
Measuring Catastrophic Forgetting in Neural Networks

Ronald Kemker,1 Marc McClure,1 Angelina Abitino,2 Tyler L. Hayes,1 Christopher Kanan1
1Rochester Institute of Technology 2Swarthmore College

{rmk6217, mcm5756}@rit.edu , aabitin1@swarthmore.edu, {tlh6792, kanan}@rit.edu

Abstract

Deep neural networks are used in many state-of-the-art sys-
tems for machine perception. Once a network is trained to
do a specific task, e.g., bird classification, it cannot easily be
trained to do new tasks, e.g., incrementally learning to recog-
nize additional bird species or learning an entirely different
task such as flower recognition. When new tasks are added,
typical deep neural networks are prone to catastrophically for-
getting previous tasks. Networks that are capable of assimi-
lating new information incrementally, much like how humans
form new memories over time, will be more efficient than re-
training the model from scratch each time a new task needs
to be learned. There have been multiple attempts to develop
schemes that mitigate catastrophic forgetting, but these meth-
ods have not been directly compared, the tests used to eval-
uate them vary considerably, and these methods have only
been evaluated on small-scale problems (e.g., MNIST). In
this paper, we introduce new metrics and benchmarks for di-
rectly comparing five different mechanisms designed to mit-
igate catastrophic forgetting in neural networks: regulariza-
tion, ensembling, rehearsal, dual-memory, and sparse-coding.
Our experiments on real-world images and sounds show that
the mechanism(s) that are critical for optimal performance
vary based on the incremental training paradigm and type of
data being used, but they all demonstrate that the catastrophic
forgetting problem is not yet solved.

Introduction

While the basic architecture and training algorithms be-
hind deep neural networks (DNNs) are over 30 years
old, interest in them has never been greater in both in-
dustry and the artificial intelligence research community.
Owing to far larger datasets, increases in computational
power, and innovations in activation functions, DNNs have
achieved near-human or super-human abilities on a number
of problems, including image classification (He et al. 2016),
speech-to-text (Khilari and Bhope 2015), and face identi-
fication (Schroff, Kalenichenko, and Philbin 2015). These
algorithms power most of the recent advances in semantic
segmentation (Long, Shelhamer, and Darrell 2015), visual
question answering (Kafle and Kanan 2017), and reinforce-
ment learning (Mnih et al. 2013). While these systems have
become more capable, the standard multi-layer perceptron

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0 1 2 3 4 5 6 7 8 9

Number of Permutations Trained

0

10

20

30

40

50

60

A
v
e
r
a
g

e
 A

c
c
u

r
a
c
y
 A

c
r
o
s
s

A
ll

 P
e
r
m

u
ta

ti
o
n

s
 (

%
)

EWC

FEL

MLP

PathNet

GeppNet

GeppNet
+STM

Ideal

Offline
Model

Figure 1: Catastrophic forgetting impairs incremental learn-
ing in neural networks. As a network is incrementally trained
(solid lines), ideally its performance would match that of a
model trained offline with all of the data upfront (dashed
line). In this paper, we develop methods and benchmarks for
measuring catastrophic forgetting. Our experiments show
that even methods designed to prevent catastrophic forget-
ting perform significantly worse than an offline model. In-
cremental learning is key to many real-world applications
because it allows the model to adapt after being deployed.

(MLP) architecture and typical training algorithms cannot
handle incrementally learning new tasks or categories with-
out catastrophically forgetting previously learned training
data. Fixing this problem is critical to making agents that in-
crementally improve after deployment. For non-embedded
or personalized systems, catastrophic forgetting is often
overcome simply by storing new training examples and then
re-training either the entire network from scratch or possibly
only the last few layers. In both cases, retraining uses both
the previously learned examples and the new examples, ran-
domly shuffling them so that they are independent and iden-
tically distributed (iid). Retraining can be slow, especially if
a dataset has millions or billions of instances.

Catastrophic forgetting was first recognized in MLPs al-
most 30 years ago (McCloskey and Cohen 1989). Since
then, there have been multiple attempts to mitigate this phe-
nomenon (Hinton and Plaut 1987; Robins 1995; Goodrich
and Arel 2014; Draelos et al. 2016; Ren et al. 2017; Fer-
nando et al. 2017; Kirkpatrick et al. 2017). However, these

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3390



methods have not been systematically compared, and most
have only been evaluated on easy datasets, e.g., MNIST. It
is not clear if these methods will scale to larger datasets
containing hundreds of categories. In this paper, we pro-
vide a comprehensive empirical review of methods to mit-
igate catastrophic forgetting using a variety of new met-
rics. While catastrophic forgetting occurs in unsupervised
frameworks (Draelos et al. 2016; Goodrich and Arel 2014;
Triki et al. 2017), we focus on supervised classification.

Our major contributions are:

• We demonstrate that despite popular claims (Kirkpatrick
et al. 2017), catastrophic forgetting is not solved.

• We establish new benchmarks with novel metrics for
measuring catastrophic forgetting. Previous work has fo-
cused on MNIST, which contains low-resolution im-
ages and only 10 classes. Instead, we use real-world
image/audio classification datasets containing 100-200
classes. We show that, although existing models perform
well on MNIST for a variety of different incremental
learning problems, performance drops significantly with
more challenging datasets.

• We identify five common mechanisms for mitigating
catastrophic forgetting: 1) regularization, 2) ensembling,
3) rehearsal, 4) dual-memory models, and 5) sparse-
coding. We directly compare these distinct approaches.

