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Abstract

Link prediction is of fundamental importance in network
science and machine learning. Early methods consider only
simple topological features, while subsequent supervised ap-
proaches typically rely on human-labeled data and feature
engineering. In this work, we present a new representation
learning-based approach called SEMAC that jointly exploits
fine-grained node features as well as the overall graph topol-
ogy. In contrast to the SGNS or SVD methods espoused in
previous representation-based studies, our model represents
nodes in terms of subgraph embeddings acquired via a form
of convex matrix completion to iteratively reduce the rank,
and thereby, more effectively eliminate noise in the represen-
tation. Thus, subgraph embeddings and convex matrix com-
pletion are elegantly integrated into a novel link prediction
framework. Experimental results on several datasets show the
effectiveness of our method compared to previous work.

1 Introduction
Link prediction, which attempts to discover missing links
between nodes in a complex network, is of fundamental im-
portance in numerous tasks in countless different domains.
For instance, link prediction can identify likely but not yet
established links in an evolving social network, thus en-
abling recommendations to be presented to users.

There are number of challenges that need to be ad-
dressed for accurate and efficient link prediction. For one,
our knowledge of complex networks is often very partial,
i.e., only a small fraction of all true relationships and net-
work structures may be known to us. Additionally, real-
world networks are often very large, and hence it is com-
putationally demanding to compute link probabilities using
algorithms that account for the global structure.

Previous work on this still suffers from several shortcom-
ings, especially with respect to their ability to capture rich
characteristics of the graph both extensively and efficiently.
Early work focused on straightforward similarity measures
between pairs of nodes (Liben-Nowell and Kleinberg 2003).
While these are quick to compute, they only exploit a sin-
gle topological feature, neglecting crucial additional infor-
mation that is often needed for accurate prediction. Proba-
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bilistic graphical models (Wang, Satuluri, and Parthasarathy
2007) take the network structure into consideration, how-
ever at the expense of substantially increased computational
effort, with significant limitations in terms of their applica-
bility to larger networks. Path-based approaches (Lichten-
walter, Lussier, and Chawla 2010) capture additional net-
work structure features such as clusters of nodes, the de-
gree of the neighborhood etc., relying on human-engineered
features to improve the link prediction accuracy. However,
there are important features that are hard to be formalized
and human-engineered, such as the intertwining of paths.
Capturing such features efficiently has been one of the main
impediments to further improving the accuracy of link pre-
diction on challenging real-world datasets.

Figure 1: Schematic illustration of our SEMAC link predic-
tion method.

To fill this gap, our work advocates for automatically de-
tecting these inherent but irregular features, using a novel
form of representation learning. By learning representations
of nodes, we endeavor to capture a larger range of pertinent
properties and signals about nodes in the network, drawing
on more subtle cues that human-engineered features may
overlook. Thus our model is advantageous in that we do
not need to heavily rely on expert knowledge and can flexi-
bly apply the same method across a range of heterogeneous
kinds of networks. Network representations have recently
shown promise for a number of tasks, including vertex clas-
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sification, anomaly detection, and tag recommendation (Per-
ozzi, Al-Rfou, and Skiena 2014; Yang et al. 2015).

We propose a representation-based approach for link pre-
diction called SEMAC. Our algorithm induces a represen-
tation of each node by learning embeddings of subgraphs
around given nodes in the graph. This allows it to cap-
ture suitable fine-grained network features such as a node’s
neighborhood information, while also accounting for the
global community structure. SEMAC proceeds with a form
of convex matrix completion to lower the rank of the sub-
graph embeddings in order to remove noise and improve its
generalization abilities. Finally, the representations for dif-
ferent subgraphs of various depths associated with a given
node are combined to form the node’s overall representa-
tion, which can subsequently be used to predict new links in
the graph. A simplified illustration of our method is given in
Fig. 1.

The main contributions of our paper can be summarized
as follows:

• We propose a novel form of representation learning for
link prediction. Our SEMAC algorithm introduces the
idea of subgraph embeddings to the task of link predic-
tion.

