, through the em-
bedding layer, a question and an answer can be represented
as a set of embedding vectors:

Eq = {xq
t}L

q

t=1

Ea = {xa
t }L

a

t=1

(1)

where xa
t ,x

q
t ∈ R

k, and k is the embedding size.

Latent Representation

Recurrent Neural Networks (RNNs) are widely applied in
natural language processing (NLP) tasks, such as machine
translation (Sutskever, Vinyals, and Le 2014), textual en-
tailment recognition (Bowman et al. 2015), and language
modelling (Zaremba, Sutskever, and Vinyals 2014). RNNs
are mainly proposed to model sequence, and non-linearly
transform input vectors into corresponding hidden vectors
in a way that optimizes a customized objective function. The
long-term history is preserved in RNNs as the hidden vector
at current time step depends on the hidden vector at previous
time step. Long Short Term Memory (LSTM) is one popular
variation of RNN that is first proposed in (Hochreiter and
Schmidhuber 1997) to alleviate the gradient vanishing prob-
lem of RNN. LSTM introduces three gates and a memory
cell to control the data flow within the unit. Given an input
sequence x = {x1,x1, · · · ,xT }, the hidden vector at time
step t, ht is calculate as follows.

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf )

ot = σ(Woxt +Uoht−1 + bo)

ct = ft � ct−1 + it � tanh(Wcxt +Ucht−1 + bc)

ht = ot ∗ tanh(ct)

(2)

where Wi,Wf ,Wo,Wc ∈ R
k×k are the trainable trans-

formation matrices and bi,bf ,bo,bc ∈ R
k are the cor-

responding biases that parameterize the gates, σ is the
element-wise sigmoid function and � is the element-wise
multiplication of two vectors. The three gates in a LSTM
unit are input gate (it), output gate (ot) and forget gate (ft),
where the input gate denotes the impact of input vectors on
the memory cell (ct), the output gate allows the memory gate
to have impact on the output and the forget get determines
how the memory cell depends on its previous state.

With the LSTM, the latent representations of question and
answer sentence are as follows.

Hq = {hq
t}L

q

t=1 = LSTM({xq
t}L

q

t=1)

Ha = {ha
t }L

a

t=1 = LSTM({xa
t }L

a

t=1)
(3)

Hybrid Attention

Attention mechanism has been successfully applied into a
wide range of NLP related tasks, including sentence summa-
rization (Rush, Chopra, and Weston 2015), machine transla-
tion (Bahdanau, Cho, and Bengio 2014; Sutskever, Vinyals,
and Le 2014). The basic idea underlying attentive mecha-
nism is that it is not necessary to capture semantics of a
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Figure 1: The overview of the proposed neural network

whole sentence (Rocktäschel et al. 2015). On the contrary,
one should put more emphasis on sentence parts that are in-
formative and useful for texts matching, while ignore noisy
and meaningless parts. In addition, interaction between QA
pairs plays an important role in QA matching, as it requires
the alignment of semantically similar parts between a sen-
tence and its counterpart.

In this paper, we propose a hybrid attention mechanism to
capture both local and mutual importance of a word in QA
pairs. We first calculate attention weights for the words in
question and answer sentences separately, which indicate the
importance of words in a sentence. In parallel, we calculate
the attention over the words in one sentence for each word
in the counterpart sentence. The information entropy of this
attention weights indicates the importance of each word to
the other sentence. By combining the two attention mecha-
nisms, we can align the informative parts in inter-sentence
and intra-sentence for sentence matching. The individual at-
tentions are obtained by Eq.(4).

αq = softmax(wT
1 H

q) (4)

where w1 ∈ R
k is a trainable transformation vector, and

αq is the attention vector for a question sentence with αq
i in-

dicating the importance of i-th word in the question sentence
(Zhai et al. 2016), and the attention of a word can be vary in
different sentences, so it is referred to as local importance of
a word.