Problem Formulation

In this paper, we study catastrophic forgetting in MLP-based
neural networks that are incrementally trained for classifi-
cation tasks. In our setup, the labeled training dataset D is
organized into T study sessions (batches), i.e., D = {Bt}T

t=1.
Each study session Bt consists of Nt labeled training data
points, i.e., Bt =

{
(x j,y j)

}Nt
j=1, where x j ∈R

d and y j is a dis-
crete label. Nt is variable across sessions. The model is only
permitted to learn sessions sequentially, in order. At time t
the network can only learn from study session Bt ; however,
models may use auxiliary memory to store previously ob-
served sessions, but this memory use must be reported. We
do not assume sessions are iid, e.g., some sessions may con-
tain data from only a single category. In between sessions,
the model may be evaluated on test data. Because this pa-
per’s focus is catastrophic forgetting, we focus less on rep-
resentation learning and obtain feature vectors using embed-
dings from pre-trained networks. Note that in some other pa-
pers, new sessions are called new ‘tasks.’ We refer to the first
study session as the model’s ‘base set knowledge.’

Why Does Catastrophic Forgetting Occur?

Catastrophic forgetting in neural networks occurs because
of the stability-plasticity dilemma (Abraham and Robins
2005). The network requires sufficient plasticity to acquire
new tasks, but large weight changes will cause forgetting by
disrupting previously learned representations. Keeping the
network’s weights stable prevents previously learned tasks
from being forgotten, but too much stability prevents the
model from learning new tasks. Prior research has tried to

solve this problem using two broad approaches. The first is
to try to keep new and old representations separate, which
can be done using distributed models, regularization, and
ensembling. The second is to prevent the forgetting of prior
knowledge simply by training on the old tasks (or some fac-
simile of them) as well as new tasks, thereby preventing the
old tasks from being forgotten. Besides requiring costly re-
learning of previous examples and additional storage, this
scheme is still not as effective as simply combining the new
data with the old data and completely re-training the model
from scratch. This solution is inefficient as it prevents the de-
velopment of deployable systems that are capable of learn-
ing new tasks over the course of their lifetime.

Previous Surveys

French (1999) exhaustively reviewed mechanisms for pre-
venting catastrophic forgetting that were explored in the
1980s and 1990s. Goodfellow et al. (2013) compared dif-
ferent activation functions and learning algorithms to see
how they affected catastrophic forgetting, but these meth-
ods were not explicitly designed to mitigate catastrophic for-
getting. The authors concluded that the learning algorithms
have a larger impact, which is what we focus on in this paper.
They sequentially trained a network on two separate tasks
using three different scenarios: 1) identical tasks with differ-
ent forms of input, 2) similar tasks, and 3) dissimilar tasks.
We adopt a similar paradigm, but our experiments involve
a much larger number of tasks. We also focus on methods
explicitly designed to mitigate catastrophic forgetting.

Soltoggio, Stanley, and Risi (2017) reviewed neural net-
works that can adapt their plasticity over time, which they
called Evolved Plastic Artificial Neural Networks. Their
review covered a wide range of brain-inspired algorithms
and also noted that the field lacks appropriate benchmarks.
However, they did not conduct any experiments or estab-
lish benchmarks for measuring catastrophic forgetting. We
remedy this gap in the literature by establishing metrics and
large-scale benchmarks for measuring catastrophic forget-
ting in neural networks.

Mitigating Catastrophic Forgetting

While not exhaustive, we have identified five main ap-
proaches that have been pursued for mitigating catastrophic
forgetting in MLP-like architectures, which we describe in
the next subsections. We describe the models we will com-
pare in greater detail in the Experimental Setup section.

Regularization Methods

Regularization methods add constraints to the network’s
weight updates, so that when a new session is learned, it
is less likely to interfere with previously learned knowledge.
Hinton and Plaut (1987) implemented a network that had
both ‘fast’ and ‘slow’ training weights. The fast weights
had high plasticity and were easily affected by changes to
the network, and the ‘slow’ weights had high stability and
were harder to adapt. This kind of dual-weight architecture
is similar in idea to dual-network models, but has not been
shown to be sufficiently powerful to learn a large number of

3391



new tasks. Elastic weight consolidation (EWC) (Kirkpatrick
et al. 2017) adds a constraint to the loss function that di-
rects plasticity away from weights that contribute the most
to previous tasks. We use EWC to evaluate the regularization
mechanism.

Ensemble Methods

Ensemble methods attempt to mitigate catastrophic forget-
ting either by explicitly or implicitly training multiple classi-
fiers together and then combining them to generate the final
prediction. For the explicit methods, such as Learn++ and
TradaBoost, this prevents forgetting because an entirely new
sub-network is trained for a new session (Polikar et al. 2001;
Dai et al. 2007). However, memory usage will scale with the
number of sessions, which is highly undesirable. Moreover,
this prevents portions of the network from being re-used for
the new session. Two methods that try to alleviate the mem-
ory usage problem are Accuracy Weighted Ensembles and
Life-long Machine Learning (Wang et al. 2003; Ren et al.
2017). These methods automatically decide whether a sub-
network should be removed or added to the ensemble.

PathNet can be considered as an implicit ensemble
method (Fernando et al. 2017). It uses a genetic algorithm to
find an optimal path through a fixed-size neural network for
each study session. The weights in this path are then frozen,
so that when new sessions are learned, earlier sessions are
not forgotten. In contrast to the explicit ensembles, the base
network’s size is fixed and it is possible for learned repre-
sentations to be re-used which allows for smaller, more de-
ployable models. The authors showed that PathNet learned
subsequent tasks more quickly, but not how well earlier tasks
were retained. We have selected PathNet to evaluate the en-
sembling mechanism, and we measure its retention of earlier
tasks.