• To the best of our knowledge, this work is also the first
to combine the idea of subgraph embedding with convex
matrix completion for learning network representations.
Note that this is nontrivial due to the sparsity requirement
for efficient matrix completion.

• We extensively evaluate our algorithm across a range of
heterogeneous real-world datasets, and also demonstrate
its scalability on large networks of up to a million nodes.
The experiments show that our methods yield state-of-
the-art link prediction results on all evaluated datasets.

The rest of the paper is organized as follows. In Section 2,
we discuss related works. In Section 3.1, we define the prob-
lem of link prediction rigorously. In Section 3.3, we present
our algorithm for solving link prediction. We outline the ex-
periments in Section 4.1 and show their results in Section
4.3. Finally we close with a conclusion in Section 5.

2 Related Work
Traditional algorithms for link prediction can roughly be
characterized as belonging to three different categories. The
first of these straightforwardly computes the similarity be-
tween nodes using simple measures. Examples of such
methods include Common Neighbors, Adamic/Adar (i.e.,
frequency-weighted common neighbors), and the Jaccard
coefficient (Liben-Nowell and Kleinberg 2003). Among
these, Adamic/Adar fares the best on most datasets. Al-
though such measures are quick to compute, a decisive
drawback is that they merely use a single (topological) fea-
ture for link prediction, neglecting crucial supplementary
cues.

The second category consists of probabilistic graphi-
cal models, including Bayesian probabilistic modeling and
relational Markov chain solutions (Wang, Satuluri, and
Parthasarathy 2007). With methods of this sort, the network

structure is taken account of, e.g. via community detec-
tion and hierarchical organization. However, training global
probabilistic models can be computationally expensive and
typically does not scale well to medium-sized, let alone
large-scale networks.

The third category consists of path-based link predic-
tion methods, including Propflow, Katz, and Commute Time
(Lichtenwalter, Lussier, and Chawla 2010). Compared with
the first category, this type of method captures additional
features from the network structure, such as clusters of
nodes or the degree of the neighborhood. At the same
time, they are also time-efficient in comparison with the
second category. However, these methods require human-
engineered features and may be susceptible to overfitting.

There are also some interesting work that combine the
output of several prediction algorithms. One can refer to
(Ceci et al. 2015) and (Marbach et al. 2012) for some ex-
amples.

In a series of recent studies, network representations
have shown promise for a number of network-related tasks.
Perozzi et al. presented DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), proposing the notion of a network represen-
tation for classification tasks. Their method combines ran-
dom walks with the word2vec Skip-Gram with Negative
Sampling (SGNS) approach. Nonnegative matrix factoriza-
tion based representation methods have also been explored
for tasks such as clustering and recommendation. Another
method targeting the task of clustering is GraRep, which is
based on DeepWalk, but where random walks are replaced
by concatenations of 1-hop to k-hop neighbor information to
take into account non-linear relations, and SGNS is replaced
by SVD. Compared to GraRep, our method explicitly takes
into account the relationships between i-hop and (i+1)-hop
neighborhoods, and also overcomes the unrealistic assump-
tion for SVD that non-observed entries are zero, by instead
relying on a form of convex matrix completion.

Recently, Grover et al. showed that network represen-
tations of this sort are useful for link prediction. Their
node2vec approach was shown to outperform traditional link
prediction methods with an absolute improvement of 10%
in terms of AUC on a number of link prediction datasets
(Grover and Leskovec 2016). Our work continues this line
of inquiry but proposes a novel representation model, which
across a range of heterogeneous datasets substantially im-
proves over methods such as node2vec, DeepWalk, and
GraRep, thus advancing the state-of-the-art.

