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Abstract

Policy optimization methods have shown great promise in
solving complex reinforcement and imitation learning tasks.
While model-free methods are broadly applicable, they often
require many samples to optimize complex policies. Model-
based methods greatly improve sample-efficiency but at the
cost of poor generalization, requiring a carefully handcrafted
model of the system dynamics for each task. Recently, hy-
brid methods have been successful in trading off applicability
for improved sample-complexity. However, these have been
limited to continuous action spaces. In this work, we present
a new hybrid method based on an approximation of the dy-
namics as an expectation over the next state under the cur-
rent policy. This relaxation allows us to derive a novel hy-
brid policy gradient estimator, combining score function and
pathwise derivative estimators, that is applicable to discrete
action spaces. We show significant gains in sample complex-
ity, ranging between 1.7 and 25X, when learning parameter-
ized policies on Cart Pole, Acrobot, Mountain Car and Hand
Mass. Our method is applicable to both discrete and contin-
uous action spaces, when competing pathwise methods are
limited to the latter.

Introduction

Reinforcement and imitation learning using deep neural net-
works have achieved impressive results on a wide range
of tasks spanning manipulation (Levine et al. 2016; Levine
and Abbeel 2014), locomotion (Silver et al. 2014), games
(Mnih et al. 2015; Silver et al. 2016), and autonomous
driving (Ho and Ermon 2016; Li, Song, and Ermon 2017).
Model-free methods search for optimal policies without ex-
plicitly modeling the system’s dynamics (Williams 1992;
Schulman et al. 2015). Most model-free algorithms build
an estimate of the policy gradient by sampling trajectories
from the environment and perform gradient ascent. How-
ever, these methods suffer from either very high sample
complexity due to the generally large variance of the esti-
mator, or are restricted to policies with few parameters.

On the other hand, model-based reinforcement learning
methods learn an explicit model of the dynamics of the sys-
tem. A policy can then be optimized under this model by
back-propagating the reward signal through the learned dy-

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3474

namics. While these approaches can greatly improve sam-
ple efficiency, the dynamics model needs to be carefully
hand-crafted for each task. Recently, hybrid approaches, at
the interface of model-free and model-based, have attempted
to balance sample-efficiency with generalizability, with no-
table success in robotics (Levine et al. 2016).

Existing methods, however, are limited to continuous ac-
tion spaces (Levine and Abbeel 2014; Heess et al. 2015). In
this work, we introduce a hybrid reinforcement learning al-
gorithm for deterministic policy optimization that is applica-
ble to continuous and discrete action spaces. Starting from
a class of deterministic policies, we relax the correspond-
ing policy optimization problem to one over a carefully cho-
sen set of stochastic policies under approximate dynamics.
This relaxation allows the derivation of a novel policy gradi-
ent estimator, which combines pathwise derivative and score
function estimator. This enables incorporating model-based
assumptions while remaining applicable to discrete action
spaces. We then perform gradient-based optimization on this
larger class of policies while slowly annealing stochasticity,
converging to an optimal deterministic solution. We addi-
tionally justify and bound the dynamics approximation un-
der certain assumptions. Finally, we complement this esti-
mator by a scalable method to estimate the dynamics, first
introduced in (Levine and Abbeel 2014), and with a general
extension to non-differentiable rewards, rendering it applica-
ble to a large class of tasks. Our contributions are as follows:

e We introduce a novel deterministic policy optimization
method, that leverages a model of the dynamics and can
be applied to any action space, whereas existing methods
are limited to continuous action spaces. We also provide
theoretical guarantees for our approximation.

e We show how our estimator can be applied to a broad
class of problems by extending it to discrete rewards, and
utilizing a sample-efficient dynamics estimation method
(Levine and Abbeel 2014).

e We show that this method successfully optimizes complex
neural network deterministic policies without additional
variance reduction techniques. We present experiments
on tasks with discrete action spaces where model-based
or hybrid methods are not applicable. On these tasks,
we show significant gains in terms of sample-complexity,
ranging between 1.7 and 25x.



Related Work

Sample efficiency is a key metric for RL methods, especially
when used on real-world physical systems. Model-based
methods improve sample efficiency at the cost of defining
and learning task-specific dynamics models, while model-
free methods typically require significantly more samples
but are more broadly applicable.

