The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

A Deep Model with Local Surrogate Loss
for General Cost-Sensitive Multi-label Learning

Cheng-Yu Hsieh, Yi-An Lin, Hsuan-Tien Lin
Department of Computer Science and Information Engineering
National Taiwan University
{r05922048, 02922163} @ntu.edu.tw htlin@csie.ntu.edu.tw

Abstract

Multi-label learning is an important machine learning problem
with a wide range of applications. The variety of criteria for
satisfying different application needs calls for cost-sensitive
algorithms, which can adapt to different criteria easily. Never-
theless, because of the sophisticated nature of the criteria for
multi-label learning, cost-sensitive algorithms for general cri-
teria are hard to design, and current cost-sensitive algorithms
can at most deal with some special types of criteria. In this
work, we propose a novel cost-sensitive multi-label learning
model for any general criteria. Our key idea within the model
is to iteratively estimate a surrogate loss that approximates the
sophisticated criterion of interest near some local neighbor-
hood, and use the estimate to decide a descent direction for
optimization. The key idea is then coupled with deep learning
to form our proposed model. Experimental results validate
that our proposed model is superior to existing cost-sensitive
algorithms and existing deep learning models across different
criteria.

1 Introduction

Multi-label learning (MLL) addresses the problem of asso-
ciating each data point with a set of relevant labels. It has
recently attracted much research attention since the problem
setting meets the needs of various real-world applications.
For instance, in image classification, an image may contain
multiple objects simultaneously (Boutell et al. 2004). Other
MLL applications include text categorization (Schapire and
Singer 2000), music tag annotation (Lo et al. 2011), and video
classification (Qi et al. 2007). Different MLL applications
often aim for different goals, and thus a variety of criteria
have been proposed to measure the performance of MLL al-
gorithms from different angles. Some popular criteria include
Hamming loss, Rank loss, Example-F1, Micro-F1, Macro-F1,
and Precision-at-k (Tsoumakas, Katakis, and Vlahavas 2010;
Madjarov et al. 2012).

Classical MLL algorithms such as binary relevance
(Tsoumakas, Katakis, and Vlahavas 2010), classifier chain
(Read et al. 2011), and label powerset (Tsoumakas, Katakis,
and Vlahavas 2010) are designed to optimize some specific
criterion. Nevertheless, because of the different behaviors of
different criteria, an algorithm that optimizes one criterion

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3239

well may not be a good choice for other criteria, and it is
difficult to modify those classical algorithms towards other
criteria. The demands from real-world applications call for
algorithms that can adapt to optimize different evaluation
criteria. Such algorithms allows applications to not only con-
duct goal-specific optimization but also change their goals
more easily if needed. As the evaluation criterion defines the
cost for misclassifications made by the learning algorithms,
MLL algorithms that adapt to optimize different criteria is
generally referred to as cost-sensitive multi-label learning
(CSMLL) algorithms (Li and Lin 2014).

Many CSMLL algorithms have been proposed in re-
cent years (Dembczynski, Cheng, and Hiillermeier 2010;
Lo et al. 2011; Li and Lin 2014; Wu and Lin 2017,
Huang and Lin 2017). For example, probabilistic classifier
chain (Dembczynski, Cheng, and Hiillermeier 2010) makes
cost-sensitive prediction with inference steps towards Bayes-
optimal decisions, often with the help of an efficient inference
rule that corresponds to the criterion of interest; condensed
filter tree (Li and Lin 2014) adapts to optimize different
criteria by transforming the criterion into sample weights
when training the underlying classifiers; progressive random
k-labelsets (Wu and Lin 2017) reduces the original CSMLL
problem into multiple cost-sensitive multi-class classification
subproblems. Nonetheless, current CSMLL algorithms are
generally restricted to a certain class of criteria that can be
decomposed to per-instance measures, and cannot deal with
other criteria such as Precision-at-k.

In this work, we loosen the restriction and study a more
general CSMLL setting that requires the algorithms to adapt
to optimize virtually any common MLL criterion. However,
given the complicated nature of MLL criteria, designing such
general cost-sensitive algorithm is challenging. In partic-
ular, most of the criteria are highly non-convex and even
discontinuous, and it is thus generally impossible to opti-
mize the criterion directly through numerical optimization.
A common practice to tackle the difficulty is to develop
appropriate surrogate loss function of the criterion of in-
terest to make the optimization procedure tractable. (Pet-
terson and Caetano 2010; 2011; Zhang and Zhou 2006;
Gong et al. 2013; Nam et al. 2014; Gao and Zhou 2011;
Dembczynski, Kotlowski, and Hiillermeier 2012). The surro-
gate loss function serves as a smooth proxy of the criterion
and carries better optimization properties during training.

Nevertheless, current surrogate loss functions rely on human
designs with respect to one or a few criteria, and cannot be
systematically applied to solve the general CSMLL problem
for any criteria of interest.