Inspired by (Rocktäschel et al. 2015), we utilize the word-
level attention mechanism to calculate interactive attentions.
Instead of using the attention to generate words, we exploit
the alignment of important parts for encoding the sentence
pairs. In addition, the attention is based on the interactions
between word pairs rather than their linearly combination.

Specifically, let hq
i be the hidden vector for the i-th word

in a question sentence, and ha
j be the hidden vector for the

j-th word in the corresponding answer sentence, then the
question word’s attention over the answer words is obtained
as follow.

mij = tanh(Wqhq
i +Waha

j +Wqa(hq
i � ha

j ))

γq
i = softmax(wT

2 mi,:)

βq
i = H(γq

i )

(5)

where Wq,Wa,Wqa ∈ R
k×k are trainable transforma-

tion matrices, w2 is a trainable vector. hq
i � ha

j explicitly
models the interaction between a question-answer pair, and
mij ∈ R

k is a non-linear combination of hq
i ,h

a
j , and the

interaction between them, representing the intermediate at-
tention of i-th word in the question over j-th word in the
answer. mi,: ∈ R

k×La

is a matrix where the j-th column
is mij . Finally, γq

i ∈ R
La

is a vector containing attentions
over the words in the answer for i-th word in the question,
and βq

i is the information entropy of the attention vector.
γq
i depicts the attention distribution of i-th word over the

words in the answer. The lower the entropy is, the more
likely the word matches some parts of the answer. Therefore,
the entropy βq

i implies the mutual importance of i-word for
question-answer matching task.

Finally, the representation of a question can be summa-
rized as in Eq.(6). The significance underlying Eq.(6) is two-
fold. On one hand, if a word is locally important but does
not align well with the words in the counterpart sentence, it
needs to be endowed with less importance as it is useless for
semantic matching. On the other hand, if a word is highly
related to the counterpart sentence but is not a keyword (e.g.
stop words), it should be neglected as it can mislead sentence
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matching.

ηi =
exp(αq

i /β
q
i )∑

j exp(α
q
j/β

q
j )

h̃q =
Lq∑

i=1

ηih
q
i

(6)

The representation of an answer sentence h̃a can be ob-
tained in a similar way.

User Modelling

The rationale of modelling users is that users are more
likely to contribute answers of good quality if the ques-
tions reside in their areas of expertise. Therefore, the user’s
expertise with respect to a question has strong indication
of the correctness of his/her answer. Notice that previ-
ous work (Zhao et al. 2017) also considers users’ infor-
mation for answer selection. However, modelling users di-
rectly from the user-question relations makes their model
suffering from cold-start problem, and using inner prod-
uct to measure the similarity between user and question
is inappropriate as they are from different feature spaces.
Many recommender systems (Zheng, Noroozi, and Yu 2017;
Zhang et al. 2016) model users with the user-generated texts
to alleviate the data sparsity problem. Similarly, we model
user representations using information contained in their an-
swers, and let them interact with the representations of ques-
tions, so that we can model the user expertise and question
topics jointly, which can potentially benefit answer selec-
tion. In our case, representations of a user and a question in-
dicate user expertise and question latent topics respectively,
and the matching between them represents the user’s exper-
tise level with respect to the question.

Formally, we concatenate all the answers provided by a
user into a single document, u = {wu

k}L
u

k=1, where Lu is the
length of the document. After that, we transform each doc-
ument into embedding vectors with Glove: Eu = {xu

k}L
u

k=1.
The embedding vectors are then fed into a convolution layer
and a max pooling layer to obtain a representation for each
document. Specifically, for each filter map Kj ∈ R

(k×m),
we generate a feature map when moving the filter map
through the embedding vectors. The feature map is a vec-
tor as shown in Eq.(7), where k is the embedding size and
m is the filter size.

zt = f(Eu
[1:k,t:t+m−1] ∗Kj + bj)

fj = {z1, z2, · · · , zLu−m+1}
(7)

where ∗ is convolution operator and f is an activation
function (i.e. relu). We then apply max pooling operation
over each feature map to extract the most important feature,
as presented in Eq.(8). In practice, we apply filter maps of
various sizes to the embedding vectors, and set the number
of filter map to be equal to the dimension of question repre-
sentations so that users and questions can interact with each
other.

