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Abstract

Recent work has shown that temporally extended actions (op-
tions) can be learned fully end-to-end as opposed to being
specified in advance. While the problem of how to learn op-
tions is increasingly well understood, the question of what
good options should be has remained elusive. We formulate
our answer to what good options should be in the bounded ra-
tionality framework (Simon, 1957) through the notion of de-
liberation cost. We then derive practical gradient-based learn-
ing algorithms to implement this objective. Our results in the
Arcade Learning Environment (ALE) show increased perfor-
mance and interpretability.

Introduction
Temporal abstraction has a rich history in AI (Minsky 1961;
Fikes et al. 1972; Kuipers 1979; Korf 1983; Iba 1989;
Drescher 1991; Dayan and Hinton 1992; Kaelbling 1993;
Thrun and Schwartz 1995; Parr and Russell 1998; Dietterich
1998) and has been presented as a useful mechanism for
a variety of problems that affect AI systems in may set-
tings, including to: generate shorter plans, speed up plan-
ning, improve generalization, yield better exploration, in-
crease robustness against model mis-specification or partial
observability. In reinforcement learning, options (Sutton et
al. 1999b) provide a framework to represent, learn and plan
with temporally extended actions. Interest in temporal ab-
straction in reinforcement learning has increased substan-
tially in the last couple of years, due to a series of success in
constructing such abstractions automatically from data, e.g.
(Bacon et al. 2017; Kulkarni et al. 2016; Daniel et al. 2016;
Mankowitz et al. 2016; Machado et al. 2017). However,
defining what constitutes a good set of options remains an
open problem.

In this paper, we aim to leverage the bounded ratio-
nality framework (Simon 1957) in order to explain what
would make good temporal abstractions for an RL system.
A lot of existing reinforcement learning work has focused
on Markov Decision Processes, where optimal policies can
be obtained under certain assumptions. However, optimal-
ity does not take into account possible resource limitations
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of the agent, which is assumed to have access to a lot of
data and computation time. Indeed, options help agents over-
come such limitations, by allowing policies to be computed
faster (Dietterich 1998; Precup 2000). However, from the
point of view of absolute optimality, temporal abstractions
are not necessary: the optimal policy is achieved by prim-
itive actions. Therefore, it has been difficult to formalize
in what precise theoretical sense temporally abstract actions
are helpful.

Bounded rationality is an important framework for under-
standing rationality in both natural and artificial systems. In
this paper, we propose bounded rationality as a lens through
which we can describe the desiderata for constructing tem-
poral abstractions, as their goal is mainly to help agents
which are restricted in terms of computation time. This per-
spective helps us to formulate more precisely what objective
criteria should be fulfilled during option construction. We
propose that good options are those which allow an agent to
learn and plan faster, and provide an optimization objective
for learning options based on this idea. We implement the
optimization using the option-critic framework (Bacon et al.
2017) and illustrate its usefulness with experiments in Atari
games.

Preliminaries
A finite discounted Markov Decision Process M is a tu-
ple M=̇(S,A, γ, r, P ) where S and A denote the state and
action set respectively, and γ ∈ [0, 1) is a discount fac-
tor. The reward function r is often assumed to be a de-
terministic function of the state and actions, but can also
map to a distribution, r : S × A → Dist(R) (a perspec-
tive which we use in our formulation). The transition matrix
P : S×A → Dist(S) is a conditional distribution over next
states given that an action a ∈ A is taken under a certain
state s ∈ S. The interaction of a randomized stationary pol-
icy π : S → Dist(A) or a deterministic policy π : S → A
with an MDP M induces a Markov process over states, ac-
tions and rewards over which is defined the expected dis-
counted return Vπ(s)=̇Eπ [

∑
t=0 γ

tr(St, At)|S0 = s]. The
value function Vπ of a policy π satisfies the Bellman equa-
tions :

Vπ(s) =
∑
a

π (a|s)
(
r(s, a) + γ

∑
s′

P (s′|s, a)Vπ(s
′)

)
.
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In the control problem, we are interested in finding an opti-
mal policy for a given MDP. A policy π� is said to be optimal
if Vπ�(s)=̇maxπ Vπ(s) for all s.