In this work, we approach the general CSMLL problem
by letting the machine learn a surrogate loss function for
the criterion of interest, therefore escaping from the restric-
tions of human designs. Nevertheless, given the complicated
nature of the MLL criteria, learning a global surrogate loss
function turns out to be computationally demanding and con-
ceptually difficult. We thus propose to learn the surrogate
loss function locally. That is, we plug the surrogate-learning
step into the iterative numerical optimization procedure of
training CSMLL classifiers. In each surrogate-learning step,
the proposed locally-learned surrogate loss (LLSL) is only re-
quired to approximate a given criterion of interest near some
local neighborhood. The approximation captures the local
behavior of the criterion’s cost surface, and carries sufficient
information to guide the numerical optimization procedure
towards a descent direction for optimizing the criterion. We
further combine the idea of LLSL with gradient-based opti-
mization in deep learning to propose a novel deep model for
multi-label learning that can automatically adapt to optimize
general criteria.

The main contributions of this paper are highlighted as
follows:

e We present a novel methodology that systematically and
automatically learns to optimize any given criterion for
multi-label learning. The methodology solves a broader
range of CSMLL problems than existing CSMLL algo-
rithms.

e The methodology is used to design the world’s first cost-
sensitive deep learning model for multi-label learning.

e The proposed deep learning model enjoys superior perfor-
mances against existing methods across various real-world
datasets and evaluation criteria.

2 Background
2.1 Problem Setup

In a multi-label learning (MLL) problem, we denote an in-
stance by a feature vector x € R%, and its relevant labels by
a bit vector y € {0, 1}, where K is the number of labels
and y[k] = 1 if and only if the k-th label is relevant. Given a
training set D = {(x, yn)}n 1» the goal of the multi-label
learning problem is to learn a hypothesis h: R? — R¥ to
make predictions on unseen instances accurately. The flexible
definition of h above covers two typical cases: a classifier
h which is only allowed to output bit vectors that directly
decides the relevance of each label, or a ranker h whose real-
valued outputs can be used to rank the labels by the predicted
relevance level.

More specifically, given a test dataset D’ = {x/,,}_,, the
goal is to make the prediction vectors {y/, = h(x’)}M_,
close to the hidden ground-truth vectors {y’ }»_, . Denote

a matrix Y’ that contains {y’,}*_, as its rows, and an-
other matrix Y’ that contains {y’ }M_, as its rows, the

goal can be expressed as minimizing a criterion U(Y',Y')

m=

3240

that measures the difference between the two matrices of
vectors. A special family of criteria, called example-based
criteria, measures the average difference vector by vector
(row by row). That is, ¥(Y’,Y’) = &= Z%Iﬂ Yy, Vi)
For instance, when h is a classifier, one simplest choice is
Yr(y,¥) = £ i [ylk] # k], called the Hamming
loss. Other popular choices include the Example-F1 loss,
where Vp(y,y) =1 — H>'||21‘+\T5'II1; and the Rank loss with
VYr(y,y) = % 2ok <y YR > (0] + s[v[k] =
§lUl], where R(y) = [{(k,0)|y[k] < y[]}| is a normal-
izer. When h is a ranker, a common example-based crite-
rion is called (negative) Precision-at-k, where ¥ p(y,y) =
1—1 Zéempk(y) y[¢] and top, (y) returns the indices that
correspond to the k largest values in ¥. As minimizing these
instance-averaging criteria can be reduced to minimizing 1
on each instance, 1 is used in this paper to replace ¥ for
example-based criteria.

In addition, the definition of ¥ covers the more general
case of measuring the difference for the entire test set (predic-
tion matrix). For example, when h is a classifier, the popular
Macro-F1 loss can be expressed as

_1_7§: 222{1 mk:Ymk:

which is physically the mean F1 loss per label. The Micro-F1
loss can be similarly expressed as

U4 (Y, Y

)

Umi(Y,Y) =1 - M k . M~
Zk 12 omet1 Ymk + Zk:1 2 om=1 Ymk

which is the F1 loss on all matrix components. Other criterion
such as (negative) Macro-averaged Precision-at-k can also be
defined when £ is a ranker. Note that we consider all criteria
to be the lower the better for the simplicity of comparison.

Notice that for a given criterion ¥ and a ground-truth label
matrix Y, a cost function that maps any predicted label matrix
Y to a scalar cost can be defined as CW|Y(Y) =U(Y,Y).
In the rest of the paper, we refer to Cyy|y as C'y when'Y is
clear in the context.

2.2 Related Work

Given such great variety of evaluation metrics for MLL, tra-
ditional MLL algorithms are however designed to optimize
only a certain or few specific metrics. For example, algo-
rithms such as binary relevance (Tsoumakas, Katakis, and
Vlahavas 2010) and classifier chain (Read et al. 2011) that
decompose MLL into K binary classification problems can
arguably only focus on optimizing Hamming loss. On the
other hand, label powerset approach (Tsoumakas, Katakis,
and Vlahavas 2010) can merely focus on optimizing 0/1 loss
since it transforms the original MLL problem into multi-class
classification problem.

Nevertheless, it should be noted that even for a single MLL
criterion of interest, optimizing this criterion is in fact diffi-
cult owing to the highly non-smooth nature of MLL criteria.
As aresult, there are currently two main families of methods

that attempt to overcome the challenge. The first common
paradigm is to approach the problem by designing surro-
gate losses that can be optimized by efficient algorithms. For
example, (Petterson and Caetano 2010; 2011) derived surro-
gates for the F-measure which can be optimized efficiently by
SVM-style models; (Zhang and Zhou 2006; Gong et al. 2013;
Nam et al. 2014) introduced different loss functions for neu-
ral networks targeting at different criteria; and (Gao and
Zhou 2011; Dembczynski, Kotlowski, and Hiillermeier 2012)
proposed consistent surrogates for the Rank loss. While an
appropriate surrogate loss can indeed improve model perfor-
mance on its corresponding criterion, deriving a surrogate for
every criterion is nonetheless unsatisfactory for practical use.