Rehearsal Methods

Rehearsal methods try to mitigate catastrophic forgetting by
mixing data from earlier sessions with the current session
being learned (Robins 1995). The cost is that this requires
storing past data, which is not resource efficient. Pseudore-
hearsal methods use the network to generate pseudopatterns
(Robins 1995) that are combined with the session currently
being learned. Pseudopatterns allow the network to stabi-
lize older memories without storing all previously observed
training data points. Draelos et al. (2016) used this approach
to incrementally train an autoencoder, where each session
contained images from a specific category. After the au-
toencoder learned a particular session, they passed the ses-
sion’s data through the encoder and stored the output statis-
tics. During replay, they used these statistics and the decoder
network to generate the appropriate pseudopatterns for each
class.

The model proposed by Gepperth and Karaoguz (2016)
reserves its training data to replay after each new class was
trained. We refer to this model as GeppNet. GeppNet used
a self-organizing map (SOM) as a hidden layer to topologi-
cally reorganize the data from the input layer, i.e., clustering
the input onto a 2-D lattice. We use GeppNet to explore the
value of rehearsal.

Dual-Memory Models

Dual-memory models are inspired by memory consolidation
in the mammalian brain, which is thought to store memo-
ries in two distinct neural networks. Newly formed memo-
ries are stored in a brain region known as the hippocampus.
These memories are then slowly transferred/consolidated to
the pre-frontal cortex during sleep. Several algorithms based
on these ideas have been created. Early work used fast (hip-
pocampal) and slow (cortical) training networks to sepa-
rate pattern-processing areas, and they passed pseudopat-
terns back and forth to consolidate recent and remote mem-
ories (French 1997). In general, dual-memory models incor-
porate rehearsal, but not all rehearsal-based models are dual-
memory models.

Another model proposed by Gepperth and
Karaoguz (2016), which we denote GeppNet+STM,
stores new inputs that yield a highly uncertain prediction
into a short-term memory (STM) buffer. This model then
seeks to consolidate the new memories into the entire
network during a separate sleep phase. They showed that
GeppNet+STM could incrementally learn MNIST classes
without forgetting previously trained ones. We use GeppNet
and GeppNet+STM to evaluate the dual-memory approach.

Sparse-Coding Methods

Catastrophic forgetting occurs when new internal represen-
tations interfere with previously learned ones (French 1999).
Sparse representations can reduce the chance of this interfer-
ence; however, sparsity can impair generalization and ability
to learn new tasks (Sharkey and Sharkey 1995).

Two models that implicitly use sparsity are CALM and
ALCOVE. To learn new data, CALM searches among com-
peting nodes to see which nodes have not been commit-
ted to another representation (Murre 2014). ALCOVE is a
shallow neural network that uses a sparse distance-based
representation, which allows the weights assigned to older
tasks to be largely unchanged when the network is pre-
sented with new data (Kruschke 1992). The Sparse Dis-
tributed Memory (SDM) is a convolution-correlation model
that uses sparsity to reduce the overlap between internal rep-
resentations (Kanerva 1988). CHARM and TODAM are also
convolution-correlation models that use internal codings to
ensure that new input representations remain orthogonal to
one another (Murdock 1983; Eich 1982).

The Fixed Expansion Layer (FEL) model creates sparse
representations by fixing the network’s weights and speci-
fying neuron triggering conditions (Coop, Mishtal, and Arel
2013). FEL uses excitatory and inhibitory fixed weights to
sparsify the input, which gates the weight updates through-
out the network. This enables the network to retain prior
learned mappings and reduce representational overlap. We
use FEL to evaluate the sparsity mechanism.

Experimental Setup

We explore how well methods to mitigate catastrophic for-
getting scale on hard datasets involving fine-grained image
and audio classification. These datasets were chosen be-
cause they contain 1) different data modalities (image and

3392



MNIST CUB-200 AudioSet

Classification Task Gray Image RGB Image Audio
Classes 10 200 100

Feature Shape 784 2,048 1,280
Train Samples 50,000 5,994 28,779

Test Samples 10,000 5,794 5,523
Train Samples/Class 5,421-6,742 29-30 250-300

Test Samples/Class 892-1,135 11-30 43-62

Table 1: Dataset Specifications

audio), 2) a large number of classes, and 3) a small number
of samples per class. These datasets are more meaningful
(real-world problems) and more practical than MNIST. We
also use MNIST to showcase the value of these real-world
datasets. See Table 1 for dataset statistics.

Dataset Description

MNIST MNIST is a classic dataset in machine learning
containing 10 digit classes. Its grayscale images are 28×28.

CUB-200 Caltech-UCSD Birds-200 (CUB-200) is an im-
age classification dataset containing 200 different bird
species (Wah et al. 2011). We use the 2011 version. Each
high-resolution image is turned into a 2048-dimensional
vector with ResNet-50 (He et al. 2016), which is a deep
convolutional neural network (DCNN) pre-trained on Ima-
geNet (Russakovsky et al. 2015). Extracting image features
from the last hidden (fully-connected) layer of pre-trained
DCNNs is a common practice in computer vision. We report
mean-per-class accuracy, which is the CUB-200 standard.

AudioSet AudioSet (Gemmeke et al. 2017) is a hierar-
chically organized audio classification dataset built from
YouTube videos. It has over 2 million human-labeled, 10
second sound bytes drawn from one or more of 632 classes.
We used the pre-extracted frame-wise features from Au-
dioSet concatenated in order. These features were extracted
using a variant ResNet-50 for audio data (Hershey et al.
2017), which was pre-trained on an early version of the
YouTube-8m dataset (Abu-El-Haija et al. 2016). We used
100 classes from AudioSet, none of which were super- or
sub-classes of each other. The classes did not have any re-
strictions based on the AudioSet ontology, and all of them
had a quality estimation of over 70%. Each audio sample
can have multiple labels, so we chose training and testing
samples that were labeled with only 1 of the 100 classes.