Model-based methods approximate dynamics using var-
ious classes of models, spanning from gaussian processes
(Deisenroth and Rasmussen 2011) to neural networks (Fu,
Levine, and Abbeel 2016). Assuming the reward function
is known and differentiable, the policy gradient can be
computed exactly by differentiating through the dynamics
model, thus enabling gradient-based optimization. Heess et
al. (2015) extends this idea to stochastic dynamics and poli-
cies by expressing randomness as an exogenous variable
and making use of the “re-parameterization trick”. This re-
quires differentiability of the dynamics function w.r.t. both
state and action, limiting its applicability to continuous ac-
tion spaces. On the other hand, model-free algorithms are
broadly applicable but require significantly more samples as
well as variance reduction techniques through control vari-
ates (Mnih et al. 2016; Ho, Gupta, and Ermon 2016) or trust
regions (Schulman et al. 2015) to converge in reasonable
time.

Recently, hybrid approaches have attempted to bal-
ance sample efficiency with applicability. Levine and
Abbeel (2014) locally approximate dynamics to fit locally
optimal policies, which then serve as supervision for global
policies. A good dynamics model also enables generating
artificial trajectories to limit strain on the simulator (Gu et
al. 2016). However, these works are once again limited to
continuous action spaces. Our work can also be considered
a hybrid algorithm that can handle and improve sample-
efficiency for discrete action spaces as well.

Background

In this section, we first present the canonical RL formal-
ism. We then review the score function and pathwise deriva-
tive estimators, and their respective advantages. We show
applications of these with first, the REINFORCE estimator
(Williams 1992), followed by a standard method for model-
based policy optimization consisting of back-propagating
through the dynamics equation.

Notations and definitions Let X and A denote the state
and action spaces, respectively. f refers to a deterministic
dynamics function i.e. f : X x A — X. A deterministic
policy is a function 7 : X — A, and a stochastic policy is
a conditional distribution over actions given state, denoted
m(a|z). For clarity, when considering parameterized poli-
cies, stochastic ones will be functions of ¢ € @, and de-
terministic ones functions of # € ©. Throughout this work,
dynamics will be considered deterministic.

We consider the standard RL setting where an agent in-
teracts with an environment and obtains rewards for its ac-
tions. The agent’s goal is to maximize its expected cumula-
tive reward. Formally, there exists an initial distribution pg
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over X' and a collection of reward functions (r;)¢<7 with
re + X — R. xg is sampled from pg, and at each step, the
agent is presented with x; and chooses an action a; accord-
ing to a policy m. x;y1 is then computed as f(z,at). In
the finite horizon setting, the episode ends when t = T.
The agent is then provided with the cumulative reward,
r(xo,...,x7) = Y, re(z¢). The goal of the agent is to
find a policy 7 that maximizes the expected cumulative re-

Score Function Estimator and Pathwise Derivative

We now review two approaches for estimating the gradient
of an expectation. Let p(x;7) be a probability distribution
over a measurable set X and ¢ : X — R. We are inter-
ested in obtaining an estimator of the following quantity:

Vn Eacwp(m;n) [(p(fﬂ)] .

Score Function Estimator The score function estimator
relies on the ‘log-trick’. It relies on the following identity
(given appropriate regularity assumptions on p and ¢):

VnEwNp(z;n) [(p(%)] = Epr(x;n) [Sp(x)vn Ing(x; 77)](1

This last quantity can then be estimated using Monte-
Carlo sampling. This estimator is very general and can be
applied even if x is a discrete random variable, as long as
log p(x;n) is differentiable w.r.t. 7) for all x. However, it suf-
fers from high-variance (Glasserman 2013).

Pathwise Derivative The pathwise derivative estimator
depends on p(x;7n) being re-parameterizable, i.e., there ex-
ists a function g and a distribution p’ (independent of
n) such that sampling  ~ p is equivalent to sampling
€ ~ p’ and computing x g(n,€). Given that obser-
vation, vnEa;Np(w;n) [@(I)} = vnEewp’(e) [QD (Q(Ua 6))] =
Ecp (o) [Vae(g(n,€))]. This quantity can once again be
estimated using Monte-Carlo sampling, but is conversely
lower variance (Glasserman 2013). This requires ¢(g(, €))
to be a differentiable function of 1 for all e.