3 SEMAC Method
3.1 Problem Definition
Consider an undirected graph G = (V,E), where V is the
set of vertices and E is the set of edges. Here, we con-
sider simple graphs without self-loops, in which there can
be at most one edge between two nodes. We denote the
set of vertices as V = {a1, . . . , an}. Entry Aij of the ad-
jacency matrix A is equal to 1 if an edge exists between
two nodes ai, aj , and 0 otherwise. We further denote all
possible |V |(|V |−1)

2 edges as U , where |V | is the total num-
ber of vertices, and the non-existent edges are referred to as
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U −E. Under this setting, link prediction can be formulated
as the task of discovering missing edges from the set U −E.
In the following sections, we first review necessary back-
ground information and then propose our SEMAC algorithm
to address this task. Via its novel network representation ap-
proach, this model captures both global aspects as well as
fine-grained local information to enable high-accuracy pre-
dictions.

3.2 Representation Models
We first review some of the technical underpinnings of ex-
isting approaches for network representations. The notion of
network representations originates from the idea of learning
word embeddings in the natural language processing litera-
ture (Levy and Goldberg 2014), most notably the word2vec
Skip-Gram with Negative Sampling (SGNS) approach. To
start with, recall that classic language modeling maximizes

T∑
t=1

logPr(wt−c, · · · , wt+c | wt), (1)

where T is the length of a document. By assuming indepen-
dence, we obtain

Pr(wt−c, · · · , wt+c | wt) =
∏

−c≤j≤c,j �=0

Pr(wt+j | wt).

(2)
The Skip-Gram model further assumes a softmax probability
distribution

Pr(wt+j | wt) =
exp(ΦT

wt
Φ′

wt+j
)

V∑
w=1

exp(ΦT
wt
Φ′

w)

, (3)

where Φw,Φ
′
w ∈ Rd are two vectors corresponding to w,

referred to as the input word embedding and the output word
embedding of w, respectively. V is the overall vocabulary.

To maximize Pr(wt+j | wt), it is equivalent to maximize

log exp(ΦT
wt
Φ′

wt+j
) + log

V∑
w=1

exp(−ΦT
wt
Φ′

w). (4)

More generally, the exponential function may be replaced
by an arbitrary nonlinear function σ, and thus the objective
becomes

log σ(ΦT
wt
Φ′

wt+j
) + log

V∑
w=1

σ(−ΦT
wt
Φ′

w). (5)

Since the second term is time-consuming to compute, it is
typically replaced by negative sampling,

log σ(ΦT
wt
Φ′

wt+j
) + k · Ew∼PD

log σ(−ΦT
wt
Φ′

w), (6)

where D is the observed data and PD(w) = #(w)
|D| is the

distribution of words.
The first network representation work, DeepWalk (Per-

ozzi, Al-Rfou, and Skiena 2014), relied on random walks to
select paths of nodes, which served as analogs of sentences.
Based on these, it then simply invokes SGNS to obtain node

embeddings in the same way as word embeddings are ob-
tained.

Levy and Goldberg proved that SGNS, under certain con-
ditions, can be regarded as an implicit form of matrix fac-
torization (Levy and Goldberg 2014). Multiple works pro-
vided empirical corroboration showing that SVD and their
variants can outperform SGNS (Cao, Lu, and Xu 2015;
Tu et al. 2016). Following Levy et al., DeepWalk can be
modified to optimize

∑
w

∑
c

log

(
#(w, c) · |D|
#(w) ·#(c)

)
− log(k). (7)

GraRep (Cao, Lu, and Xu 2015) adopts this idea of replacing
SGNS by SVD, but further improves over DeepWalk by ob-
serving that taking the average of the context items within a
window of the target item is suboptimal. They instead treat
each context item with distance k to the target item sepa-
rately (1 ≤ k ≤ K) and concatenate the resulting vectors to
capture weights and non-linearity.

3.3 Our SEMAC Algorithm
Our SEMAC approach improves over previous representa-
tion learning methods by introducing a number of key in-
novations, especially the use of subgraph embeddings and
the use of a novel form of convex matrix factorization. It
applies to both undirected and directed graphs. The overall
procedure consists of five steps, for which we provide the
high-level story in Algorithm 1. Of these five steps, the first
four can be prepared offline, while the fifth one is activated
on demand given a pair of nodes to be evaluated.