Another major family of algorithms, generally termed cost-
sensitive multi-label learning algorithms, tackles the prob-
lem by considering the cost (criterion) information in the
model’s training or prediction phase (Dembczynski, Cheng,
and Hiillermeier 2010; Lo et al. 2011; Li and Lin 2014;
Wu and Lin 2017; Huang and Lin 2017). Although these
methods can adapt to different criteria more easily, current
algorithms can still only deal with example-based criteria due
to their restricted problem setting.

3 Proposed Method

Inspired by the rich literatures on cost-sensitive classification
(Elkan 2001; Zadrozny, Langford, and Abe 2003; Li and Lin
2014; Wu and Lin 2017), we first propose a sample-weighting
CSMLL framework which is able to deal with example-based
criteria. We then highlight a preliminary cost-sensitive multi-
label deep learning model which can be derived based on the
framework. Last, to overcome the drawbacks of such simple
model, we present a novel technique which can be used to
optimize any given MLL criterion. The idea is coupled with
deep learning to form a deep model for general cost-sensitive
MLL.

3.1 Sample-weighting CSMLL Framework

In the literatures of both cost-sensitive multi-class classifica-
tion as well as CSMLL, re-weighting the training samples has
been a simple yet effective approach (Zadrozny, Langford,
and Abe 2003; Beygelzimer, Langford, and Ravikumar 2009;
Li and Lin 2014). Motivated by these work, we propose a
sample-weighting framework which can be easily used to
develop CSMLL algorithms.

Assume that there are K classifiers f; : R? — {0,1}
each responsible for predicting a corresponding label y,, [k]
of a given instance x,,. The main concept of the framework
is to iteratively train these K classifiers on weighted exam-
ples, where the sample weights act as the connection to the
evaluation criterion . In particular, when training the k-th
classifier fx, each example x,, is weighted by a correspond-
ing sample weight w, ;. The sample weight is decided by
how much cost it would incur for misclassifying the k-th
label of x,,. To estimate this misclassification cost for y,,[k],
one can assume that the other K — 1 classifiers are fixed, and
obtain their current predictions via {y,,[i| = fi(Xy) }izk. By
having these predictions in hand, the misclassification cost

0 1 0
can then be calculated as |c,, ;. — ¢;, [, Where ¢, is the cost

3241

Algorithm 1 Sample-weighting framework for CSMLL

1: Let fi be a single-label classifier that predicts y[k]
2: for m = 1 to M iterations do

3: for k = 1to K do

4: for each instance (x,,y) do

5 Assume the other classifiers { f; }:x fixed
6: Calculate c%_’ . by Equation 1

7: Calculate c,ll’ by Equation 2

8: Wi 4= | — Cik|

9: Assign sample weight wy, x to (Xn, yn)
10: end for
11: Train f;, with the weighted examples
12: end for
13: end for

for predicting y,,[k] as zero:
C?L,k = w(yTla (yn[lv LA} k’ - 1]5 O7$’7L[k: + 17 AR K]))a (1)

and c}, ;. is the cost for predicting y,[k] as one:

eng =Y, (Fall, k=1, L, ya[k+ 1, K]). (2

By assigning wy x = |¢, , — ¢, ;. the sample weights can
guide fj, to focus on the examples that have greater influence
on the final cost and optimize the criterion in interest. Based
on the proposed framework, various CSMLL algorithms can
be designed. In fact, it can also be showed that a previous
CSMLL work, condensed filter tree (Li and Lin 2014), is
merely a special case that utilizes this sample-weighting tech-
nique. We present this general framework for CSMLL in
Algorithm 1.

In short, the key idea behind the framework is that if we
are able to refer to all the other label predictions { f;(x,) }i-k
while training a single-label classifier f, the cost for wrongly
predicting ¥, [k] can then be calculated and embedded within
the sample weights to achieve cost-sensitiveness.

3.2 A Simple Cost-sensitive Multi-label Deep
Learning Model

Having the sample-weighting framework for CSMLL dis-
cussed, we now turn our attention to how a simple cost-
sensitive multi-label deep learning model can be devel-
oped from it. Following previous work on multi-label neu-
ral networks (Zhang and Zhou 2006; Gong et al. 2013;
Nam et al. 2014), we also consider the architectures with
K output nodes, where each output node o, can be viewed as
a single-label classifier that predicts the k-th label. To lever-
age the sample-weighting technique, one should be able to
access the current predictions of the other & — 1 labels while
training the k-th label classifier. In fact, this turns out to be
rather intuitive for deep learning models.