We override J(mg) (resp. J(my)) as J(6) (resp. J(¢)),
and aim at maximizing this objective function using gradient
ascent.

REINFORCE

Using the score function estimator, we can derive the
REINFORCE rule (Williams 1992), which is appli-
cable without assumptions on the dynamics or ac-
tion space. With w4 a stochastic policy, we want to

maximize J(¢) = Egu.a0,..ar [Zth rt(xt)} where
a; ~ my(-|x¢). Then the REINFORCE rule is VyJ(¢) =

Ezoa0,..ar [Zth (Zt/Zt rt’(%)) Vy log 7r¢(at|xt)].

We can estimate this quantity using Monte-Carlo sampling.
This only requires differentiability of 7w w.r.t. ¢ and does
not assume knowledge of f and r. This estimator is however
not applicable to deterministic policies.



A Method for Model-based Policy Optimization

Let mp be a deterministic policy, differentiable w.r.t.
both z and 6. Assuming we have knowledge of f
and r, we can directly differentiate J: VjyJ

E., [ZKT Vaeri(zy) - V(,xt} . The first term, V.7, is eas-

ily computed given knowledge of the reward functions. The
second term, given knowledge of the dynamics, can be com-
puted by recursively differentiating 2411 = f (z¢, mo(2¢)),
i.e. Vygxg = 0 and:

Vg:Et+1 = sz -Voxs + Vaf . VQWQ(IEt)

@

This method can be extended to stochastic dynamics and
policies by using a pathwise derivative estimator i.e. by re-
parameterizing the noise (Heess et al. 2015).

This method is applicable for a deterministic and differ-
entiable policy w.r.t. both = and 6, differentiable dynam-
ics w.r.t. both variables and differentiable reward function.
This implies that A must be continuous. This model-based
method aims at utilizing the dynamics and differentiating the
dynamics equation.

Relaxing the Policy Optimization Problem

Deterministic policies are optimal in a non-game theoretic
setting. Our objective, in this work, is to perform hybrid
policy optimization for deterministic policies for both con-
tinuous and discrete action spaces. In order to accomplish
this, we present a relaxation of the RL optimization problem.
This relaxation allows us to derive, in the subsequent sec-
tion, a policy gradient estimator that differentiates approxi-
mate dynamics and leverages model-based assumptions for
any action spaces. Contrary to traditional hybrid methods,
this does not assume differentiability of the dynamics func-
tion w.r.t. the action variable, thus elegantly handling dis-
crete action spaces. As in the previous section, we place
ourselves in the finite-horizon setting. We assume terminal
rewards and convex state space X.

Relaxing the dynamics constraint

In this section, we describe our relaxation. Starting from
a class of deterministic policies D(O) parameterized by
f# € O, we can construct a class of stochastic policies
S(®,A) D D(O) parameterized by (¢ € ®, A € A), that
can be chosen as close as desired to D(O) by adjusting A.
On this extended class, we can derive a low-variance gra-
dient estimator. We first explain the relaxation, then detail
how to construct S(®, A) from D(©), and finally, provide
guarantees on the approximation.
Formally, the RL problem with deterministic policy and
dynamics can be written as:
maximize Eqompo [M(27)] .

subjectto @441 = f(x¢, mo(24))

Given that 7y is deterministic, the constraint can be equiv-
alently rewritten as:

Tt41 = Ea~7rg(-|mt) [f(xtv (1)] “)
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Having made this observation, we proceed to relaxing
the optimization from over D(©) to S(®, A), with the con-
straint now being over approximate and in particular dif-
ferentiable dynamics. The relaxed optimization program is
therefore:

maximize, Eqgmpo [1(27)] S
SUbjeCt to Try1 = Ea~7r¢7>\(-\mt) [f(xta a)]

This relaxation casts the optimization to be over stochas-
tic policies, which allows us to derive a policy gradient in
Theorem 3, but under different, approximated dynamics. We
later describe how to project the solution in S(®, A) back to
an element on D(©).