oj = max{z1, z2, · · · , zLu−m+1}
hu = {o1, o2, · · · , ok} (8)

The reason of utilizing attention mechanism to model the
interactions between users and questions is that, question
sentences usually contain noisy text, and only a small set
of them can describe user expertise or interests. Therefore,
those keywords need to be attended and endowed with more
importance. The attentions are based on both of the question
sentences and users due to the fact that users have different
areas of expertise or interests.

U = hu ⊕ eLq

M = tanh(WhHq +WuU+Wqu(U�Hq)

λ = softmax(wT
3 M)

θi =
exp(λiα

q
i /β

q
i )∑

j exp(λjα
q
j/β

q
j )

h̃u =
Lq∑

i=1

θih
q
i

(9)

where hu⊕eLq is the operation that repeats the vector hu

for Lq times, and Wh,Wu,Wqu ∈ R
k×k and w3 ∈ R

k

are trainable parameters in our model. The latent vector h̃u

is the attended question vector for a specific user considering
both of the user representation and the informative parts in
the question tailored for answer selection, hence it is more
informative and conclusive for a specific answer selection
problem than the user representation hu.

Hidden layer

This hidden layer takes the representations of a question, a
candidate answer and the user who provides the answer as
input, and outputs a final hidden representation for the tu-
ple (q, a, u). The representation is a non-linear combination
of the respective representations of the question, the answer
and the user.

h = tanh(W̃qh̃q + W̃ah̃a + W̃uh̃u) (10)

where W̃q,W̃a,W̃u ∈ R
k×k are the trainable projec-

tion matrices, and h is the final representation for a (q, a, u)
tuple.

Output Layer

The output vector from the hidden layer is then passed
through a fully connected softmax layer that outputs a pos-
terior probability for each class given a (q, a, u) tuple.

p(y = i|(q, a, u)) = exp(wih+ bi)∑
j exp(wjh+ bj)

(11)

where wi ∈ R
k, bi ∈ R are trainable parameters for i-

th class in the output layer. We formulate the answer selec-
tion problem as a binary classification problem, and p(y =
1|(q, a, u)) is the probability that answer a is a correct an-
swer for question q.
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Train Dev Test
Num. of ques. 5319 244 327
Num. of QA pairs 39563 2440 3270
Avg. len. of ques. 45 53 55
Avg. len. of ans. 37 36 37

Table 1: Statistics of SemEval-2016 Task 3

Training

In this work, we define an end-to-end neural network for
answer selection, so the parameters in the network are tuned
collaboratively towards the optimization of the pre-defined
objective function as shown in Eq.(12).

loss =
∑

(q,a,u,i)∈D

−logp(y = i|(q, a, u)) (12)

where D is the training set, and i ∈ {0, 1} is the ground
truth for a (q, a, u) tuple, in which i = 1 means a is a cor-
rect answer for q, and i = 0 otherwise. We use stochastic
gradient descent (SGD) with Adam (Kingma and Ba 2014)
optimizer to minimize the object function. In our end-to-end
neural network, the input data flow through the aforemen-
tioned layers till the output layer, based on which the er-
ror is calculated and back propagated to the network to up-
date the trainable parameters. Therefore, all the hidden vec-
tors are learnt collaboratively towards optimizing the object
function, and this learning process allows the hidden vectors
to best characterize the semantic matching between QA text
pairs.