Models Evaluated

We evaluated five models that correspond to each of the five
mechanisms described in the previous section: 1) EWC, 2)
PathNet, 3) GeppNet, 4) GeppNet+STM, and 5) FEL. To
choose the number of parameters to use across models, we
established a baseline MLP architecture that performed well
for CUB-200 and AudioSet when trained offline. The goal
is to determine which mechanism(s) work best for various
incremental learning paradigms. To provide a fair compari-
son, the number of parameters in each model were chosen
to be as close as possible to the number of parameters in the

baseline MLP. We optimized each model’s hyperparameters
to work well for our benchmarks, which are given in supple-
mental materials1. The supplemental materials provides the
stopping criteria for each model as defined by their creators,
which involved 1) training for a fixed period of time or 2)
using test accuracy to stop training early.

Standard Multi-Layer Perceptron For our baseline, we
use a standard MLP. Its architecture was chosen by optimiz-
ing performance using the entire training set for both CUB-
200 and AudioSet, i.e., it was trained offline. The offline
MLP achieves 62.1% accuracy on the CUB-200 test set and
46.1% on the AudioSet test set. We did a hyperparameter
search for the number of units per hidden layer (32-4,096),
number of hidden layers (2-3), and weight decay parameter
(0, 10−4, 5 · 10−4). The MLP model was also trained incre-
mentally to measure the severity of catastrophic forgetting.

Elastic Weight Consolidation EWC adds an additional
constraint to the loss function L(θ), i.e.,

L(θ) = Lt (θ)+∑
i

λ
2

Fi

(
θi −θ∗

A,i

)2
, (1)

where L(θ) is the combined loss function, θ is the network’s
parameters, Lt (θ) is the loss for session Bt , λ is a hyperpa-
rameter that indicates how important the old task(s) are com-
pared to the new task, F is the Fisher information matrix, and
θ ∗

A are the trainable parameters (weights and biases) impor-
tant to previously trained tasks. The Fisher matrix is used to
constrain the weights important to previously learned tasks
to their original value; that is, plasticity is directed to the
trainable parameters that contribute the least to performing
previously trained tasks. The size of the hidden layer was
chosen to match the baseline MLP’s capacity.

PathNet PathNet is a fixed size neural network that uses
a genetic algorithm to find the optimal path through the net-
work. Only this path is trainable when learning a particular
session, which is why the authors described their model as
an evolutionary dropout network. PathNet creates an inde-
pendent output layer for each task in order to preserve previ-
ously trained tasks, and it cannot be used without modifica-
tions for incremental class learning. Since entire portions of
the network are sequentially frozen as new tasks are learned,
there is a risk of PathNet losing its ability to learn once the
maximum capacity is reached. PathNet’s capacity was cho-
sen to match the capacity of the MLP baseline.

GeppNet GeppNet and GeppNet+STM are biologically-
inspired approaches that use rehearsal to mitigate forgetting.
In these models, training the initial task starts by initializ-
ing the SOM-layer, which is used to project the probability
density of the input to a higher two-dimensional lattice. The
SOM-layer features are passed to a linear regression clas-
sification layer to make a prediction. During training, the
SOM-layer is initialized with the first session for a fixed-
period of time, and then the SOM- and classification-layers
are trained jointly. The SOM-layer is only updated when a

1Supplemental materials are provided at the end of our arXiv
submission: https://arxiv.org/abs/1708.02072

3393



training example is determined by the model to be novel, i.e.,
using the prediction probabilities to generate a confidence
measure. After GeppNet has been trained on the initial ses-
sion for a fixed period of time, it incrementally learns sub-
sequent sessions. GeppNet performs updates to the SOM-
layer and classification-layer when a training example is
considered novel. When GeppNet+STM detects novelty, it
instead uses a fixed-size short-term memory buffer to store
that training example, which then replays it during a sleep
phase. The sleep phase repeats after a fixed number of train-
ing iterations. Since the replay queue has a fixed-size (i.e.,
older examples are replaced), the GeppNet+STM model will
train more efficiently than GeppNet. GeppNet stores all pre-
vious training data and replays it along with the previous
data during a portion of its incremental learning step. Gepp-
Net+STM also stores all previous and new training data;
however, each training example is only replayed if the model
is uncertain on the prediction. In addition, GeppNet+STM
is capable of making real-time predictions by determining
if the desired memory is in short-term memory (the memory
buffer) or in long-term storage (the SOM- and classification-
layers).

Fixed Expansion Layer FEL uses sparsity to mitigate
catastrophic forgetting (Coop, Mishtal, and Arel 2013).
FEL is a two hidden layer MLP where the second hidden
layer (FEL-layer) has a higher capacity than the first fully-
connected layer, but the weights are sparse and remain fixed
through training. Each FEL-layer unit is only connected to
a subset of the units in the first hidden layer, and these con-
nections are split between excitatory and inhibitory weights.
Only a subset of the FEL-layer units are allowed to have
non-zero output to the final classification layer, which causes
only some of the units in the first hidden layer to be updated.

Experiments and Results

We have established three benchmark experiments for mea-
suring catastrophic forgetting:

1. Data Permutation Experiment - The elements of every
feature vector are randomly permuted, with the permuta-
tion held constant within a session, but varying across ses-
sions. The model is evaluated on its ability to recall data
learned in prior study sessions. Each session contains the
same number of examples.