Construction of S(®, A) from D(O)

Here we show how to construct stochastic policies from de-
terministic ones while providing a parameterized ‘knob’ to
control randomness and closeness to a deterministic policy.

Discrete action spaces The natural parameterization is as
a softmax model. However, this requires careful parameter-
ization, in order to ensure that all policies of D(©) are in-
cluded. We use the deterministic policy as a prior of which
we can control the strength. Formally, we choose a class of
parameterized functions {g,, : X — RI| ¢ € ¥}. For
0,v and A > 0, we can define the following stochastic

. 1a:7r @x
policy 7y s.t. o o1 (alz) o exp |gy(z)q + 52

We have therefore defined S(®, A) where & = © x ¥ and
A 2 [0,00). We easily verify that D(©) C S(®, A), as, for
any f € O, we can choose an arbitrary 1) € ¥ and define
¢ = (0,9) € ®, we then have mg = lim_,o 74 .

Continuous action spaces In the continuous setting, a
very simple parameterization is by adding Gaussian noise,
of which we can control variance. Formally, given D(0),
let ® = O,A £ [0,00) and S(®,A) = {z —
N (mo(2),A2I),0 € ©, X > 0}. The surjection can be de-
rived by setting A to 0. More complicated stochastic param-
eterizations can be easily derived as long as the density re-
mains tractable.

Rounding We assume that there is a surjection from
S(®,A) to D(O), s.t. any stochastic policy can be made
deterministic by setting A to a certain value. For the above
examples, the mapping consists of setting A to 0.

Similar in spirit to simulated annealing for optimization
(Kirkpatrick et al. 1983), we optimize over ¢, while slowly
annealing A to converge to an optimal solution in D(©).

Theoretical Guarantees

Having presented the relaxation, we now provide theoreti-
cal justifications, to show, first, that given conditions on the
stochastic policy, a trajectory computed with approximate
dynamics under a stochastic policy is close to the trajectory
computed with the true dynamics under a deterministic pol-
icy. We additionally present connections in the case where
our dynamics are discretization of a continuous-time system.



Bounding the deviation from real dynamics In this para-
graph, we assume that the action space is continuous. Given
the terminal reward setting, the amount of approximation
can be defined as the divergence between (z;),.,, the
trajectory from following a deterministic policy g, and
(Zt),<p» the trajectory corresponding to the approximate
dynamics with a policy 74 x. This will allow us to relate
the optimal value of the relaxed program with the optimal
value of the initial optimization problem.

Theorem 1 (Approximation Bound). Let mg and my
be a deterministic and stochastic policy, respectively, s.t.
Vo € X,Equn, ,\(|x)a = mo. Let us suppose that f is
p-lipschitz and g is p'-lipschitz. We further assume that
sup,, tr [Vary, | (|o)a] < M and that o 2p(p+1) < L
We have the following guarantee:
- 1

Ezg||$T—$T||§m\/M (6)

Furthermore, if [my(-|x)], ., are distributions of fixed

variance 21, the approximation converges towards 0 when
A—0.

Proof. See Appendix. 0

We know that solving the relaxed optimization problem
will provide an upper-bound on the expected terminal re-
ward from a policy in D(©). Given a p”-lipschitz reward
function, this bound shows that the optimal value of the

true optimization program is within *—+/M of the optimal
value of the relaxed one.

Equivalence in continuous-time systems The relaxation
has strong theoretical guarantees when the dynamics are a
discretization of a continuous-time system. With analogous
notations as before, let us consider a continuous-time dy-
namical system: x(0) = zq, 2 = f(x(¢), a(t)).

A J-discretization of this system can be written as x4 =
¢ + 0 f(xt, ar). We can thus write the dynamics of the re-
laxed problem: ;11 = ¢ + Eqmr, , (ale,) [f (71, @)].

Intuitively, when the discretization step ¢ tends to 0, the
policy converges to a deterministic one. In the limit, our ap-
proximation is the true dynamics for continuous time sys-
tems. Proposition 2 formalizes this idea.

Proposition 2. Let (X!);<7 be a trajectory obtained from
the d-discretized relaxed system, following a stochastic pol-
icy. Let x(t) be the continuous time trajectory. Then, with
probability 1:

X0 — z(t)

Proof. See (Munos 20006).