An important class of control methods in reinforcement
learning is based on the actor-critic architecture (Sutton
1984). In the same way that function approximation can be
used for value functions, policies can also be approximated
within a parameterized family. In the policy gradient the-
orem, (Sutton et al. 1999a) shows that the gradient of the
expected discounted return with respect to the parameters of
a policy is of the form Eα,θ

[∑
a

∂πθ(a|s)
∂θ Qπθ

(s, a)
]
, where

α is an initial state distribution. A locally optimal policy can
then be found by stochastic gradient ascent over the policy
parameters while simultaneously learning the action-value
function Qπθ

(s, a) (usually by TD).

Options

Options (Sutton et al. 1999b) provide a framework for rep-
resenting, planning and learning with temporally abstraction
actions. The option frameworks assumes the existence of a
base MDP which is overlaid with temporally abstract actions
called options. An option is defined as a triple (Io, πo, βo)
where I ⊆ S is an initiation set, πo : S → Dist(A)
is the policy of an option (which can also be determinis-
tic) and βo : S → [0, 1] is a termination condition. In
the call-and-return execution model, a policy over options
μ : S → Dist(O) (deterministic if wanted) chooses an op-
tion among those which can be initiated in a given state and
executes the policy of that option until termination. Once
the chosen option has terminated, the policy over options
chooses a new option and the process is repeated until the
end of the episode.

The combination of a set of options and base MDP leads
to a semi-Markov decision process (SMDP) (Howard 1963;
Puterman 1994) in which the transition time between two
decision points is a random variable. When considering the
induced process only at the level of state-option pairs, usual
dynamic programming results can be reused after a trans-
formation to an equivalent MDP (Puterman 1994). To see
this, we need to define two kinds of models for every op-
tion : a reward model bo : S → R and a transition model
Fo : S × S → R. If an option does not depend on the his-
tory since initiation, we can write its models either in closed
form or as the solution to Bellman-like equations (Sutton et
al. 1999b). The expected discounted return associated with
a set of options O and a policy over them is the solution Qθ

to a set of Bellman equations :

Qθ(s, o) = bθ(s, o) +
∑
s′

Fθ(s
′ ; s, o)Vθ(s

′)

=̇Eθ

[∑
t=0

γtr(St, At)

∣∣∣∣∣S0 = s,O0 = o

]
.

where θ is a concatenation of the policy over options μ, op-
tions policies and termination conditions.

Intra-Option Bellman Equations
In the case of Markov options, there exists another form
for the Bellman equations, called the intra-option Bellman
equations (Sutton et al. 1999b), which are key for deriving
gradient-based algorithms for learning options.

Let Zt=̇(St, Ot) be a random variable over state-option
tuples. We call the space of state-option pairs the augmented
state space. This augmentation is sufficient to provide the
Markov property, which would otherwise be lost when con-
sidering the process at the flat level of state-action pairs (Sut-
ton et al. 1999b). The transition matrix of the Markov pro-
cess over the augmented state space (Bacon et al. 2017) is
given by :

P̃θ (z
′|z, a) =

P (s′|s, a) ((1− βθ(s
′, o))1o′=o + βθ(s

′, o)μθ (o
′|s′)) .

Using this chain structure, we can define the MDP
M̃=̇(P̃θ, r̃, γ) whose associated value function Ṽθ : (S ×
O) → R is:

Ṽθ(z) = Eθ

[ ∞∑
t=0

γtr̃(Zt, At, Zt+1)

∣∣∣∣∣Z0 = z

]
=
∑
a,z′

πθ (a|z) P̃θ (z
′|z, a)

(
r̃(z, a, z′) + γṼθ(z

′)
)

. (1)

Since the rewards come from the base (primitive) MDP,
we can simply write r̃(z, a, z′) = r(s, a) and because∑

z′ P̃θ (z
′|z, a) = 1, we get:∑
z′

P̃θ (z
′|z, a) r̃(z, a, z′) = r(s, a) .