2. Incremental Class Learning - After learning the base
set, each new session learned contains only a single class.

3. Multi-Modal Learning - The model incrementally learns
different datasets, e.g., learn image classification and then
audio classification.
For the data permutation and incremental class learning

experiments, each model was also evaluated on MNIST. The
goal is to examine whether results on MNIST generalize
to the real-world datasets. More results, including detailed
plots, can be found in the supplementary materials.

Evaluation Metrics

We propose three new metrics to evaluate a model’s ability
to retain prior sessions while still learning new knowledge,

Ωbase =
1

T −1

T

∑
i=2

αbase,i

αideal
(2)

Ωnew =
1

T −1

T

∑
i=2

αnew,i (3)

Ωall =
1

T −1

T

∑
i=2

αall,i

αideal
(4)

where T is the total number of sessions, αnew,i is the test ac-
curacy for session i immediately after it is learned, αbase,i is
the test accuracy on the first session (base set) after i new
sessions have been learned, αall,i is the test accuracy of all
of the test data for the classes seen to this point, and αideal is
the offline MLP accuracy on the base set, which we assume
is the ideal performance. Ωbase, Ωnew, and Ωall are normal-
ized area under the curve metrics. Ωbase measures a model’s
retention of the first session, after learning in later study ses-
sions. Ωnew measures the model’s ability to immediately re-
call new tasks. Ωall computes how well a model both retains
prior knowledge and acquires new information. By normal-
izing Ωbase and Ωall by αideal , the results will be easier to
compare between datasets. Unless a model exceeds αideal ,
results will be between [0,1], which enables comparison be-
tween datasets.

Experimental Results

Data Permutation Experiment This experiment evalu-
ates a model’s ability to retain multiple representations of the
dataset, with each representation learned sequentially. These
representations are created by randomly permuting the ele-
ments of the input feature vectors, with the random permu-
tation changing between sessions. An identically permuted
test set is used along with each session. This paradigm pro-
vides overlapping tasks in which each session contains the
same information and categories, so each session is of equal
complexity. This paradigm is identical to that used by Good-
fellow et al. (2013) and Kirkpatrick et al. (2017).

Results are given in Table 2. In nearly every case, Ωall is
greater for MNIST than on CUB-200 or AudioSet, demon-
strating the need for alternative incremental learning bench-
marks. To some extent, EWC, PathNet, GeppNet, and Gepp-
Net+STM retain prior knowledge without forgetting; how-
ever, GeppNet and GeppNet+STM fail to learn new ses-
sions. PathNet and EWC seem to retain base knowledge
while still learning new information; however, PathNet per-
forms better on AudioSet and MNIST, while EWC performs
better on CUB-200 (see discussion).

Incremental Class Learning In the incremental class
learning experiment, a model’s ability to sequentially learn
new classes is tested. The first session learned contains train-
ing data from half of the classes in each dataset: 5 for
MNIST, 100 for CUB-200, and 50 for AudioSet. Once this
base set was learned, each subsequent session contained
training data from a single new class. We measure mean-
per-class test accuracy on the base set after each new class is
learned to assess a model’s long-term memory. We also cal-
culate the accuracy of each class after it is trained to ensure

3394



Model Dataset
Data Permutation Incremental Class Multi-Modal Memory Model

Ωbase Ωnew Ωall Ωbase Ωnew Ωall Ωbase Ωnew Ωall Constraints Size (MB)

MLP
MNIST 0.434 0.996 0.702 0.060 1.000 0.181 N/A N/A N/A

Fixed-size
1.91

CUB 0.488 0.917 0.635 0.020 1.000 0.031 0.327 0.412 0.610 4.24
AS 0.186 0.957 0.446 0.016 1.000 0.044 0.197 0.609 0.589 2.85

EWC
MNIST 0.437 0.992 0.746 0.001 1.000 0.133 N/A N/A N/A

Fixed-size
3.83

CUB 0.765 0.869 0.762 0.105 0.000 0.094 0.944 0.369 0.872 8.48
AS 0.129 0.687 0.251 0.021 0.580 0.034 1.000 0.588 0.984 5.70

PathNet
MNIST 0.687 0.887 0.848 N/A N/A N/A N/A N/A N/A New output 2.80

CUB 0.538 0.701 0.655 N/A N/A N/A 0.908 0.376 0.862 layer for 7.46
AS 0.414 0.750 0.615 N/A N/A N/A 0.069 0.540 0.469 each task 4.68

GeppNet
MNIST 0.912 0.242 0.364 0.960 0.824 0.922 N/A N/A N/A Stores all 190.08

CUB 0.606 0.029 0.145 0.628 0.640 0.585 0.156 0.010 0.089 training 53.48
AS 0.897 0.170 0.343 0.984 0.458 0.947 0.913 0.005 0.461 data 150.38

GeppNet+STM
MNIST 0.892 0.212 0.326 0.919 0.599 0.824 N/A N/A N/A Stores all 191.02

CUB 0.615 0.020 0.142 0.727 0.232 0.626 0.031 0.329 0.026 training 55.94
AS 0.820 0.041 0.219 1.007 0.355 0.920 0.829 0.005 0.418 data 151.92

FEL
MNIST 0.117 0.990 0.279 0.451 1.000 0.439 N/A N/A N/A

Fixed-size
4.54

CUB 0.043 0.764 0.184 0.316 1.000 0.361 0.110 0.329 0.412 6.16
AS 0.081 0.848 0.239 0.283 1.000 0.240 0.473 0.320 0.494 6.06

Table 2: Results on MNIST, CUB-200 (CUB), and AudioSet (AS) for our evaluation metrics as well as model size (in MB) for
each model/dataset combination.

the model is still learning, and we calculate the performance
of all previously learned classes.