(N
O

Relaxed Policy Gradient

The relaxation presented in the previous section allows us to
differentiate through the dynamics for any action space. In
this section, we derive a novel deterministic policy gradient
estimator, Relaxed Policy Gradient (RPG), that combines
pathwise derivative and score function estimators, and is ap-
plicable to all action spaces. We then show how to apply our
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estimator, using a sample-efficient and scalable method to
estimate the dynamics, first presented in (Levine and Abbeel
2014). We conclude by extending the estimator to discrete
reward functions, effectively making our algorithm applica-
ble to a wide variety of problems. For simplicity, we omit A
(the stochasticity) from our derivations and consider it fixed.

Estimator

We place ourselves in the relaxation setting. Letting 7
be a parameterized stochastic policy, we define J(¢)
E.q.a0.....ar_, [T(x7)]. Our objective is to find ¢*
arg maxg J(¢). To that aim, we wish to perform gradient
ascent on J.

Theorem 3 (Relaxed Policy Gradient). Given a trajectory
(zo,a1,...,xr), sampled by following a stochastic policy
mg, we define the following quantity G = Vr(zr) - Vexr
where NV g can be computed with the recursion defined by
Vexo = 0 and:

Verirr = Vaf(ze,a0) - Vs
+ F(wesa) Vo log (o)
+ fxe, ar) Vi logmg(ar|ze) - Ve,

®)

g is an unbiased estimator of the policy gradient of the
relaxed problem, defined in Equation 5.

Proof. See Appendix. L]

The presented RPG estimator is effectively a combination
of pathwise derivative and score function estimators. Intu-
itively, the pathwise derivative cannot be used for discrete
action spaces as it requires differentiability w.r.t. the action.
To this end, we differentiate pathwise through  and handle
the discrete portion with a score function estimator.

Benefits of pathwise derivative Gradient estimates
through pathwise derivatives are considered lower vari-
ance (Glasserman 2013). In the context of RL, intuitively,
REINFORCE suffers from high variance as it requires many
samples to properly establish credit assignment, increasing
or decreasing probabilities of actions seen during a trajec-
tory based on the reward. Conversely, as RPG estimates the
dependency of the state on ¢, the gradient can directly adjust
¢ to steer the trajectory to high reward regions. This is pos-
sible because the estimator utilizes a model of the dynamics.
While REINFORCE assigns credit indifferently to actions,
RPG adjusts the entire trajectory.

However, when examining our expression for RPG, the
computation requires the gradient of the dynamics w.r.t. the
state, unlike REINFORCE. In the next section, we present a
scalable and sample-efficient dynamics fitting method, fur-
ther detailed in (Levine et al. 2016), to estimate this term.

Scalable estimation of the dynamics

The Relaxed Policy Gradient estimator can be computed
exclusively from sampled trajectories if provided with the
state-gradient of the dynamics V, f. However, this is not an
information available to the agent and thus needs to be esti-
mated from samples. We review a method, first presented



in (Levine and Abbeel 2014), that provides estimation of
the state-gradient of the dynamics, incorporating informa-
tion from multiple sampled trajectories. Although the dy-
namics are deterministic, we utilize a stochastic estimation
to account for modeling errors.

Formally, we have m sampled trajectories {7;}i<,, of
the form {z}, a}, z} 1 }i<m <7 from the dynamical system.
Our goal is not only to accurately model the dynamics of
the system, but also to estimate correctly the state-gradient.
This prevents us from simply fitting a parametric function
fo to the samples. Indeed, this approach would provide no
guarantee that V, f, is a good approximation of V, f. This
is especially important as the variance of the estimator is de-
pendent on the quality of our approximation of V, f and not
the approximation of f.

In order to fit a dynamics model, we choose to locally
model the dynamics of the discretized stochastic process
as X1 ~ N(A4X; + Biay + ¢, Fy), parameterized by
({A¢, By, Ct}) < - We choose this approach as it does not
model global dynamics but instead a good time-varying lo-
cal model around the latest sampled trajectories, which cor-
responds to the term we want to estimate. Under that model,
the term we are interested in estimating is then A;.