Hence, when taking the expectation in (1) over the next val-
ues, we obtain :

Ṽθ(z)=̇Qθ(s, o) =
∑
a

πθ (a|s, o)
(
r(s, a)+

γ
∑
s′

P (s′|s, a)
[
Qθ(s

′, o)− βθ(s
′, o)Aθ(s

′, o)
])

, (2)

where Aθ(s, o)=̇Qθ(s, o)− Vθ(s) is the advantage function
(Baird 1993). The equations in (2) correspond exactly to the
intra-option Bellman equations (Sutton et al. 1999b). How-
ever, we chose to present them under an alternate – but more
convenient – form highlighting a connection to the advan-
tage function:

Uθ(s
′, o)=̇(1− βθ(s

′, o))Qθ(s
′, o) + βθ(s

′)Vθ(s
′)

= Qθ(s
′, o)− βθ(s

′, o)Aθ(s
′, o) ,

where Uθ(s
′, o) represents the utility of continuing with the

same option or switching to a better one.

Optimization
The option-critic architecture (Bacon et al. 2017) is a
gradient-based actor-critic architecture for learning op-
tions end-to-end. As in actor-critic methods, the idea is to
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parametrize the options policies and termination conditions
and learn their parameters jointly by stochastic gradient as-
cent on the expected discounted return. (Bacon et al. 2017)
provided the form of the gradients for both the option poli-
cies and termination functions under the assumption that op-
tions are available everywhere. Without loss of generality,
we further assume that the parameter vector θ = [θμ; θπ; θβ ]
is partitioned into disjoint sets of parameters for the policy
over option, the option policies and the termination func-
tions.

In the gradient theorem for options policies (Bacon et al.
2017), the result maintains the same form as that of original
policy gradient theorem for MDP (Sutton et al. 1999a) but
over the augmented state space. If Jα(θ) is the expected dis-
count return for the set of options and the policy over them,
then the gradient of the option policies (whose parameters
are independent from the terminations) is :

∂Jα(θ)

∂θπ
= γEα,θ

[∑
a

∂πθ (a|z)
∂θπ

Q̃θ(z, a)

]
,

where α is an initial state distribution over state and options.
To obtain the gradient for the termination functions, let’s

first take the derivative of the intra-option Bellman equa-
tions:

∂Qθ(s, o)

∂θβ
= γ

∑
a

πθ (a|s, o)
∑
s′

P (s′|s, a)
[
∂Qθ(s

′, o)
∂θβ

− ∂βθ(s
′, o)

∂θβ
Aθ(s

′, o)− βθ(s
′, o)

∂Aθ(s
′, o)

∂θβ

]
. (3)

By noticing the similarity between (3) and (1), we can eas-
ily solve for the recursive form of the derivative. Indeed, it
suffices to see that −∂βθ(s

′,o)
∂θβ

Aθ(s
′, o) plays the role of the

“reward” term in the usual Bellman equations (see (Bacon
et al. 2017) for a detailed proof) and conclude that:

∂Jα(θ)

∂θβ
= Eα,θ

[
−∂βθ(s

′, o)
∂θβ

Aθ(s
′, o)

]
. (4)