Algorithm 1 Overall Algorithm
1. Determine target subgraphs and radial contexts.
2. Compute the PPMI matrix.
3. Nuclear norm regularization-based matrix completion.
4. Form node embeddings from subgraph embeddings.
5. Compute link prediction score given query node pair.

In the first step, we retrieve subgraphs gv,d at different
depths d around nodes v, for which we will subsequently
compute subgraph embeddings that later give rise to embed-
dings for nodes. Subgraph embeddings were first proposed
in the context of graph classification, clone detection, and
malware detection and have enjoyed success in those tasks
(Narayanan et al. 2016). We adapt this idea to the task of
link prediction, but will rely on novel techniques to learn the
embeddings.

The first step of obtaining subgraphs is presented in more
detail in Algorithm 2. By invoking breadth-first search, we
capture multiple subgraphs for each node at different depth
levels. These constitute our target vocabulary V , in analogy
to vocabularies in word representation learning. For each
subgraph with a center node v and a radial depth d, we also
determine its radial context Cv,d. By accounting for the ra-
dial context around each node in this way, we capture the
natural correlations between different depth levels. Such cor-
relations can generally help the node representation learn-
ing, giving our approach an advantage over methods such as

2805



GraRep, which treat the representations of different lengths
as independent.

Algorithm 2 V, C=Vocabulary(G,D)
Input: A graph G = (V,E) and depth D.
for (v, d) ∈ V × {1, . . . , D} do
gv,d ← BFS with v as the root and d as the depth

for (v, d) ∈ V × {1, . . . , D} do
Cv,d ← {gv,d′ | d′ ∈ {d − 1, d + 1} ∩ {1, . . . , D}}

∪ {gu,d | (u, v) ∈ E}
Output: Output {gv,d} as the vocabulary V and {Cv,d}
as the set of radial contexts C.

In the second step, we learn representations of the tar-
get subgraphs in V . To this end, we compute a positive
PMI (PPMI) matrix (Levy and Goldberg 2014) as M =
(A+A2)/2. Unlike previous work (Yang et al. 2015), where
A is the original adjacency matrix for a graph, we instead op-
erate at the level of subgraphs and form an adjacency matrix
of subgraphs. Algorithm 3.3 below describes this procedure.

Algorithm 3 PPMI Matrix M= Rep(V, C)
Input: a vocabulary V .
Step 1: Define a graph G′ = (V ′, E′) with subgraphs in
V as vertices and edges between two subgraphs represent-
ing that one subgraph is in the radial context of another
subgraph.
Step 2: Let dv be the degree of node v for all v ∈ V ′. Set
all Aij to 0 if (vi, vj) �∈ E′, and 1/dvi

if (vi, vj) ∈ E′.
Output: PPMI matrix M = (A+A2)/2.

In Algorithm 3.3, we first form a new graph G′ =
(V ′, E′) where the node set V ′ is the vocabulary V =
{gv,d} obtained in Algorithm 2. For the edge set, an edge
{gu,d, gv,d′} exists in E′ iff gv,d′ ∈ Cu,d. Then we define a
matrix A based on G′ which induces a PPMI matrix M .

In the third step, we learn a low-rank representation of the
PPMI matrix M to remove white noise. Let W denote such
a representation. However, instead of SVD or max-margin
matrix factorization (MMMF), we propose relying on a form
of convex matrix completion called nuclear norm regulariza-
tion (NNR) (Mazumder, Hastie, and Tibshirani 2010). Let Ω
be the set of nonzero entries. For ease of later discussion, for
a matrix Y , define its decomposition as

Y = PΩ(Y ) + P⊥
Ω (Y ), (8)

where

PΩ(Y )(i, j) =

{
Y (i, j), (i, j) ∈ Ω

0, (i, j) �∈ Ω
. (9)