While this approach is simple, it requires a large num-
ber of samples to be accurate. To greatly increase sample-
efficiency, we assume a prior over sampled trajectories. We
use the GMM approach of (Levine and Abbeel 2014) which
corresponds to softly piecewise linear dynamics. At each it-
eration, we update our prior using the current trajectories
and fit our model. This allows us to utilize both past trajec-
tories as well as nearby time steps that are included in the
prior. Another key advantage of this stochastic estimation
is that it elegantly handles discontinuous dynamics models.
Indeed, by averaging the dynamics locally around the dis-
continuities, it effectively smooths out the discontinuities of
the underlying deterministic dynamics. We refer to (Levine
et al. 2016) for more detailed derivations.

Extension to discrete rewards

Prior to this work, estimators incorporating models of the
dynamics such as (Heess et al. 2015; Levine and Abbeel
2014) were constrained to continuously differentiable re-
wards. We present an extension of this type of estimators
to a class of non-continuous rewards. To do so, we make as-
sumptions on the form of the reward and approximate it by
a smooth function.

We assume that X = R and that the reward can be writ-
ten as a sum of indicator functions, i.e.:

k
r(@) =Y Nilsex, )
1=1

where (K;);<}, are compact subsets of R™. This assumption
covers a large collection of tasks where the goal is to end up
in a compact subspace of X. For each K, we are going to
approximate 1,¢ g, by an arbitrarily close smooth function.

Proposition 4 (Smooth approximation of an indicator func-
tion). Let K be a compact of R"™. For any neighborhood §2
of K, there exists, 1 : R" — R, smooth, s.t. 1 <1 < 1q.
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Proof. See Appendix. O

We can now approximate each (1k,);<x by a smooth
function (¢;);<x. Given this surrogate reward 7

Zle Aiw;, we can apply our estimator. In practice, how-
ever, discrete reward functions are often defined as r(s)
Alp(s)>0, Where N is a function from X to R. We approx-
imate the reward function by 7, (s) = Ao (ah(s)) (o being
the sigmoid function). If k is C!, then 7 is too and 7,, point-
wise converges to 7. We present in the Appendix an example
of the approximate reward functions for the Mountain Car
task.

Given these arbitrarily close surrogate rewards, we can
now prove a continuity result, i.e. the sequence of optimal
policies under the surrogate rewards converges to the opti-
mal policy.

Proposition 5 (Optimal policies under surrogate reward
functions). Let r be a reward function defined as r = 1k
and T the optimal policy under this reward. Let us de-
fine V™ (x) to be the value of state x under the policy T.
Then, there exists a sequence of smooth reward functions
(rn)neN S.t. if m, is optimal under the reward r,, Vx €
X, limy, oo Vo (x) = VT

Proof. See Appendix. O

Practical Algorithm

In Algorithm 1, we present a practical algorithm to perform
deterministic policy optimization based on the previously
defined RPG. In summary, given D(©), we construct our ex-
tended class of stochastic policies S(®, A). We then perform
gradient-based optimization over ¢, i.e. stochastic policies,
while slowly annealing A, converging to a policy in D(©).
We easily extend the estimator to the case of non-terminal
rewards as:

Vo d (6, 0) = Y Var(zy) - Vo (10)
t<T
Experiments

We empirically evaluate our algorithm to investigate the fol-
lowing questions: 1) How much does RPG improve sample
complexity? 2) Can RPG learn an optimal policy for the true
reward using a smooth surrogate reward? 3) How effective
is our approximation of the dynamics?

In an attempt to evaluate the benefits of the relaxation
compared to other estimators as fairly as possible, we do
not use additional techniques, such as trust regions (Schul-
man et al. 2015). Both our method and the compared ones
can incorporate these improvements, but we leave study of
these more sophisticated estimators for future work.