Hence the termination gradient shows that if an option is
advantageous, the probability of termination should be low-
ered, making that option longer. Conversely, if the value of
an option is less than what could be achieved through a
different choice of option at a given state, the termination
gradient will make it more likely to terminate at this state.
The termination gradient has the same structure as the inter-
ruption operator (Mann et al. 2014) in the interruption ex-
ecution model (Sutton et al. 1999b). Rather than executing
the policy of an option irrevocably until termination, inter-
ruption execution consists in choosing a new option when-
ever Qθ(s, o) < Vθ(s). Moving the the value function Vθ to
the left side, interruption execution can also be understood
in terms of the advantage function: Qθ(s, o) < Vθ(s) ⇔
Aθ(s, o) < 0. As for the termination gradient, interruption
execution leads to the termination of an option whenever
there is no advantage (negative advantage) in maintaining
it. Interestingly, (Mann et al. 2014) also considered adding a
scalar regularizer to the advantage function to favor longer

options. From the more general perspective of bounded ra-
tionality, we also recover this regularizer but within a larger
family which follows from the notion of deliberation cost.

Deliberation Cost Model

From a representation learning perspective, good options
ought to allow an agent to learn and plan faster (Minsky
1961). Due to their temporal structure, options offer a mech-
anism through which an agent can make better use of its lim-
ited computational resources and act faster. Once an option
has been chosen, we assume that the computational cost of
executing that option is negligible or constant until termina-
tion. After deliberating on the choice of option, an agent can
relax thanks to the fast – but perhaps imperfect – knowledge
compiled within its policy.

This perspective on options is similar to fast and frugal
heuristics (Gigerenzer and Selten 2001) which form a de-
cision repertoire for efficient decision making under lim-
ited resources. Our assumption on the cost structure is also
consistent with models of the prefrontal areas (Botvinick
et al. 2009; Solway et al. 2014) presenting decision mak-
ing over options as a slower model-based planning process
as opposed to the fast and habitual learning taking place
within an option. When planning with options (in com-
puters), there is also a cost for deciding which option to
choose next by making predictions based on their mod-
els. For example, options models could be represented by
deep networks, necessitating back-and-forth to the GPU,
or using a simulator with costly rollouts (Guo et al. 2014;
Mann et al. 2015).

Bounded rationality can also be useful to understand how
efficient communication can take place between two agents
over a limited channel (Neyman 1985). Options offer a
mechanism for communicating intents to and from an agent
(Branavan et al. 2012; Andreas et al. 2017) more efficiently,
by compressing the information into a simpler form, sending
only the identifier of the options and not the details them-
selves. Having longer options is a way to provide better in-
terpretability and simplifies communication by compressing
information.

Consider the cost model (fig. 1) in which executing an
option within an option is free but switching to an option
upon arriving in a new state incurs a cost η . To build some
intuition, let’s further assume that the termination function
of an option is constant over all states. If κ is the continu-
ation probability of that option, its expected discounted du-
ration is d = 1

1−γκ . When a fixed cost η is incurred upon
termination, the average cost per step for that option is then
η/d = (1 − γκ)η. Hence, as the probability of continua-
tion increases and options get longer, the cost rate decreases.
Conversely, if an option only terminates after one step – a
primitive option – κ is 0 and the cost rate is η. The fact that
longer options lead to a better amortization of the delibera-
tion cost is key to understanding their benefit in comparison
to using only primitive actions.
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Time

Base MDP + Options

Deliberation Costs

Figure 1: A deliberation cost is incurred upon switching to
a new option and is subtracted from the reward of the base
MDP. Open circles represent SMDP decision points while
filled circles are primitive steps within an option. The cost
rate for each option is represented by the intensity of the
subtrajectory.

Formulation
In addition to the value function Ṽθ(z)=̇Qθ(s, o) for the
base MDP and options over them, we define an immedi-
ate cost function c̃(z, a, z′)=̇c(s, o, a, s′, o′) and a corre-
sponding deliberation cost function D̃θ(z)=̇Dθ(s, o). The
expected sum of discounted costs associated with a set of
options and the policy over them is given by the function
D̃θ : (S× O) → R:

D̃θ(z) = Eθ

[ ∞∑
t=0

γtc̃(Zt, At, Zt+1)

∣∣∣∣∣Z0 = z

]
.