PathNet is incapable of learning new classes incremen-
tally because it creates a separate output layer for each ad-
ditional session. Accessing that output layer during predic-
tion time requires a priori information on which session the
model needs to access. This means PathNet requires the test-
ing label to make the appropriate prediction, which would
result in a misleading high test accuracy. For this reason, we
omitted PathNet from this experiment.

Results are summarized in Table 2 and Fig. 2 contains
plots for the mean-per-class test accuracy for all classes seen
so far. The only models that were able to both retain the
base knowledge and learn new classes were GeppNet, Gepp-
Net+STM, and FEL, with the clear winner being the two
GeppNet variants. Much like the data permutation experi-
ment, the CUB-200 and AudioSet results were noticeably
lower than the MNIST results. GeppNet+STM did well at
retaining the base set, but it struggled to learn new classes
on CUB-200 and AudioSet. This could be because the model
only trains during sleep for efficiency reasons. Additionally,
the short-term memory buffer is emptied after training each
study session, which is when the model is evaluated. This
type of model could work better in a real-time environment.
FEL learned new classes well, but suffered from forgetting
of the base set. FEL may benefit from larger model capacity,
but this would require more memory/processing power.

Multi-Modal Experiment The goal of the multi-modal
experiment is to determine if a network can learn and re-
tain multiple dissimilar tasks that have 1) inputs with dif-
ferent dimensionality and feature distributions and 2) a dif-
ferent number of classes. A system like this could be useful

for learning tasks that have multi-modal data using a single
network and could be more efficient than building a sepa-
rate neural network for each modality (e.g., video has vi-
sual and audio information). In this experiment, we evalu-
ated each model’s ability to perform image and audio clas-
sification with CUB-200 and AudioSet respectively. In this
experiment, there are only two incrementally learned ses-
sions, where each session contains AudioSet or CUB-200.
We compare learning CUB-200 first then AudioSet as well
as learning AudioSet followed by learning CUB-200. The
ResNet features obtained from CUB-200 have a higher di-
mensionality than the AudioSet features, so we zero-padded
the AudioSet input to match the dimensionality of CUB-
200. This experiment is done by training one dataset to
completion followed by training the other dataset to com-
pletion (and vice-versa). Once both modalities have been
trained, we evaluate the first modality that was trained in or-
der to measure how well the model was able to retain what
it learned about the first task.

Table 2 shows summary results for the multi-modal exper-
iment, where the corresponding row is the modality that was
trained first, i.e., the row for CUB-200 is where CUB-200 is
learned first followed by AudioSet. Additional results are in
supplementary materials. Although several models perform
well at one of the two experiments, EWC is the only model
capable of preserving the first modality while also learning
the second modality for both cases, which we explore further
in the discussion.

Discussion

In our paper we introduced new metrics and benchmarks
for measuring catastrophic forgetting. Our results reveal that
none of the methods we tested solve catastrophic forgetting,

3395



10

Number of Classes Trained

0

20

40

60

80

100
A

c
c
u

r
a
c
y
 (

%
) 

fo
r
 C

la
s
s
e
s

T
r
a
in

e
d

 o
n

 s
o
 F

a
r

EWC

FEL

MLP

GeppNet

GeppNet
+STM

Offline
Model

(a) MNIST

100 110 120 130 140 150 160 170 180 190 200

Number of Classes Trained

0

10

20

30

40

50

60

70

A
c
c
u

r
a
c
y
 (

%
) 

fo
r
 C

la
s
s
e
s

T
r
a
in

e
d

 o
n

 s
o
 F

a
r

EWC

FEL

MLP

GeppNet

GeppNet
+STM

Offline
Model

(b) CUB-200

50 60 70 80 90 100

Number of Classes Trained

0

10

20

30

40

50

A
c
c
u

r
a
c
y
 (

%
) 

fo
r
 C

la
s
s
e
s

T
r
a
in

e
d

 o
n

 s
o
 F

a
r

EWC

FEL

MLP

GeppNet

GeppNet
+STM

Offline
Model

(c) AudioSet

Figure 2: Results for the incremental class learning experi-
ment. The offline model line denotes the performance of the
offline model on the entire dataset. This shows the mean-
class test accuracy for all classes seen so far.

while also enabling the learning of new information. Table
3 summarizes these results for each of our experiments by
averaging Ωall over all datasets. While no method excels at
incremental learning, some perform better than others.

PathNet performed best overall on the data permuta-
tion experiments, with the exception of CUB-200. How-
ever, PathNet requires being told which session each test
instance is from, whereas the other models do not use this
information. This may give it an unfair advantage. Path-
Net works by locking the optimal path for a given session.
Because permuting the data does not reduce feature over-
lap, the model requires more trainable weights (less feature

Model
Data Incremental

Multi-Modal
Permutation Class

MLP 0.594 0.085 0.600
EWC 0.586 0.087 0.913

PathNet 0.706 N/A 0.666
GeppNet 0.284 0.818 0.275

GeppNet+STM 0.229 0.790 0.222
FEL 0.234 0.347 0.453

Table 3: Summary of Experimental Results. Average of Ωall
over MNIST, CUB-200, and AudioSet results.

sharing) to build a discriminative model, causing PathNet
to saturate (freeze all weights) more quickly. When Path-
Net reaches the saturation point, the only trainable parame-
ters are in the output layer. While EWC was the second best
performing method in the permutation experiments, it only
redirects plasticity instead of freezing trainable weights.