Classical Control Tasks

We apply our Relaxed Policy Gradient (RPG) to a set of
classical control tasks with discrete action spaces: Cart
Pole (Barto, Sutton, and Anderson 1983), Acrobot (Sutton
1996), Mountain Car (Sutton 1996) and Hand Mass (Munos



Algorithm 1 Relaxed Policy Gradient
Inputs: Environment giving x;41, V,r(x¢) given x, as,
deterministic class of policies D(©), stochastic class
of policies S(®,A), number of training episodes Ney,
learning rate schedule (ax)n<n,,. annealing schedule
(Y~)N<N,, . initial parameters ¢g € P, Ao € A.
Initialize ¢ < ¢g and A < \g.
for N =1to N, do
Sample {7; };<,, with policy 7y x
Update GMM prior over dynamics
Fit dynamics (A¢, By, Cy)i<r
fori =1tomdo
V¢x0 +~0
fort =0to7T"— 1do
g:i — Gi + Var(ze) - Vezi—
ft =T — 4 R
V¢.’I}t+1 — At . Y¢$t + ftV¢ IOg 7r¢,,\(at|xt)
+ftva log 7T¢,)\(Clt‘$t) . V¢It

end for
Gi < gi + VaR(xr) - Vyar
end for
¢ o+ang
A YNA
end for
Return: 74 —¢ € D(O)

2006). For the first three tasks, we used the OpenAl
Gym (Brockman et al. 2016) implementation and followed
(Munos 2006) for the implementation of Hand Mass. A dia-
gram of our tasks are presented in Figure 1.

Baselines We compare our methods against two different
baselines: a black-box derivative free optimization algorithm
called Cross-Entropy Method (CEM) (Szita and Lorincz
2006) and the Actor-Critic algorithm (A3C) (Mnih et al.
2016). CEM is an evolutionary-type algorithm that samples
a different set of parameters at each step, simulates using
these parameters and keeps only the top 2%, using those
to re-fit the distribution over parameters. CEM is known to

Figure 1: Top row: Cart Pole, Acrobot. Bottom row: Moun-
tain Car, Hand Mass.
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work well (Duan et al. 2016), but lacks sample efficiency
as the algorithm does not exploit any structure. A3C is a
variant of REINFORCE (Williams 1992) that learns a value
function to reduce the variance of the estimator. For each
task and algorithm, we evaluate for 5 distinct random seeds.

Results and Analysis

We present the learning curves for all tasks in Figure 2. Even
when training is done with surrogate rewards, in both in-
stances we report the actual reward. We do not show CEM
learning curves as these are not comparable due to the na-
ture of the algorithm; each CEM episode is equivalent to 20
RPG or A3C episodes, we instead report final performance
in Tables 1 and 2. For all tasks, the policy is parameterized
by a 2-layer neural network with tanh non-linearities and
64 hidden units, with a softmax layer outputting a distribu-
tion over actions. In practice, we optimize over stochastic
policies with a fixed A. In our experiments, it converged to
a near deterministic policy since the optimization is well-
conditioned enough in that case. The policies are trained us-
ing Adam (Kingma and Ba 2014).

We evaluate differently depending on the task: since Cart-
pole and Acrobot have a fixed reward threshold at which
they are considered solved, for these we present the num-
ber of training samples needed to reach that performance (in
Table 1). In contrast, for Mountain Car and Hand Mass, we
report (in Table 2) the reward achieved with a fixed num-
ber of samples. Both of these metrics are meant to evaluate
sample-efficiency.

Sample Complexity As shown in Tables 1 and 2, our al-
gorithm clearly outperforms A3C across all tasks, requiring
between 1.7 and 3 times less samples to solve the tasks and
showing significantly better performance for the same num-
ber of samples. As shown in Table 2, RPG performs bet-
ter than CEM in Hand Mass and within 20% for Moun-
tain Car, despite using 20 times less samples. We also note
that CEM is particularly well suited for Acrobot, as it is a
derivative-free method that can explore the space of parame-
ters very fast and find near-optimal parameters quickly when
the optimal policies are fairly simple, explaining its impres-
sive sample-complexity on this specific task. We addition-
ally point out that full plots of performance against number
of samples are reported for all tasks in Figure 2, and the
numbers in Tables 1 and 2 can all be extracted from there.

Robustness, Variance and Training Stability Overall,
our method was very robust to the choice of hyper-
parameters such as learning rate or architecture. Indeed, our
policy was trained on all tasks with the same learning rate
a = 1072, whereas different learning rates were cross-
validated for A3C. When examining the training curves, our
estimator demonstrates significantly less variance than A3C
and a more stable training process. In tasks where the chal-
lenges are exploratory (Acrobot or Mountain Car), RPG’s
exploration process is guided by its model of the dynamics
while A3C’s is completely undirected, often leading to total
failure. The same phenomenon can be observed on control
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Figure 2: Mean rewards over 5 random seeds for classical control tasks. Performance of RPG is shown against A3C.