Let hg, : R? — [0, 1]¥ denotes a multi-label neural net-
work, where 6; is the network weights at timestep . At any ¢,
the complete label prediction y,, for an instance x,, can be
simply obtained by feeding the example as the network input,
i.e., ¥, = hg,(xy). With y,, available, for each output node
oy (or the k-th single-label classifier), one can then follow
the framework and associate each example x,, with the calcu-
lated sample weight w,, .. As each oy, is considered a binary

classifier for y[k], an intuitive choice of the loss function for
these output nodes is the commonly known logloss:

Liog (y[k], [K]) = —(y[k]log(3[k]) + (1 — y[k]) log(1 — y[k]))
By coupling the logloss with the sample weights and con-
sidering training all K label classifiers jointly, the final loss
function to be optimized by the neural network at time ¢ then
becomes:

AL
LWBCE = N 7; kZ:l wn,kLlog (Yn [k}], §’n [k]) (3)
We note that if the sample weights are not used, i.e., w,, 1 = 1
for all n and k. Eq.3 degenerates to the conventional binary
cross entropy (BCE), as proposed in (Nam et al. 2014). Thus,
we term the loss in Eq.3 as weighted binary cross entropy
(WBCE). It is also worthwhile to note that the sample weights
wy, 1, change as the network updates. Hence, the loss function
Lwsgck is in fact changing according to the sample weights at
different timestep ¢. We present this simple method to train a
cost-sensitive multi-label deep learning model in Algorithm
2.

Weighted BCE versus BCE By decomposing Eq.3, the
weighted BCE loss for an instance (x,,,yy,) is:

K

Z wn,kLlog (Yn [1{3]7 yn [k]) 4)
k=1

From the perspective of a single instance, the original sample
weights {w,, ;1< | can also be viewed as the weights for
each label. These weights encode the information about the
relative importance of each label. That is, if w,, 1, > w,, , the
network should probably focus more on making the predic-
tion on y,, [k] correct even at the cost of wrongly predicting
Ynll]-

To compare the proposed WBCE with the ordinary BCE,
we visualize the contours and gradients computed w.r.t. both
losses in an illustrative two-dimensional scenario in Figure
1. It can be seen that the first label (dimension) has more
influence on the cost than the second label (dimension) as
the cost differences on the first axis is much greater than
those on the second axis. Nonetheless, as the ordinary BCE
does not take any cost information into account, the gradient
it provides is unaware of the relative importance of labels.
In contrast, gradient computed w.r.t. the weighted BCE loss
is inclined much toward the first dimension, suggesting a
direction to a relatively low-cost region.

While the weighted loss is able to take the cost information
into account and provides a trajectory along the low-cost re-
gions, the gradient direction it suggests is however relatively
naive. The weights {w;, ; }5_, for an instance (x,,y,) are
in fact calculated as merely the cost differences between the
current prediction y and its one-bit neighbors, i.e., label vec-
tors y € {y||ly — ¥||; = 1}. In other words, the weights are
only the first-order approximation to the cost surface, and
thereby the gradient suggested by the weighted loss leverages
only limited cost information. Most importantly, this prelimi-
nary model can still only handle example-based criteria, as
with current cost-sensitive methods.

3242

Algorithm 2 Weighted binary cross entropy for deep learning
models

Input: Training set D = {(Xn,y»)}h—1 and an
example-based MLL criterion v
1: Randomly initialize the neural network hg,
2: repeat
Split D into M random mini-batches {Dm}f\,/f:l
for m = 1to M do
for each instance (x,,y») € D do
yn < hy (Xn)
for k = 1to K do
Calculate the sample weight wy,
end for
end for
Update the network weights with gradients
computed w.r.t Lwscg
12: end for
13: until converge

(O8]

4
5
6:
7.
8.
9
0
1

10:
11:

3.3 Locally-learned Surrogate Loss for General
Cost-sensitive Multi-label Deep Learning

From Figure 1, it can be seen that the key to designing a cost-
sensitive model is that the loss surface for which the model
is optimized should sufficiently reflect the curvature of the
criterion in interest. This in fact matches the main concept
behind the previous literatures that work on developing surro-
gates for MLL criteria, as their main goal is also to come up
with smooth approximates that preserve the characteristics
of their corresponding criteria.

However, when designing a model for general criteria, it
is inefficient, or even impossible, to manually derive sur-
rogate losses for every criterion. Therefore, we call for a
surrogate that can by itself learns to adapt to different crite-
ria. In essence, we ask the question: can a surrogate loss be
automatically learned to approximate a target criterion rather
than explicitly designed by human? Nevertheless, learning
to approximate the complicated MLL criteria is undoubtedly
difficult, and it is certainly not preferable ending up with
another complex surrogate which actually does not decrease
the problem complexity. Therefore, what we aim for is an
optimization-friendly surrogate that can however provide de-
cent approximation to the target criterion.

Among various optimization strategies, gradient descent
based algorithms are simple but powerful, and are nowadays
the most prevalent practices for training modern models. One
key characteristic of gradient descent based algorithms is
they leverage only local information of the error surface to
decide to descent direction for optimization. Therefore, if
we consider using gradient descent based algorithms for the
optimization of the surrogate loss, instead of a global approx-
imation of the MLL criterion, it is arguably sufficient for
the approximation to be locally faithful. In addition, a direct
advantage gained from considering local approximation is
that simpler (smoother) approximator is perhaps enough to
learn an accurate local estimation.