The objective of NNR is to minimize

1

2
||PΩ(M)− PΩ(W )||2F + λ||W ||∗, (10)

where || · ||∗ is the nuclear norm and || · ||F is the Frobe-
nius norm. This objective is convex and thus lends itself to

tractable global optimization. There are three advantages of
this approach over SVD and MMMF. First, SVD presup-
poses that the entries are exact. In particular, non-observed
entries are presumed to be zero. This assumption is in-
adequate in our setting and is avoided by NNR. Second,
MMMF is not convex and thus one often falls into local
minima, while NNR is convex. Third, NNR automatically
learns the rank instead of sweeping the rank. Hence, its
run-time is reduced. Algorithm 4 presents the details of the
SOFT-IMPUTE algorithm for NNR. At a high level, it it-
eratively replaces missing elements with those of a soft-
thresholded SVD. The complexity of the NNR algorithm is
O(|Ω|r+(m+n)r2), where m, n are the number of columns
and rows, respectively, r is the rank.

Algorithm 4 W=SOFT-IMPUTE(M )
Zold := 0.
for λ1 > λ2 > · · · > λK do
Znew := Sλk

(PΩ(M) + P⊥
Ω (Zold)).

while ||Znew−Zold||2F
||Zold||2F

> ε do
Zold := Znew.
Znew := Sλk

(PΩ(M) + P⊥
Ω (Zold)).

Ẑλk
:= Znew.

Output: ˆZλK
expressed as its SVD decomposition.

Algorithm 4 provably finds an optimal solution to Eq. (10)
modulo minor computational inaccuracy. Within Algo-
rithm 4, λk equals α · ηk, where α is a parameter to be
tuned for each dataset, and η is the learning rate. Sλi(Y )
stands for the sum of the components of Y that have singu-
lar values larger than λi. In the algorithm, P⊥

Ω (Zold) is not
stored directly, but obtained from Zold. Note that Zold is a
low-rank matrix, and hence can be stored compactly using
its SVD decomposition. The outer iteration of the algorithm
allows us to gradually decrease the threshold λi of the soft-
thresholded SVD Sλi(Y ).

Next, in the fourth step, we create node embeddings from
the previous subgraph embeddings. Algorithm 5 takes the
subgraph representations of all depths 1 ≤ d ≤ D for a
given node generated by the third step, and concatenates
them.

Algorithm 5 M = Concat(W1, . . . ,WD)
Input: Embeddings W1, . . . ,WD for subgraphs of vari-
ous depths.
Output: A concatenated embedding
Mu = (W1(u), · · · ,WD(u)) for each vertex u.

Finally, we predict links by calculating the cosine value
of the angle between the vector representations of the two
vertices for a given link under consideration. These scores
are closely related to the probability of this link existing.
This is presented in Algorithm 6.

With the above approach, SEMAC addresses two key
challenges in link prediction: (1) By generating subgraphs
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Algorithm 6 Rep2Score(M,u, v)
Input: a vertex representation of all nodes M , a pair of
nodes (u, v), between which we ask whether a link exists.
Step 1: Mu,Mv ← representation vectors for u and v

Output: Score(u, v) = |Mu·Mv|
|Mu||Mv|

from each node, our method gathers pertinent structural in-
formation from the network, learning representations that
capture fine-grained local neighborhood information, while
adaptively accounting for overall properties of the graph
structure. (2) By relying on a modified convex matrix com-
pletion to find a low-rank approximation of the features,
SEMAC is able to disregard uninformative signals, while
improving the model’s generalization abilities.

3.4 Extensions
Before concluding this section, we discuss some possible
variants of our algorithm. The first option is to replace con-
vex matrix completion by another dimensionality reduction
method, using the Johnson-Lindenstrauss lemma (Krahmer
and Ward 2011). The Johnson-Lindenstrauss lemma projects
vectors of size O(n) to vectors of size O(log n) with little
distortion. Said projection is achieved in two phases: First,
randomly projecting the vector to an appropriate dimension,
and, second, multiplying it by a suitable scalar to preserve
the norm. Replacing our SOFT-IMPUTE(A) by this proce-
dure yields a fast variant of our algorithm. Two further modi-
fications are to rely on streaming and non-random walk vari-
ants, which can be obtained analogously to modifications of
previous work (Perozzi, Al-Rfou, and Skiena 2014).