Experiment

Dataset

We validate the proposed method on SemEval-2016 Task
3: Community Question Answering (AlessandroMoschitti
et al. 2016), as it’s a public dataset containing user ID of
each question and answer. Another dataset having user in-
formation is the Quora dataset (Zhao et al. 2017), but it is
not publicly available. In SemEval-2016 Task 3, a question
is followed by several comments, and each comment is la-
belled with one of three labels: “Good”, “Bad” and “Poten-
tiallyUseful”. A comment is equal to an answer, and it is
considered to be correct if it is labelled with “Good”, and in-
correct otherwise. Table.1 presents the statistics of the CQA
dataset used in this paper. There are 8274 users and each
user provides 4.7 answers on average.

Experiment Setup

We use Glove to obtain word embeddings of 100 dimen-
sions, and fix them during the training process, thus we are
able to preserve the semantic similarity between those words
and unseen similar words in the validation and testing phase.
As for the out-of-vocabulary words, their embeddings are
set by randomly sampling values uniformly from (-0.1, 0.1).
The max length of questions and answers are set to 60 and
40 respectively, and all input vectors are padded with 0 to
the max length.

All hyper-parameters are tuned on the development
dataset with grid search. Specifically, the number of LSTM
layers for modelling questions and answers is varied in the
range [1,4], and the hidden size k of all LSTM layers and
the dimension of hidden layers are amongst {32, 64, 128,
256, 512} separately. As for the CNNs that model user in-
formation, the filter size is tuned in the range [3, 5] while
the number of filter map is set to the hidden size k. For
alleviating overfitting, we apply dropout of 0.5 on the out-
put of LSTMs and CNNs. As for the training configuration,
the initial learning rate for Adam optimizer are searched in
amongst {1e-4, 1e-3, 1e-2}. The batch size is fixed to 64 and
the model is trained for a maximum of 100 epochs. We eval-
uate the model at every epoch and save the parameters for
the top model.

Baselines

We compare our model with other baselines shown in the
following lists. For fair comparison, we add additional fea-
tures to some models as the authors mentioned in their
works, such as counts of word overlap in (Tay et al. 2017),
and the length of a question in (Zhang et al. 2017), and the
hyperparameters are selected as specified in those works.

• CNN obtains representations of each sentence with CNN
and concatenates them with the their similarity in the
joint layer, then uses fully connected layers to produce
the matching score (Severyn and Moschitti 2015).

• CNTN has the same architecture as CNN except that it
uses neural tensor network for calculating the matching
score (Qiu and Huang 2015).

• HD-LSTM finds sentence representations with LSTM
and produces the matching score with holographic com-
position (Tay et al. 2017).

• MV-LSTM models sentence interactions and max-pool
the top k values for sentence matching (Wan et al. 2016).

• WEC models sentence interactions with a matrix and ap-
plies CNNs and multi-layer perceptron (MLP) to produce
the final matching score (Shen et al. 2017).

• AI-CNN computes the interactions of sentence pair,
which results in a 3-D matrix. It then uses max-pooling
and attention mechanism to summarize each sentence for
final matching (Zhang et al. 2017).

• AMRNL finds representations for questions and answers
with LSTM, and models users from question-user rela-
tions. Finally, it calculates question-answer and question-
user similarity for answer selection (Zhao et al. 2017).

• UIA-LSTM-CNN our model that employs hybrid atten-
tion mechanism to model QA pairs, and explicitly models
users for answer selection.

Comparison

We evaluate the listed models with a ranking metric, Mean
Average Precision (MAP), and a classification metric, Accu-
racy. MAP is the average precision across all questions, and
it is defined as 1

|Q|
∑

q∈Q AvgP (q).
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Model MAP Accuracy
CNN 0.7557 0.7345
CNTN 0.7583 0.7375
HD-LSTM 0.7821 0.7581
MV-LSTM 0.7669 0.7409
WEC 0.7602 0.7325
AI-CNN 0.7891 0.7628
AMRNL 0.7043 0.6854
UIA-LSTM-CNN 0.8086 0.7817

Table 2: Experimental results of all deep learning models on
dataset SemEval-2016 Task 3