To this end, we answer the previously posed question by a
novel surrogate called locally-learned surrogate loss (LLSL),
which is a (a) smooth surrogate (b) learned automatically (c)

c0,1)=1 C(1,1) = 0.375

C(0,0) = 0.875 C(1,0)=0

y[]

c0,1)=1 C(1,1) = 0.375

y12]

C(0,0) = 0.875 C(1,0)=0

y[]

Figure 1: The contour and gradient direction of ordinary BCE (left) and WBCE (right). Note that each vertex on the square
corresponds to a predicted label vector, and C(¥) is the cost function defined by the evaluation criterion.

to provide locally faithful approximation to the criterion of
interest (d) that guides the descent direction for optimization.
In particular, for a given criterion of interest, we consider an
iterative procedure for optimization. In each iteration, LLSL
is first updated to approximate the local behavior of the crite-
rion and is then used to determine the descent direction for
model optimization in that specific iteration. Such routine is
carried out repeatedly until the underlying model converges.
Since LLSL is automatically learned, the key idea is in fact
applicable to any MLL criterion. To the best of our knowl-
edge, this is the first surrogate proposed that can adapt to
general MLL criteria by itself. We note that as LLSL can es-
sentially be viewed as a loss function, it can be coupled with
any descent based optimization model such as deep learning
to form a CSMLL model, as we shall show shortly.

Formally, let g, : RY — R be a MLL model parameter-
ized by the weights 6, at time ¢, Y be the ground truth label
matrix where its n-th row is y,,, and Y be the predicted label
matrix where its n-th row is y,, = hg, (x,,). To optimize a
MLL criterion ¥, we wish to provide a smooth surrogate
to the cost surface C'y of the MLL criterion near the local
neighborhood of Y. Specifically, for an instance (X, yn),
we like to estimate how the perturbation in y,, affects the
behavior of C'y, and use this estimate to decide the descent
direction for the instance. Let G be a class of models con-
sidered for the local approximation, such as linear models,
and {2z}, be the local neighbors around ¥ ,,. We first form
a dataset Z(*) = {z;, Oy (Z;)}}_,, where Z; is the label ma-
trix obtained by replacing the n-th row of Y with z;. As the

dataset consists of a set of local neighbors around Y and their
corresponding cost, LLSL can then be learned as:

LiYs () = argergin L(g,2")
g

&)

where £ is a measurement for the closeness of the learned
surrogate ¢ and the cost surface C'y,. We note that the learned
surrogate is a regressor g : R — R who takes as input
a label vector and predicts its corresponding cost. With the
above formulation, the surrogate loss can be learned with
different sets of local neighbors Z (), closeness measurement
L and approximation models . For example, when L is the
square loss, and G is assumed to be linear. The surrogate loss

3243

is actually learned as a linear regression:

L (0) = (argmin > (c—w"2)*)To
w (z,c)eZ®)

(6)

where o € RX is the predicted label vector space. Other
types of regressors (approximators) such as polynomial re-
gression can also be considered by proper choices on G and
L. After the surrogate loss is learned, its gradient can now be
easily computed to lead the update of any gradient descent
based optimization model. For instance, if the underlying
MLL model is a neural network with K output nodes, con-
tinuing from Eq.6, the partial derivative of the surrogate loss
computed w.r.t. each output node oy, is obtained by:

aLl(fL)SL(O) 7
80k
As the gradient for the output layer is computed, the whole
network weights can then be updated by backpropagation
to optimize the surrogate loss, as well as the target criterion.
We present this novel deep learning model for general MLL
criteria in Algorithm 3.

For the selection of the local neighbors {z;}~ | from
which the surrogate loss is learned, a natural choice for a
classifier h is {z|||z — y.|1 < n}, ie., the label vectors
whose Hamming distance to the current prediction is less
than n, or, the n-bit neighbors. As for a ranker h, a natural
choice would be {z|y,, + p} where p is a random perturba-
tion. We also note that more advanced methods for defining
the neighborhood can be considered. For example, one can se-
lect the local neighbors using the cost function as the distance
measurement.

While the general definition of Eq.5 and the non-smooth
nature of the criteria make it hard to derive rigorous theo-
retical results for the proposed method, analyses on simple
cases are still available. For instance, when the local learner
is linear, it is rather straightforward to show that the time
complexity of fitting a LLSL is polynomial in K, and the
resulting learned surrogate indeed points to a descending
direction under mild conditions. We conjecture that the de-
scending direction, when coupled with careful line-search
step, can then prove optimization convergence to a local min-
imum. We leave the work as our future direction, and first
demonstrate the superiority of our method by the empirical
results as we shall show in the next section.

= wlk]

Algorithm 3 Locally-learned surrogate loss for deep learning
models

Input: Training set D = {(Xn, yn) }a—1, criterion
in interest U, a class of approximators GG and £
1: Randomly initialize the neural network hg,
2: repeat
Split D into M random mini-batches {Dm}%:1
4 form = 1to M do
5 for each instance (xn,yn») € Dy do
6: Vn < ho, (xn)
7: Collect a set local neighbors and their
corresponding cost Z) = {z;, Cy (Z))} £,

w

8: Learn the local surrogate loss Liisi. on Z
9: end for
10: Update the network with gradients computed
W.I.U LLLSL
11: end for

12: until converge

Connection to Weighted BCE It is worthwhile to note
that the proposed LLSL can be viewed as a generalization of
the weighted BCE. For WBCE, the weights for an instance
(Xpn,yn) are calculated simply as wy, . = |[V(¥n, Znk) —
(¥n,¥n)|, where z,, i is the label vector obtained from flip-
ping the k-th bit of y,,. This in fact corresponds to the LLSL
framework with Z = {z|||z — y,||1 = 1}, £ and G being
linear least squares, which utilizes the cost information along
each axis separately. Nonetheless, given the complicated be-
havior of MLL criteria, a more sophisticated approximation
that leverages the cost information around the current predic-
tion jointly is perhaps necessary to capture the curvature of
the cost surface.