We first formulate our goal of maximizing the expected
return while keeping the deliberation cost low as a con-
strained optimization problem:

max
θ

∑
s,o

α(s, o)Qθ(s, o)

subject to :
∑
s,o

α(s, o)Dθ(s, o) ≤ k ,

where α is an initial state distribution over state-option pairs.
But in general, solving a problem of this form (Altman 1999)
requires a Linear Programming (LP) formulation which is
both expensive and incompatible with the model-free learn-
ing methods adopted in this work. Instead, we consider the
unconstrained optimization problem arising from the La-
grangian formulation (Sennott 1991; Altman 1999):

max
θ

Jα(θ) ,

where Jα(θ)=̇
∑
s,o

α(s, o) (Qθ(s, o)− ηDθ(s, o)) , (5)

and η ∈ R is a regularization coefficient. While (5) shows
the option-value function and the deliberation cost function
as separate entities, they can in fact be seen as a single MDP
whose reward function is the difference of the base MDP
reward and the cost function:

Eα,θ

[ ∞∑
t=0

γtr̃ (Zt, At, Zt+1)− γtηc̃ (Zt, At, Zt+1)

]
.

Therefore, there is a set of Bellman equations which the
value function Ṽ c

θ (z)=̇Qc
θ(s, o) over the transformed reward

function satisfies:

Ṽ c
θ (z)=̇

∑
a,z′

πθ (a|s, z) P̃θ (z
′|z, a, )

(
r̃(s, a, z′)− ηc̃(z, a, z′) + γṼ c

θ (z
′)
)

. (6)

Furthermore, there exist optimality equations in the sense of
(Sutton et al. 1999b) for the parameters of the policy over
options θμ:

Q�
O(s, o)=̇ max

θμ∈Π(O)

(
Qθμ(s, o)− ηDθμ(s, o)

)
. (7)

where the notation Qθμ here indicates that the parameters for
the options are kept fixed and only θμ is allowed to change.
A policy over option μ� is η-optimal with respect to a set
of options if it reaches the maximum in (7) for a given η.
Clearly, when η = 0, the corresponding μ� is also optimal
in the base MDP and there is no loss of optimality in this
regard.

Switching Cost and its Interpretation as a Margin
One way to favor long options is by a cost function which
penalizes for frequent options switches. In the same way that
the MDP formulation allows for randomized reward func-
tions (Puterman 1994), we can also capture the random event
of switching through the immediate cost function c. Since
βθ(s

′, o) is the mean of a Bernoulli random variable over
the two possible outcomes, switching or continuing (1 or
0), the cost function corresponding to the switching event is
cθ(s

′, o) = γβθ(s
′, o) (where γ was added for mathematical

convenience).
When expanding the value function over the transformed

reward (6) for this choice of cθ(s′, o), we get:

Qc
θ(s, o) =

∑
a

πθ (a|s, o)
(
r(s, a) + γ

∑
s′

P (s′|s, a)
[

Qc
θ(s

′, o)− βθ(s
′, o) (Ac

θ(s, o) + η)
])

. (8)

with η appearing along with the advantage function : a term
which would otherwise be absent from the intra-option Bell-
man equations over the base MDP (2). Therefore, adding the
switching cost function to the base MDP reward contributes
a scalar margin η to the advantage function Ac

θ over the
transformed reward. When learning termination functions in
option-critic, the termination gradient for the unconstrained
problem (5) is then of the form:

∂Jα(θ)

∂θβ
= Eα,θ

[
−∂βθ(St+1, Ot)

∂θβ
(Ac

θ(St+1, Ot) + η)

]
.