Secondly, our algorithm can be adapted to weighted
graphs. When constructing the matrix A in Algorithm 3.3,
we set the entries in each row to equal values. For weighted
graphs, this can be set differently according to the edge
weights. We leave detailed investigation to future work.

Finally, we remark that our algorithm can easily incor-
porate additional side information in the form of node fea-
tures. Surprisingly, by adding these additional features, both
the speed and performance of the algorithm can be im-
proved, which also holds true in other matrix completion
tasks, such as multi-class labeling (Xu, Jin, and Zhou 2013).
Specifically, denote the representation of the network as
A ∈ R

n×n, and the node-feature matrix as Φ ∈ R
n×k. Here,

the feature dimensionality of the node k is much smaller
than the number of nodes n. Under certain mild assump-
tions, it can be shown that matrix completion on ΦTAΦ,
which is a much smaller matrix, is equivalent to matrix com-
pletion on A. Additionally, the information in Φ can be uti-
lized in comparing two nodes to compute their similarity.
Thus, both the speed and the effectiveness can be improved.

4 Experimental Evaluation
We evaluated our SEMAC approach on a series of heteroge-
neous real-world datasets and compared it against both clas-
sic methods and recent representation-based approaches.

4.1 Datasets
We consider the following datasets:

Facebook (McAuley and Leskovec 2012; Leskovec and
Krevl 2014): We use a Facebook social network dataset,
which consists of 4,039 nodes, each corresponding to a
Facebook account. This sparse graph contains 88,234 edges
representing the friendship relation. In order to examine the
effect of graph sizes and levels of sparsity, we also consider
small subsets by randomly selecting nodes from the original
data set (which is denoted as FOrig), to generate the sample
datasets F200, F400, F800 and F1600, which are connected
components with 200, 400, 800, and 1600 nodes, respec-
tively. By checking the degree distributions of these datasets,
we find that they still follow a power law, and thus preserve
properties of a social network, albeit with a smaller size.

Wikipedia (Leskovec and Krevl 2014): This real-world
dataset is collected from Wikipedia and consists of 7,115
nodes and 103,689 edges. We denote this dataset as Wiki.

Coauthorship (Leskovec and Krevl 2014): This real-
world dataset is formed from the coauthor network of gen-
eral relativity section on arXiv. It consists of 5,242 nodes
and 14,496 edges. We denote this dataset as Coauth.

PPI (Breitkreutz et al. 2008): This protein-protein inter-
action network consists of 19,706 nodes and 390,633 edges.
It is denoted as PPI.

4.2 Experiment Setup
We conduct a series of experiments and evaluate SEMAC
at different data scale levels. For each dataset, the observed
edges E are split into two parts ET and EP , where ET is used
for training and EP for testing. The splitting is performed
with 5-fold cross-validation. That is, the observed edges are
split to five equal parts. Then we repeat 5 times, each time
take one part as the test set and the rest four parts as the
training set.

To assess the effectiveness of different link prediction ap-
proaches, we rely on the standard area under the receiver op-
erating characteristic curve (AUC) metric (Hanley and Mc-
neil 1982). We repeat experiments on each dataset for 100
times and report the average AUC score. These experiments
are run on a laptop with 2.8 GHz CPU and 8G memory.

We compare our model with the following state-of-the-
art baselines: Common Neighbor, Salton Index (Salton and
Mcgill 1983), Jaccard Index (Jaccard 1901), Sorensen In-
dex (Sorensen 1948), and Resource Allocation (Zhou, Lü,
and Zhang 2009). We also compare against matrix factor-
ization methods, including matrix factorization for recom-
mender systems (MFRS) (Koren, Bell, and Volinsky 2009),
link prediction via matrix factorization (LPMF) (Menon and
Elkan 2011), distributed stochastic gradient descent (DSGD)
(Gemulla et al. 2011), and greedy asynchronous stochastic
gradient descent (GASGD) (Petroni and Querzoni 2014). Fi-
nally, we consider DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), GraRep (Cao, Lu, and Xu 2015), and node2vec
(Grover and Leskovec 2016). Note that DeepWalk is orig-
inally intended to be used for classification tasks and not
for link prediction. Here, the baseline DeepWalk means that
after the embeddings of the nodes are learnt through Deep-
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Walk, the cosine similarity score is computed as in Algo-
rithm 6.