4 Experiments
4.1 Experiment setup

To evaluate the effectiveness of the proposed models, we
conduct experiments on a total of eleven datasets across dif-
ferent evaluation criteria. First, on seven benchmark datasets’
(Tsoumakas et al. 2011), we compare our methods with: the
state-of-the-art cost-sensitive MLL algorithm, condensed fil-
ter tree (CFT) (Li and Lin 2014), and existing deep learning
models including BP-MLL (Zhang and Zhou 2006), WARP
(Gong et al. 2013), and BCE (Nam et al. 2014). In the experi-
ments, we consider two main classes of evaluation criteria:
(a) example-based criteria: Hamming loss, Rank loss, and
Example-F1 loss; (b) set-based criteria: Micro-F1 and Macro-
F1. Since both CFT and the deep model coupled with WBCE
can only optimize example-based criteria, their results on
Micro-F1 and Macro-F1 are not available. In addition, as
WBCE essentially degenerates to BCE on Hamming loss?,
the results for it are also omitted.

For fair comparison, all deep learning models are deployed
with a fixed architecture. The architecture is composed of two
fully-connected layers, where the number of hidden units for
each layer is set to min(d, 1024) with d being the input di-
mension. Each fully-connected layer is followed by a dropout

"birds, emotions, enron, medical, scene, tmc2007, and yeast.
2All sample weights Wnp,k are equal to % under Hamming loss.

3244

layer with dropout ratio of 0.5. For the hidden units, Leaky
ReLU is considered as the activation function.

For the proposed LLSL, we utilize several different set-
tings to approximate the criterion of interest. Specifically,
we consider three types of the underlying learners: (a) an
ordinary least square regressor that learns from the one-bit
neighbors; (b) an ordinary least square regressor that learns
from the two-bit neighbors; (c) a second-degree polynomial
regressor that learns from the two-bit neighbors. The three dif-
ferent settings will be referred to as LLSLjinear.1, LLSLjinear-2,
and LLSL,1y-> respectively.

In each run of the experiment, we randomly split 50%,
25%, and 25% of the dataset for training, validation, and
testing. Finally, the results are averaged over 10 different
random runs. Due to space limit, the relative ranking for all
algorithms are shown in Figure 2, and the detailed numerical
results are provided in Appendix.

To demonstrate the scalability of our model, we further
compare our method to the state-of-the-art algorithm, sparse
local embeddings for extreme classification (SLEEC) (Bhatia
et al. 2015), which is designed specially for handling datasets
with many labels. This set of experiments are conducted
on four benchmark datasets® with many labels. We follow
(Bhatia et al. 2015) to use Precision-at-k as the evaluation
criterion.

4.2 Comparisons with Cost-sensitive Algorithm

From Figure 2, we see cases where even cost-insensitive
deep learning models can outperform the traditional non-
deep cost-sensitive algorithm CFT. This somewhat stresses
the importance of studying deep learning models for MLL.
In addition, when comparing to CFT, our model almost con-
stantly reaches better performances against CFT. Most impor-
tantly, while CFT can only deal with example-based criteria,
our proposed model can adapt easily toward optimizing any
general criteria.

4.3 Comparisons between Deep Learning Models

Cost-insensitive versus Cost-sensitive To validate our
proposed methods, we begin with the comparison between
WBCE and BCE. Given that BCE is designed as the soft
counterpart for Hamming loss, it shows its competence on
Hamming loss in Figure 2. Nonetheless, since BCE can-
not adapt to different criteria, WBCE outperforms BCE on
Example-F1 and Rank loss, as shown in Figure 2. The results
demonstrate that the proposed WBCE is indeed a (simple)
way to make deep learning models cost-sensitive.

Although WBCE can reach better performances than BCE
on Example-F1 and Rank loss, when comparing it to the
proposed LLSL, LLSL wins by a large margin in Figure
2. The results justify the need for studying a more sophisti-
cated method to make deep learning models cost-sensitive.
Furthermore, we shall note that LLSL is able to optimize
any given criterion while WBCE is restricted to cope with
example-based criteria.

In Figure 2, when comparing the proposed LLSL to other
deep learning models, our model steadily shows superior

3Bibtex, Delicious, EURLex-4K, and Wikil0-31K.