Both GeppNet variants performed best at incremental
class learning. These models make slow, gradual changes
to the network that are inspired by memory consolidation
during sleep. For these models, the SOM-layer was fixed to
23×23 to have the same number of trainable parameters as
the other models. With 100-200 classes, this corresponds to
2-5 hidden layer neurons per class respectively. The exper-
iments on MNIST in Gepperth and Karaoguz (2016) used
90 hidden layer neurons per class, so their performance may
improve if their model capacity was significantly increased,
but this would demand more memory and computation.

EWC performed best on the multi-modal experiment.
This may be because features between the two modalities
are non-redundant. We hypothesize that EWC is a better
choice for separating non-redundant data and PathNet may
work well when working with data that has different, but
not entirely dissimilar, representations. To explore this, we
used the Fast Correlation Based Filter proposed by Yu and
Liu (2003) to show the features in MNIST and AudioSet are
more redundant than those in CUB-200 (see supplemental
material). The performance of EWC and PathNet for both
the data permutation and multi-modal experiments are con-
sistent with this hypothesis.

Table 2 shows the memory constraints and usage of each
model. While we kept the number of trainable parameters
roughly the same across all models in their hidden layers,
some require additional memory resources. PathNet gener-
ates a new output layer for each session. Both GeppNet vari-
ants store all training data and rehearse over it during their
incremental learning stage. The creators of EWC stored val-
idation data from all previous sessions and used it to mini-
mize forgetting when learning a new session. This was not
done in our experiments to fairly compare it to the other
models, which only had access to validation data for the cur-
rent session.

Table 4 shows the total time to train each model for the
data permutation and incremental class learning experiments
using CUB-200. Both variants of GeppNet are orders of
magnitude slower because they train the model one sample
at a time. PathNet is also very slow at the data permutation

3396



Model
Data Incremental

Permutation Class

MLP 16 15
EWC 16 13

PathNet 1,385 N/A
GeppNet 507 1,123

GeppNet+STM 179 410
FEL 53 8

Table 4: Each model’s training time (minutes) on CUB-200.

task because the optimal path through a large DCNN needs
to be found for each permutation. The fixed-size models are
noticeably faster; however, only EWC was effective at mit-
igating catastrophic forgetting (in the data permutation and
multi-modal experiments).

In general, models that expand as a function of the num-
ber of sessions and those that are allowed to store data
from prior sessions may have limited real-world application.
In our opinion, methods for mitigating catastrophic forget-
ting should have the amount of total memory they use con-
strained. While our summary statistics did not take this into
account, it is an important factor in deploying a method that
learns incrementally. This is the reason we chose to keep the
number of trainable parameters fixed across all models.

An alternative would have been to tune the number of
trainable parameters in each model for each experiment,
which is what we did for the data permutation and incre-
mental class learning experiments as well (see Supplemen-
tal Materials for details). Although in most cases the base
performance increased, there were no changes to any of
our conclusions on which model/mechanism yielded supe-
rior performance. The one interesting thing we did observe
is that the sparsity model (i.e., FEL) can sometimes im-
prove significantly; however, the cost is a 40x increase in
the models memory footprint. This reinforces our claim that
a model that only uses the sparsity mechanism to mitigate
catastrophic forgetting may not be ideal in a deployed en-
vironment. We urge future incremental learning algorithm
creators to take memory footprint into account, especially
when comparing to other models.

Our metrics could be expanded to other training
paradigms such as reinforcement learning, unsupervised
learning, etc. In reinforcement learning, the agent learns an
initial study-session (e.g., an ATARI game), which repre-
sents the base knowledge. We would track the performance
of the base-knowledge as the model learns additional games
and ensure that the model is learning new games as well.
The main difference is that the performance metrics would
be normalized by the maximum performance for each study-
session when the model only has to learn that single study
session. In unsupervised learning, we could follow the ex-
periments performed by (Draelos et al. 2016) where the met-
rics would be the same, but we would train the models using
a different loss function (e.g., reconstruction error).

Model In
cr

em
en

ta
l C

la
ss

Sim
ila

r
D

at
a

D
is
si
m

ila
r
D

at
a

M
em

or
y

E
ffi

ci
en

t

Tra
in

s
Q

uic
kly

MLP � � � � �
EWC � � � � �

PathNet � � � � �
GeppNet � � � � �

GeppNet+STM � � � � �
FEL � � � � �

Table 5: Summary of the optimal performer on the incre-
mental class learning, data permutation (Similar Data), and
multi-modal (Dissimilar Data) experiments, as well as the
memory/computational efficiency of each model.

Conclusion

In this paper, we developed new metrics for evaluating catas-
trophic forgetting. We identified five families of mecha-
nisms for mitigating catastrophic forgetting in DNNs. We
found that performance on MNIST was significantly better
than on the larger datasets we used. Using our new met-
rics, experimental results (summarized in Table 5) show that
1) a combination of rehearsal/pseudo-rehearsal and dual-
memory systems are optimal for learning new classes incre-
mentally, and 2) regularization and ensembling are best at
separating multiple dissimilar sessions in a common DNN
framework. Although the rehearsal system performed rea-
sonably well, it required retaining all training data for replay.
This type of system may not be scalable for a real-world life-
long learning system; however, it does indicate that models
that use pseudorehearsal could be a viable option for real-
time incremental learning systems. Future work on lifelong
learning frameworks should involve combinations of these
mechanisms. While some models perform better than oth-
ers in different scenarios, our work shows that catastrophic
forgetting is not solved by any single method. We urge the
community to use larger and more difficult datasets in future
work.