(9)

Hence, η sets a margin or a baseline for how good an option
ought to be : a correction which might be due to approxi-
mation error or to reflect some form of uncertainty in the
value estimates. By increasing its value, we can reduce the
gap in the advantage function, tilting the balance in favor of
maintaining an option rather than terminating it.
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Computational Horizon
Due to the generality of our formulation, the discount factor
of the deliberation cost function can be different from that
of the value function over the base MDP reward. The uncon-
strained formulation of (5) then becomes a function of two
discount factors: γ for base MDP and τ for the deliberation
cost function:

Jγ,τ
α (θ) =

∑
s,o

α(s, o) (Qγ
θ (s, o)− ηDτ

θ (s, o))

Since the derivative of the deliberation cost function with
respect to the termination parameters is:

∂Dτ
θ (s, o)

∂θβ
=

∂

∂θβ

∑
a

πθ (a|s, o)
∑
s′

P
(
s′
∣∣s, a) (cθ(s′, o)+

τ
[
(1− βθ(s

′, o))Dτ
θ (s

′, o)+

βθ(s
′, o)

∑
o′

μθ

(
o′
∣∣s′)Dτ

θ (s
′, o′)

])
,

setting τ = 0 when the cost function is cθ(s′, o)=̇γβθ(s
′, o)

leaves only one term : ∂βθ(s
′,o)

∂θβ
η. Hence, by linearity with

(4), the derivative over the mixed objective is:

∂Jγ,τ=0
α (θ)

∂θβ
= γEα,θ

[
− ∂βθ(s

′, o)
∂θβ

(
Aθ(s

′, o) + η
)]

.

(10)

While similar to (9) in the sense that the margin η also en-
ters the advantage function, (10) differs fundamentally in the
fact that it depends on Aθ and not Ac

θ, the advantage func-
tion over the transformed reward. We can also see that when
γ = τ , we recover the same form for the derivative of the
expected return in the transformed MDP from (9):

∂Jγ=τ
α (θ)

∂θβ
= γEα,θ

[
− ∂βθ(s

′, o)
∂θβ

(Ac
θ(s

′, o) + η)

]
=

∂Jα(θ)

∂θβ
.

The discount factor τ for the deliberation cost function pro-
vides a mechanism for truncating the sum of costs. There-
fore, it plays a distinct role from the regularization coeffi-
cient η which merely scales the deliberation cost function
but does not affect the computational horizon. As opposed
to the random horizon set by the discount factor γ in the
environment, τ pertains to the internal environment of the
agent about the cost of its own cognitive or computational
processes. It is a parameter about an introspective process of
self-prediction of how likely a sequence of internal costs will
be accumulated as a result of deliberating about courses of
action in the outside environment. In accordance with more
general results on discounting (Petrik and Scherrer 2008;
Jiang et al. 2015), τ should be aligned with the represen-
tational capacity of the system since τ → 1 involves an in-
creasingly more difficult prediction problem.

In that sense, τ = 0 indicates that only the immediate
computational cost should be considered when learning op-
tions to maximize the reward. When learning termination

functions, the resulting shallow evaluation under small val-
ues of τ might not take into account the possibility that the
overall expected cost could be lowered in exchange of a less
favorable immediate cost : it lacks foresight. Despite the fact
that the full effect of a change in the options or the policy
over them cannot be captured with τ = 0, the corresponding
gradient (9) is still useful when η > 0. It leads to both the
regularization strategy proposed in (Bacon et al. 2017) for
gradient-based learning and (Mann et al. 2014) in the dy-
namic programming case. Furthermore, since (9) does not
depend on Ac

θ, values can be learned only for the original
reward function and does not require mixed or separate esti-
mates.

Experiments
Previous results (Bacon et al. 2017) in the Arcade Learn-
ing Environment (Bellemare et al. 2013) have shown that
while learning options end-to-end is possible, frequent ter-
minations can become an issue unless regularization is used.
Hence, we chose to apply the idea of deliberation cost
in combination with a novel option-critic implementation
based on the Advantage Asynchronous Actor-Critic (A3C)
architecture of (Mnih et al. 2016). More specifically, our ex-
periments are meant to assess : the interpretability of the
resulting options, whether degeneracies (frequent termina-
tions) to single-step options can be controlled, and if the
deliberation cost can provide an inductive bias for learning
faster.