Table 1: Approximation error in RMSE

Approximators

Datasets Criterion linear-1 linear-2 poly-2 Consistent
birds Rank 0.073 £ 0.079 2.150 £3.148 1274 +2849
Example-F1 0.034 4+ 0.048 0.053 +0.044 0.023 +0.032 v
Micro-F1 0.146 + 0.046 0.116 + 0.021 0.132 + 0.033 v
Macro-F1 ~ 0.485 4+ 0.025 0.551 +0.061 0.450 + 0.064
emotions Ranking 0.170 + 0.072 0.613 +0.329 0.990 + 0.560 v
Example-F1 ~ 0.159 + 0.070 0.173 +0.033 0.093 + 0.029
Micro-F1 0.227 +0.054 0242+ 0.088 0.152 + 0.026 v
Macro-F1 ~ 0.209 +0.047 0.187 +0.114 01724+ 0.016 v
scene Ranking 0.110 + 0.058 0.603 + 0.291 0.478 + 0.495 v
Example-F1 0.154 +0.088 0.133 +0.072 0123 + 0.067 X
Micro-F1 0390 + 0.137 0.355+0.140 0.225+ 0.175
Macro-F1 ~ 0.200 +0.153 0.184 +0.090 0.172 +0.089 v
Example-F1, Micro-F1 and Macro-F1. LLSLjjpear.2> can only
reach the best result on few cases.
Hamming loss ————%-20— g+ * . . .
oo To explain the results, we take a step further to investigate
Rank loss |———+—k-O—B7 O P e the reason behind so. In particular, we investigate the good-
Example-F loss|—— 7O OB+ X% el ness of the esti'mations learned by different approximators.
. B i) The goodness is measured by the RMSE between the true
Micro-F1 loss —H X inear- . N
 LLSL (poly-2) cost and the estimated cost on a set of points sampled from
Macro-F1 loss ————S7A0)——3k—X the local neighborhood where the estimation is learned. The
results are reported in Table 1. From the table, it can be seen

1 2 3 4 5 6 7 8
average rank

Figure 2: The average rank of different models on different
criteria. The lower (left) the rank, the better the performance.

Table 2: Results on datasets with many labels

Algorithms
Datasets (m)P@k SLEEC BCEloss Locally-learned loss
Bibtex (m)P@1 0.3492 0.4482 0.3647
(n) P@3 0.6036 0.6698 0.6157
(m)P@5 0.7113 0.7612 0.7270
Delicious (m)P@1 03241 0.3194 0.2980
(m)P@3 0.3862 0.3778 0.3581
(n) P@5 0.4344 0.4282 0.4081
EURLex-4K (n)P@1 0.2074 0.2345 0.2287
(n)P@3 0.3570 0.3654 0.3579
(n) P@5 04767 0.4731 0.4677
Wikil0-31K (n) P@1 0.1412 0.1442 0.1396
(n)P@3 0.2702 0.2665 0.2563
(m)P@5 0.3730 0.3631 0.3586

performances across different criteria, while the other mod-
els can only sometimes reach the best result on the criteria
for which they are designed to optimize. The results again
demonstrate the ability of LLSL to adapt to general criteria.

The Approximators for LLSL In order to gain more in-
sights on the proposed LLSL, we further compare the per-
formances of LLSLjinear-1, LLSLiinear-2, and LLSLq1y-2 to see
how different underlying approximators behave on differ-
ent criteria. In Figure 2, we see that LLSLjjeqr.; performs
the best against the others on Hamming loss and Rank loss.
On the other hand, LLSL,y-> outperforms the other two on

3245

that the performance of a model is strongly correlated to
how well the underlying local approximation to the criterion
is. That is, the lower the approximation error, the better the
model performs. We mark every row in the table as consis-
tent if the above holds. The results also suggest a general
guideline to choose suitable approximator for LLSL when it
comes to different criteria. While the bias of the estimation
varies with the choice of local learner, we observe that the
estimation error decreases as the optimization proceeds.

Interestingly, while we generally believe that more sophis-
ticated approximator may provide more faithful estimation to
the criterion of interest, it is shown that the relatively simple
linear-1 approximator gives the best estimation to Hamming
loss and Rank loss. The interesting finding can be explained
by the inherent nature of the two criteria. In other words, as
the minimization of Hamming loss and Rank loss can actu-
ally be decomposed by labels (Dembczynski, Kotlowski, and
Hiillermeier 2012), a linear approximator that treats each la-
bel independently might be enough good for estimating these
criteria. Nevertheless, for the other more complicated criteria
such as Macro-F1, a more sophisticated approximation is
required for better performance.

4.4 Scaling Up to Datasets with Many Labels

On large scale datasets, we demonstrate the scalability and
flexibility of the proposed LLSL by using it to fine-tune deep
models that are originally pre-trained on BCE loss. In table 2,
BCE stands for models that are trained with the conventional
BCE loss, and LLSL stands for models that are fine-tuned
with the proposed locally-learned surrogate loss. In the exper-
iments, we find the gradients of the surrogate loss learned for
Precision-at-k appear to be very sparse, resulting in slower
convergence. An useful practical finding to tackle such issue
is to optimize the mixture loss between Hamming loss, repre-

sented by BCE, and the learned surrogate loss. In a high-level
sense, as Hamming loss treats each label equally, it in fact
encodes the global information about the target metric. Thus,
it can be viewed as a regularizer to the locally-learned surro-
gate loss which exploits the local information. As long as we
could find the sweet spot between the two losses, optimizing
the mixture loss between them works well in practice. Fur-
thermore, following the idea, LLSL can actually be mixed
with other objectives such as the proposed WBCE. A joint
optimization between LLSL and other loss functions might
also lead to an interesting future direction.