4.3 Link Prediction Result Analysis
The experimental results of this comparison are given in Ta-
ble 1. For these experiments, the learning rate η and the ratio
of regularization λ are optimized to be 0.3 and 0.001, respec-
tively, according to cross validation within the training set.
The depth D is taken to be 3 for the datasets FOrig, Wiki,
Coauth, and 2 for the dataset PPI.

From Table 1, we conclude that our method SEMAC
achieves favourable results on predicting links in diverse
networks of heterogeneous structure and at different scale
levels in terms of the number of nodes. SEMAC consis-
tently outperforms previous methods across all datasets.
Specifically, our algorithm has an absolute improvement
over the second best algorithm by 1.5%, 1.7%, 1.2%, 0.8%,
0.9%, 2.2%,2.9%, and 2.4% for the datasets F200, F400,
F800, F1600, Wiki, Coauth, Twitter, and PPI, respectively.
This is due to our model’s ability to learn representations
that capture more neighborhood information, while dynami-
cally adapting to different network topologies and structures,
while our convex matrix completion mitigates the effects of
noise and increases the generalization abilities of our repre-
sentations.

For further understanding, we can compare network
types and structures among the datasets. For the Wikipedia
dataset, which saw the weakest results, we observed that the
presence of an edge has an overloaded interpretation in the
sense that there are actually links of many different kinds.
Protein interaction (PPI) data to some extent exhibits similar
behaviour. Thus, datasets that conflate heterogeneous kinds
of links remain challenging for current methods. A potential
solution for this sort of data, with different types of links,
is to combine the information on the link. Further work is
thus needed. in order to discover suitable application scope
and make proper model selection decisions. Note however,
that even in these cases, our approach still eclipses previous
methods.

Parameter Sensitivity To further evaluate the effect of
SEMAC’s parameters, we vary these on F400. For these
tests, we fix the number of inner iterations to an appropriate
value (i = 100), which ensures convergence. We then pro-
ceed to vary the learning rate α and the ratio of the regular-
ization term λ to determine their effects on the performance
of our algorithms.

Learning rate. Figure 2(a) shows the effect of different
choices of learning rate α, ranging from 0.1 to 0.5. We can
see that initially when learning rate is 0.1, the performance
is a bit worse for the given number of iterations. This phe-
nomenon can be explained by the slow convergence, which
is in turn caused by the small learning rate. As the learn-
ing rate increases, the performance gradually becomes bet-
ter. But at some point (when rate=0.4), the performance de-
creases. It can be seen that for both SEMAC, the best learn-
ing rate is between 0.2 and 0.3.

Regularization. Figure 3(b) shows the effect of the regu-
larization ratio, which ranges from 10−9 to 1. When the ratio
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Figure 2: Varying the learning rates for SEMAC on F400.

grows too large (≥ 0.1), the AUC scores rapidly degrade be-
cause the objective function then plays a too small role com-
pared to the regularization, and the prediction is no longer
accurate. As the ratio of regularization decreases (shown in
log scale on the figure), the performance gradually improves,
and finally stays at a constant level. This implies that for this
specific task of link prediction, it would not hurt to omit the
regularization term. We leave the theoretical understanding
of this fact as future work.
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Figure 3: Varying the ratio of regularization for SEMAC on
F400.

Depth. The maximum depth D affects both the quality of
the results and the time complexity. More precisely, increas-
ing D improves the performance but significantly increase
the time complexity and the space complexity. In our exper-
iments, we set the maximum D possible for each data size
given our hardware environment.