Method  Samples until solve
Cart Pole (Threshold = 495)

CEM 470

A3C 279

RPG 91
Acrobot (Threshold = -105)

CEM 180

A3C 541

RPG 311

Table 1: Average numbers of samples until the task is solved
for the Cart Pole and Acrobot tasks for RPG, A3C and CEM.

Method  Samples Performance
Hand Mass (150 episodes)
CEM 50 —0.086 £ 0.01
A3C 2 —2.42 4+ 2.19
RPG 2 —0.026 £ 0.01
Mountain Car (1000 episodes)
CEM 200 —110.3£1.2
A3C 10 —176 + 38.6
RPG 10 —131.3£5.3

Table 2: Average mean rewards for the Hand Mass and
Mountain Car tasks for RPG, A3C and CEM.

tasks (Hand Mass or Cart Pole), where A3C favors bad ac-
tions seen in high reward trajectories, leading to unstable
control.

Approximate Reward On all tasks except Hand Mass,
our estimator was trained using approximate smoothed re-
wards. The performances reported in Figure 2 and Table 2
show that this did not impair training at all. Regarding the
baselines, it is interesting to note that since CEM does not
leverage the structure of the RL problem, it is natural to train
with the real rewards. For A3C, we experimented with the
smoothed rewards and obtained comparable numbers.
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Limitations

In this section, we explore limitations of our method. To
leverage the dynamics of the RL problem, we trade-off some
flexibility in the class of problems that model-free RL can
tackle for better sample complexity. This can also be seen as
an instance of the bias/variance trade-off.

Limitations on the reward function While we presented
a general way to extend this estimator for rewards in the dis-
crete domain, such function approximations can be difficult
to construct for high-dimensional state-spaces such as Atari
games. Indeed, one would have to fit the indicator function
of a very low dimensional manifold - corresponding to the
set of images encoding the state of a given game score - liv-
ing in a high-dimensional space (order of R200%200x3)

Limitations on the type of tasks While we show results
on classical control tasks, our estimator is broadly applica-
ble to all tasks where the dynamics can be estimated reason-
ably well. This has been shown to be possible on a number
of locomotion and robotics tasks (Levine and Abbeel 2014;
Heess et al. 2015). However, our work is not directly appli-
cable to raw pixel input tasks such as the Atari domain.

Computational overhead Compared to REINFORCE,
our model presents some computational overhead as it re-
quires evaluating (Vyx;), ., as well as fitting 7" dynam-
ics matrices. In practice, this is minor compared to other
training operations such as sampling trajectories or comput-
ing necessary gradients. In our experiments, computing the
(Vgxt), . amounts to less than 1% of overhead while dy-

namics estimation constitutes about 17%.

Discussion

In this work, we presented a method to find an optimal deter-
ministic policy for any action space and in particular discrete
actions. This method relies on a relaxation of the optimiza-
tion problem to a carefully chosen, larger class of stochas-
tic policies. On this class of policies, we can derive a novel,
low-variance, policy gradient estimator, Relaxed Policy Gra-
dient (RPG), by differentiating approximate dynamics. We
then perform gradient-based optimization while slowly an-
nealing the stochasticity of our policy, converging to a de-
terministic solution. We showed how this method can be



successfully applied to a collection of RL tasks, present-
ing significant gains in sample-efficiency and training sta-
bility over existing methods. Furthermore, we introduced a
way to apply this algorithm to non-continuous reward func-
tions by learning a policy under a smooth surrogate reward
function, for which we provided a construction method. It
is also important to note that our method is easily amenable
to problems with stochastic dynamics, assuming one can re-
parameterize the noise.

This work also opens the way to promising future exten-
sions of the estimator. For example, one could easily incor-
porate imaginary rollouts (Gu et al. 2016) with the estimated
dynamics model or trust regions (Schulman et al. 2015). Fi-
nally, this work can also be extended more broadly to gradi-
ent estimation for any discrete random variables.
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