In Table 2, it is shown that our proposed LLSL success-
fully improves the performances of cost-insensitive models
on large scale datasets. In addition, our model reaches com-
petitive performance to the state-of-the-art. This not only
demonstrates the scalability of our proposed method, but also
shows the capability for LLSL to cope with criterion like
Precision-at-k£ when the deep model is a ranker.

5 Conclusion

We propose a novel locally-learned surrogate loss (LLSL)
that can adapt toward optimizing general MLL criteria by
learning local approximation to the criterion of interest. The
learned surrogate loss is then coupled with deep learning
model to optimize the target criterion. The proposed LLSL
can successfully capture the local behavior of the target MLL
criterion and in turn provides cost-aware gradients guiding
the network updates. Extensive experimental results show
that our proposed deep model achieves outstanding perfor-
mances against the state-of-the-art methods.

Acknowledgements

We thank the anonymous reviewers and the members of NTU
CLLab for valuable suggestions. This material is based upon
work supported by the Air Force Office of Scientific Re-
search, Asian Office of Aerospace Research and Develop-
ment (AOARD) under award number FA2386-15-1-4012,
and by the Ministry of Science and Technology of Taiwan
under number MOST 103-2221-E- 002-149-MY3

References
Beygelzimer, A.; Langford, J.; and Ravikumar, P. 2009.
Error-correcting tournaments. CoRR abs/0902.3176.
Bhatia, K.; Jain, H.; Kar, P.; Varma, M.; and Jain, P. 2015.
Sparse local embeddings for extreme multi-label classifica-
tion. In NIPS 2015.

Boutell, M. R.; Luo, J.; Shen, X.; and Brown, C. M. 2004.
Learning multi-label scene classification. Pattern Recogni-
tion 37(9):1757-1771.

Dembczynski, K.; Cheng, W.; and Hiillermeier, E. 2010.
Bayes optimal multilabel classification via probabilistic clas-
sifier chains. In ICML 2010.

Dembczynski, K.; Kotlowski, W.; and Hiillermeier, E. 2012.
Consistent multilabel ranking through univariate losses. In
ICML 2012.

Elkan, C. 2001. The foundations of cost-sensitive learning.
In IJCAI 2001.

3246

Gao, W., and Zhou, Z. 2011. On the consistency of multi-
label learning. In COLT 2011.

Gong, Y.; Jia, Y.; Leung, T.; Toshev, A.; and Ioffe, S. 2013.
Deep convolutional ranking for multilabel image annotation.
CoRR abs/1312.4894.

Huang, K.-H., and Lin, H.-T. 2017. Cost-sensitive label
embedding for multi-label classification. Machine Learning
106(9-10):1725-1746.

Li, C.-L., and Lin, H.-T. 2014. Condensed filter tree for
cost-sensitive multi-label classification. In ICML 2014.

Lo, H.; Wang, J.; Wang, H.; and Lin, S. 2011. Cost-sensitive
multi-label learning for audio tag annotation and retrieval.
IEEE Trans. Multimedia 13(3):518-529.

Madjarov, G.; Kocev, D.; Gjorgjevikj, D.; and Dzeroski, S.
2012. An extensive experimental comparison of methods for
multi-label learning. Pattern Recognition 45(9):3084-3104.
Nam, J.; Kim, J.; Loza Mencia, E.; Gurevych, I.; and
Fiirnkranz, J. 2014. Large-scale multi-label text classifica-
tion - revisiting neural networks. In ECML PKDD 2014.

Petterson, J., and Caetano, T. S. 2010. Reverse multi-label
learning. In NIPS 2010.

Petterson, J., and Caetano, T. S. 2011. Submodular multi-
label learning. In NIPS 2011.

Qi, G.; Hua, X.; Rui, Y.; Tang, J.; Mei, T.; and Zhang, H.
2007. Correlative multi-label video annotation. In Pro-

ceedings of the 15th International Conference on Multimedia
2007.

Read, J.; Pfahringer, B.; Holmes, G.; and Frank, E. 2011.
Classifier chains for multi-label classification. Machine
Learning 85(3):333-359.

Schapire, R. E., and Singer, Y. 2000. Boostexter: A boosting-
based system for text categorization. Machine Learning
39(2/3):135-168.

Tsoumakas, G.; Xioufis, E. S.; Vilcek, J.; and Vlahavas, I. P.
2011. MULAN: A java library for multi-label learning. Jour-
nal of Machine Learning Research 12:2411-2414.

Tsoumakas, G.; Katakis, I.; and Vlahavas, 1. P. 2010. Mining
multi-label data. In Data Mining and Knowledge Discovery
Handbook, 2nd ed. 667-685.

Wu, Y.-P., and Lin, H.-T. 2017. Progressive k-labelsets for
cost-sensitive multi-label classification. Machine Learning
106(5):671-694.

Zadrozny, B.; Langford, J.; and Abe, N. 2003. Cost-sensitive
learning by cost-proportionate example weighting. In /ICDM
2003, 435.

Zhang, M., and Zhou, Z. 2006. Multi-label neural networks
with applications to functional genomics and text categoriza-
tion. IEEE Trans. Knowl. Data Eng. 18(10):1338-1351.