Iterative rank minimization. Though matrix completion
is sometimes misinterpreted as matrix factorization such as
SVD, we emphasize that these two concepts are different in
that matrix completion uses an iterative process to reduce
the rank (Ma, Goldfarb, and Chen 2011). This is of par-
ticular importance because the exact rank of the considered
matrix is often unknown and it is desirable to automatically
reduce the rank. We analyse how the scores develop for dif-
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AUC F200 F400 F800 F1600 FOrig Wiki Coauth PPI
Common Neighbor 70.2(4) 76.9(6) 80.2(5) 82.4(8) 87.2(3) 83.2(6) 85.1(2) 86.2(7)

Salton Index 69.7(8) 76.8(9) 80.1(5) 82.4(4) 86.8(7) 84.1(3) 84.8(5) 85.7(8)
Jaccard Index 69.6(3) 76.6(3) 80.5(9) 82.3(3) 86.9(5) 83.7(5) 85.3(2) 85.4(5)

Sorensen Index 69.8(7) 76.5(6) 80.3(7) 82.1(5) 86.9(2) 82.8(9) 84.6(4) 86.1(5)
Resource Allocation 70.3(2) 76.5(3) 80.2(4) 82.8(9) 87.5(6) 84.5(4) 84.7(8) 86.3(3)

MFRS 73.2(5) 78.3(8) 78.9(5) 79.5(2) 82.1(4) 69.4(2) 71.7(4) 71.9(4)
LPMF 90.9(5) 91.4(6) 91.9(6) 92.5(2) 92.7(5) 81.5(6) 82.9(7) 81.7(5)
DSGD 73.5(7) 78.7(6) 79.2(7) 79.7(8) 82.6(7) 70.3(9) 72.4(6) 72.5(7)

GASGD 73.9(3) 78.8(2) 79.4(5) 79.8(3) 82.9(5) 70.5(6) 72.4(8) 72.7(2)
DeepWalk 79.4(2) 86.5(6) 92.7(9) 95.4(7) 96.8(8) 87.8(4) 88.1(7) 88.2(9)

GraRep 79.1(6) 87.7(8) 93.1(7) 95.3(9) 97.3(3) 88.2(8) 87.4(4) 88.9(3)
node2vec 80.5(8) 86.2(7) 92.9(4) 96.8(3) 96.8(3) 87.0(6) 89.6(8) 87.7(4)
SEMAC 92.4(9) 93.1(2) 94.3(3) 97.6(4) 98.2(7) 90.4(9) 92.5(7) 91.3(7)

Table 1: AUC scores of link prediction. Confidence intervals of p-value 0.05 are shown in the bracket.

ferent numbers of iterations, which illustrates the denoising
power and generalization abilities of the matrix completion
method. The results for SEMAC on the Facebook data is
shown in Fig. 4. We observe that the AUC score reaches a
peak of 98% within only 10 outer iterations.
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Figure 4: The rank minimization across different iterations.
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Figure 5: Runtime for Erdős-Rényi graphs of different sizes.

Scalability Finally, we examine the running time of our al-
gorithm. Since the prediction time is much shorter than the
training time according to our experiments, we focus on ex-
amining the theoretical time complexity of the training time.
Theoretically, the runtime of the representation learning pro-
cess scales approximately linearly with O(n), because ma-

trix completion runs in time O(|Ω|r + (n + m)r2), which
is linear with respect to n+m when the rank r is small and
|Ω| < (n + m)r. We evaluate this experimentally on ran-
domly generated Erdős-Rényi graphs with 100 to 1,000,000
nodes and an average node degree of 10. The running time
of our algorithm is plotted in Fig. 5. It takes 7.4 hours to run
on a graph of size 1,000,000. This shows that our method
can scale to networks with a million nodes. Moreover, our
algorithm is also parallellizable on multi-core clusters, as is
the case for other matrix factorization algorithms as well.

5 Conclusion
In this paper, we have proposed a new link prediction
method called SEMAC, which is based on a novel represen-
tation learning approach that captures rich information about
the network structure around each node, obviating the need
for manual feature engineering. Our approach rests on the
idea of learning subgraphs embeddings and relying on nu-
clear norm regularization-based matrix completion. Experi-
ments on a series of heterogeneous datasets from different
domains show the effectiveness of our method.
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