We divide the baseline models into three group. The first
group (i.e. CNN, CNTN, HD-LSTM) learns question and
answer representations independently, and defers their in-
teractions later in the neural network. On the contrary, the
second group (i.e. MV-LSTM, WEC, AI-CNN) explicitly
models the word-to-word interactions with a matrix, and
applies different methods (e.g. max-pooling, convolution)
to extract deep features. Finally, the third group (i.e. AM-
RNL) models users for answer selection. From Table.2 we
can observe that our model outperforms the models in the
first group significantly (3.4% higher than the best model in
MAP, and 3.1% in accuracy). The reason is that sentence in-
teractions are deferred until the sentence representations ma-
tures (Yang et al. 2016) in those models, as a result the sen-
tence representations cannot be sufficiently learnt to char-
acterize the semantic similarity between question-answer
pairs. HD-LSTM achieves the best result in the first group,
demonstrating the effectiveness of holographic composition
for learning rich representations (Tay et al. 2017). Compared
with models in the second group, our model achieves better
performance with large margin (2.5% higher than the best
model in MAP and accuracy). The reason is that word-to-
word matches do not necessarily capture the most informa-
tive alignment for answer selection. For example, the top-
k matching values max-pooled from the interaction matrix
can be signalled by useless text (e.g. stop words), and they
can mislead the sentence matching task. Although AI-CNN
adopts attention mechanism, it only concatenates question
and answer representations as a way of interaction, which
incurs additional learning efforts and cannot capture word-
to-word semantic alignment. In addition, its attention cal-
culations are based on word-to-word relations and it suf-
fers from the same problem as those models in the second
group. Expectedly, AMRNL performs worst compared with
all the other models, as it learns user representations from
user-question relations, and it faces the problem of cold-start
problem in conventional collaborative learning methods. On
the contrary, we leverage user-written answers to bridge the
gaps among user representations. Additionally, they learn
the embedding vectors for a large number of users, and it can
easily cause the problem of overfitting. Finally, they simply
model sentences with LSTM and take the last hidden state
for sentences matching, which faces the risk of long depen-
dency and losing details.

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

32 64 128 256 512

M
A
P

hidden size

ACI-LSTM-CNN
 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

32 64 128 256 512

a
c
c
u
r
a
c
y

hidden size

UIA-LSTM-CNN

Figure 2: The influence of hidden size on model perfor-
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Figure 3: The influence of LSTM layer number on model
performance

Parameters Analysis

In this subsection, we analyze the model sensitivity to the
hidden size and the number of LSTM layers, and the results
are presented in Fig.2 and Fig.3 respectively. From the fig-
ures we can observe that there is always a tradeoff between
model complexity and overfitting. Specifically, to capture
the deep representational features for sentence matching, we
need to increase the model complexity to avoid information
loss. However, too many parameters can render the model
to overfit the training data and not generalized enough to
the testing data. Therefore, it is not surprising to see that
our model achieves the best result when we set the hidden
size to 128 with two stacked LSTMs. Another interesting
observation is that, our model is less sensitive to the number
of LSTM layers. The reason is that the number of parame-
ters (e.g. transformation matrices) in our model is O(n) to
the number of LSTM layers, and it is O(n2) to the hidden
size. Therefore, the squarely growth of parameters can cause
overfitting more quickly than the linearly growth of param-
eters.

Attention Analysis

Fig.4 shows an example of attention visualization in which
the attentions with red background is the combination of
individual and interactive attentions between the question-
answer pair while the attentions with blue background is
the user’s attentions over the question. From the visual-
ization we have the following observations. First, the in-
formative parts for sentence matching are aligned well in
our model. Examples include (‘massage’, ‘where’, ‘best’,
‘place’, ‘1000’, ‘QR’) in the question, and (‘massage’,
‘next’, ‘to’, ‘120’, ‘riyal’, ‘not’ , ‘bad’) in the answer. Sec-
ond, some semantically related words are endowed with less
importance because they are not useful for sentence align-
ment. These examples include (‘me’, ‘you’, ‘it’), and (‘you’,
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Figure 4: An example of attention visualization