Asynchronous Advantage Option-Critic (A2OC)
The option-critic architecture (Bacon et al. 2017) also in-
troduced a deep RL algorithm to learn options in an end-
to-end fashion directly from pixels. However, it is built on
top of the DQN algorithm (Mnih et al. 2015), which is an
off-line algorithm using samples from an experience replay
buffer. Option-critic, on the other hand, is an on-line algo-
rithm which uses every new sampled transition for its up-
dates.

The asynchronous advantage actor-critic (A3C) algorithm
(Mnih et al. 2016) provides a stable and on-line learning al-
gorithm using multiple parallel agents. The parallel agents
allows the deep networks to see samples from very different
states, which greatly stabilizes learning. This algorithm is
also much more consistent with the spirit of option-critic, as
they both use on-line policy gradients to train. Hence, we de-
veloped 1the asynchronous advantage option-critic (A2OC),
an algorithm (alg. 1) that learns options in a similar way to
A3C but within the option-critic architecture.

The architecture used for A2OC was kept as consistent
with A3C as possible. We use a convolutional neural net-
work of the same size, which outputs a feature vector that
is shared among 3 heads as in (Bacon et al. 2017): the
option policies, the termination functions and the Q-value
networks. The option policies are linear softmax functions,
the termination functions use sigmoid activation functions
to represent probabilities of terminating and the Q-values

1The source code is available at https://github.com/jeanharb/
a2oc delib
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Algorithm 1: Asynchronous Advantage Option-
Critic

Initialize global counter T = 1
Initialize thread counter t = 1
c = 0
repeat

tstart = t
st = s0
Reset gradients: dw = 0, dθβ = 0 and dθπ = 0
Choose ot with an ε-soft policy over options μ(st)
repeat

Choose at according to πθ (·|st)
Take action at in st, observe rt, st+1

r̃t = rt + ct
if the current option ot terminates in st+1 then

choose new ot+1 with ε-soft(μ(st+1))
ct = η

else
ct = 0

end
t = t+ 1
T = T + 1

until episode ends or t− tstart == tmax or
(t− tstart > tmin and ot terminated)

G = Vθ(st)
for k ∈ t− 1, ..., tstart do

G = r̃k + γG
Accumulate thread specific gradients:

dw −= αw
∂(G−Qθ(sk,ok))

2

∂w

dθπ += αθπ
∂ log πθ(ak|sk)

∂θπ
(G−Qθ(sk, ok))

dθβ −=

αθβ

∂βθ(sk+1,ok)

∂θβ
(Qθ(sk+1, ok)− Vθ(sk+1) + η)

end
Update global parameters with thread gradients

until t > tmax

are simply linear layers. During training, all gradients are
summed together, and updating is performed in a single
thread instance. A3C only needs to learn a value function for
its policy, as opposed to Q-values for every action. Similarly,
A2OC gets away with the action dimension through sam-
pling (Bacon et al. 2017) but needs to maintain state-option
value because of the underlying augmented state space.

As for the hyperparameters, we use an ε-greedy policy
over options, with ε = 0.1. The preprocessing are the same
as the A3C, with RGB pixels scaled to 84 × 84 grayscale
images. The agent repeats actions for 4 consecutive moves
and receives stacks of 4 frames as inputs. We used entropy
regularization of 0.01, which pushes option policies not to
collapse to deterministic policies. A learning rate of 0.0007
was used in all experiments. We usually trained the agent
with 16 parallel threads.