Acknowledgements

Angelina Abitino was supported by NSF Research Experi-
ences for Undergraduates (REU) award #1359361 to Roger
Dube. We thank NVIDIA for the generous donation of a Ti-
tan X GPU.

References

Abraham, W. C., and Robins, A. 2005. Memory retention–
the synaptic stability versus plasticity dilemma. Trends in
Neurosciences 28(2):73–78.
Abu-El-Haija, S.; Kothari, N.; Lee, J.; et al. 2016.
Youtube-8m: A large-scale video classification benchmark.
arXiv:1609.08675.
Coop, R.; Mishtal, A.; and Arel, I. 2013. Ensemble learning
in fixed expansion layer networks for mitigating catastrophic

3397



forgetting. IEEE Trans. on Neural Networks and Learning
Systems 24(10):1623–1634.
Dai, W.; Yang, Q.; Xue, G.-R.; and Yu, Y. 2007. Boosting
for transfer learning. In ICML, 193–200. ACM.
Draelos, T. J.; Miner, N. E.; Lamb, C. C.; Vineyard, C. M.;
Carlson, K. D.; James, C. D.; and Aimone, J. B. 2016. Neu-
rogenesis deep learning. arXiv:1612.03770.
Eich, J. M. 1982. A composite holographic associative recall
model. Psych. Review 89(6):627.
Fernando, C.; Banarse, D.; Blundell, C.; Zwols, Y.; Ha, D.;
Rusu, A. A.; Pritzel, A.; and Wierstra, D. 2017. Path-
net: Evolution channels gradient descent in super neural net-
works. arXiv:1701.08734.
French, R. M. 1997. Pseudo-recurrent connectionist net-
works: An approach to the ‘sensitivity-stability’ dilemma.
Connection Science 9(4):353–380.
French, R. M. 1999. Catastrophic forgetting in connectionist
networks. Trends in Cognitive Sciences 3(4):128–135.
Gemmeke, J. F.; Ellis, D. P. W.; Freedman, D.; Jansen, A.;
Lawrence, W.; Moore, R. C.; Plakal, M.; and Ritter, M.
2017. Audio set: An ontology and human-labeled dataset
for audio events. In ICASSP.
Gepperth, A., and Karaoguz, C. 2016. A bio-inspired in-
cremental learning architecture for applied perceptual prob-
lems. Cognitive Computation 8(5):924–934.
Goodfellow, I. J.; Mirza, M.; Xiao, D.; Courville, A.;
and Bengio, Y. 2013. An empirical investigation of
catastrophic forgetting in gradient-based neural networks.
arXiv:1312.6211.
Goodrich, B., and Arel, I. 2014. Unsupervised neuron se-
lection for mitigating catastrophic forgetting in neural net-
works. In IEEE 57th Int. Midwest Symposium on Circuits
and Systems (MWSCAS), 2014, 997–1000. IEEE.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Hershey, S.; Chaudhuri, S.; Ellis, D. P.; et al. 2017. Cnn
architectures for large-scale audio classification. In ICASSP.
Hinton, G. E., and Plaut, D. C. 1987. Using fast weights to
deblur old memories. In Proc. of the Ninth Annual Confer-
ence of the Cognitive Science Society, 177–186.
Kafle, K., and Kanan, C. 2017. Visual question answer-
ing: Datasets, algorithms, and future challenges. Computer
Vision and Image Understanding.
Kanerva, P. 1988. Sparse distributed memory. MIT press.
Khilari, P., and Bhope, V. 2015. A review on speech to
text conversion methods. Int. J. of Advanced Research in
Computer Engineering and Technology 4:3067–3072.
Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.;
et al. 2017. Overcoming catastrophic forgetting in neu-
ral networks. Proc. of the National Academy of Sciences
201611835.
Kruschke, J. K. 1992. Alcove: An exemplar-based connec-
tionist model of category learning. Psych. review 99(1):22.

Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In CVPR,
3431–3440.
McCloskey, M., and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. Psych. of Learning & Motivation 24:109–165.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop.
Murdock, B. B. 1983. A distributed memory model for
serial-order information. Psych. Review 90(4):316.
Murre, J. M. 2014. Learning and categorization in modular
neural networks. Psych. Press.
Polikar, R.; Upda, L.; Upda, S. S.; and Honavar, V. 2001.
Learn++: An incremental learning algorithm for supervised
neural networks. IEEE Trans. on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews) 31(4):497–508.
Ren, B.; Wang, H.; Li, J.; and Gao, H. 2017. Life-long
learning based on dynamic combination model. Applied Soft
Computing 56:398–404.
Robins, A. 1995. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science 7(2):123–146.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition chal-
lenge. IJCV 115(3):211–252.
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet:
A unified embedding for face recognition and clustering. In
CVPR, 815–823.
Sharkey, N. E., and Sharkey, A. J. 1995. An analysis of
catastrophic interference. Connection Science 7:301–329.
Soltoggio, A.; Stanley, K. O.; and Risi, S. 2017. Born to
learn: the inspiration, progress, and future of evolved plastic
artificial neural networks. arXiv:1703.10371.
Triki, A. R.; Aljundi, R.; Blaschko, M. B.; and Tuytelaars, T.
2017. Encoder based lifelong learning. arXiv:1704.01920.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset. Tech
Report: CNS-TR-2011-001.
Wang, H.; Fan, W.; Yu, P. S.; and Han, J. 2003. Min-
ing concept-drifting data streams using ensemble classifiers.
226–235. ACM.
Yu, L., and Liu, H. 2003. Feature selection for high-
dimensional data: A fast correlation-based filter solution. In
ICML, 856–863.

3398