‘us’, ‘everybody’, ‘where’). Notice that the word ‘where’ in
the question gains more attention than it does in the answer,
as the word’s occurrence in a question indicates the ques-
tion topic, and its presence in an answer does not provide
any information. Finally, the user’s expertise is explicitly
modelled through his/her attentions over the question. This
user usually provides good answers suggesting good places
to go, such as shopping place, nightclub and medical spa.
Therefore, the words such as (‘best’, ‘place’, ‘go’, ‘answer’)
gain more attention. However, the user also attends to other
words, this is because we include the attended question for
calculating the user’s attention over the question (i.e. α, β in
Eq.(9)).

Related Work

Answer selection plays an important role in CQA, and it has
been formulated as a classification or ranking problem in
previous research with machine learning methods. The key
problem in answer selection is how to model the represen-
tations of QA text pairs and the interactions between them.
Early works heavily rely on hand-craft features for repre-
senting QA text pairs and calculating the matching score
between them. Representational works include (Filice et al.
2016; Tymoshenko and Moschitti 2015). The disadvantage
of these works is that they require hand-crafted syntactic
and semantic feature engineering, linguistic tools, external
resources and domain expertise.

Recently, deep learning methods have been applied in
answer selection in CQA. In those methods, deep neural
networks are applied to learn the latent representations of
question and answer sentence independently, and a func-
tion is utilized to give the matching score of two texts.
The most profound works include (Wang and Nyberg 2015;
Yu et al. 2014; Severyn and Moschitti 2015; Hu et al. 2014;
Qiu and Huang 2015; Tay et al. 2017). However, these meth-
ods learn the representations for QA pairs independently and
defer their interactions in the later phase, which results in
insufficient exploitation of the semantic correlation between
the respective representation of QA pairs.

To explore the deep correlation between QA pairs, many
research explicitly model the interactions between question

and answer sentences. The interactions are usually formu-
lated as matrices containing results of word-to-word op-
erations (e.g. concatenation, dot product), and then fur-
ther operations (e.g. convolution, max-pooling) are em-
ployed to retrieve the similarity between QA pairs. Repre-
sentative works include (Hu et al. 2014; Yang et al. 2016;
Shen et al. 2017; Wan et al. 2016; Zhang et al. 2017;
Yin et al. 2015). However, those methods statically model
the interactions between sentence pairs (e.g. cosine simi-
larity of word embedding of word-to-word pairs), and the
model performance is limited by the way that the interac-
tions are defined. By contrast, we propose a hybrid atten-
tion mechanism that is able to capture the most informa-
tive parts for sentence matching. In addition, we model users
from user-generated answers and attend them to the useful
parts in questions, thus we can explicitly exploit user ex-
pertise for answer selection. Some works (Fang et al. 2016;
Zhao et al. 2017) also model users for answer selection.
They simply utilize user-question relations to independently
model users, which suffers from data sparsity problem.
While we model users from user-written texts and learn user
representations in a way that it can attend to informative
parts in questions for answer selection.

Conclusion

In this paper, we propose a hybrid attention deep neural
network for answer selection in CQA. Specifically, we cal-
culate attentions for each individual sentence (i.e. question
or answer), which indicate the important parts for summa-
rizing the sentence. Simultaneously, we calculate attentions
between question-answer pairs based on their interactions,
which signify the importance of a word in a sentence with
respect to the counterpart sentence. This hybrid attention
mechanism enables us to find the most informative words
for sentence matching. In addition, we model users in the
proposed model based on the fact that users are more likely
to provide correct answers in their areas of expertise. As
such, users are first modelled from the user-written answers
to void data sparsity problem, and then they are attended
to the informative parts in questions for question-answer
matching. Finally, all the parameters in our end-to-end neu-
ral network are collaboratively learnt towards the optimiza-
tion of the pre-defined objective function. We validate the
proposed model on a public dataset and demonstrate its ad-
vantages over the state-of-the-art baselines with thorough
experiments.
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