Empirical Effects of Deliberation Cost
We used Amidar, a game of the Atari 2600 suite, to analyze
the option policies and terminations qualitatively. The game
is grid-like and the task is to cover as much ground as possi-

ble without running into enemies.
Without a deliberation cost, the options eventually learn

to terminate at every step, as seen in figure 2a, where every
color in the figure represents a different option being exe-
cuted at the time the agent was in the location. In contrast,
figure 2b shows the effect of training an agent with a deliber-
ation cost, which persists with an option over a long period
of time. The temporally extended structure of the options
shown by color does not result from simply terminating and
re-picking the same option at every step but truly represents
a contiguous segment of the trajectory where that option was
maintained in a call-and-return fashion. Only at certain in-
tersections the options terminate, allowing the agent to select
an option which will lead it in a different direction. As op-
posed to the agent which was trained without a deliberation
cost (fig. 2a), figure 2a shows that the options learned with
the regularizer were specialized and only selected in specific
scenarios. Figure 2c shows us where the agent terminated
options on its trajectory. The options are clearly terminating
at intersections, which represent key decision points.

Algorithm Amidar Asterix Breakout Hero
(Mnih et al. 2015) 739.5 6012.0 401.0 19950.0

(Mnih et al. 2016) 283.9 6723.0 551.6 28765.8
No deliberation cost 502.9 7542.7 365.7 12253.6

τ = 0., η = 0.010 829.8 6169.5 398.5 25310.2

τ = 0., η = 0.020 799.2 7798.8 389.8 22691.7
τ = 0., η = 0.030 808.1 4986.3 381.5 20765.7
τ = γ, η = 0.005 775.6 5326.6 386.2 10752.8
τ = γ, η = 0.010 808.6 6850.6 395.8 26910.6
τ = γ, η = 0.015 809.5 5830.3 373.0 24737.4

τ = γ, η = 0.020 741.7 6335.3 384.2 28843.7
τ = γ, η = 0.025 780.3 4798.1 377.8 24973.7
τ = γ, η = 0.030 764.6 4840.0 376.6 19849.3

Table 1: Final performance for different levels of regular-
ization, averaged over 5 runs. Note that the A3C scores in
(Mnih et al. 2016) use a nonpublic human starts evaluation
which may not be directly comparable to our random start
initialization.

We also trained agents with multiple levels of deliberation
cost, from η = 0 to η = 0.03, with increments of 0.005. The
range of values was chosen according to the general scale
of the values proper to these environments. An increase in
deliberation cost η quickly decreases the average termina-
tion probabilities as expected by the formulation (5) (see
appendix). When no deliberation cost is used, termination
raises up to 100% very quickly, meaning each option only
lasts a single time-step. The decrease in probability is not
the same in every environment, this is due to the difference
in returns. The deliberation cost has an effect proportional to
its ratio with the state values. Intuitively, environments with
many high rewards would indeed require a larger delibera-
tion cost to have substantial effects.

Conclusion and Future Work
We proposed using a deliberation cost to incentivize the cre-
ation of options which persist longer. Using this approach in
the option-critic architecture yields both good performance
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(a) Without a deliberation cost, options
terminate instantly and are used in any
scenario without specialization.

(b) Options are used for extended periods
and in specific scenarios through a trajec-
tory, when using a deliberation cost.

(c) Termination is sparse when using the
deliberation cost. The agent terminates op-
tions at intersections requiring high level
decisions.

Figure 2: We show the effects of using deliberation costs on both the option termination and policies. In figures (a) and (b),
every color in the agent trajectory represents a different option being executed. This environment is the game Amidar, of the
Atari 2600 suite.

as well as options which are intuitive and do not shrink over
time. In doing so, we also outlined a connection from our
more general notion of deliberation cost with previous no-
tions of regularization from (Mann et al. 2014) and (Bacon
et al. 2017).

The deliberation cost goes beyond only the idea of pe-
nalizing for lengthy computation. It can also be used to in-
corporate other forms of bounds intrinsic to an agent in its
environment. One interesting direction for future work is to
also think of deliberation cost in terms of missed opportunity
and opening the way for an implicit form of regularization
when interacting asynchronously with an environment. An-
other interesting form of limitation inherent to reinforcement
learning agents has to do with their representational capaci-
ties when estimating action values. Preliminary work seems
to indicate that the error decomposition for the action values
could be also be expressed in the form of a deliberation cost.
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