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Abstract

This paper provides a theoretical insight for the integration of
logical constraints into a learning process. In particular it is
proved that a fragment of the Łukasiewicz logic yields a set of
convex constraints. The fragment is enough expressive to in-
clude many formulas of interest such as Horn clauses. Using
the isomorphism of Łukasiewicz formulas and McNaughton
functions, logical constraints are mapped to a set of linear
constraints once the predicates are grounded on a given sam-
ple set. In this framework, it is shown how a collective clas-
sification scheme can be formulated as a quadratic program-
ming problem, but the presented theory can be exploited in
general to embed logical constraints into a learning process.
The proposed approach is evaluated on a classification task
to show how the use of the logical rules can be effective to
improve the accuracy of a trained classifier.

1 Introduction

The concept of constraint has been considered in the defi-
nition of a general approach for learning that allows us to
exploit different sources of knowledge for training an agent
(Gnecco et al. 2015). In particular, in multi-task learning
beside the supervised examples additional information on
the task can be expressed as abstract knowledge by logical
constraints. Some approaches to embed logical constraints
in the learning procedure have been proposed, especially
in the context of kernel machines (Diligenti et al. 2012;
Diligenti, Gori, and Saccà 2015). These methods exploit
the transcription of logical rules into real valued functions
to define appropriate cost functions to be optimized in the
learning process. Fuzzy logic is generally used in defin-
ing the mapping since it allows the use of continuous val-
ues in the unit interval (Diligenti et al. 2012; Serafini and
d’Avila Garcez 2016). Related approaches combine logic
rules with neural network learning (Hu et al. 2016) by an it-
erative procedure that transfers abstract knowledge encoded
by the logic rules into the parameters of a deep neural
network. It is also worth to mention the related methods
in statistical relational learning (Getoor and Taskar 2007;
De Raedt and Kersting 2008), like Markov logic networks
(Richardson and Domingos 2006) that generate probabilis-
tic graphical models from the rule set. Nevertheless, in such
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approaches logical formulas are assumed to be evaluated as
true-false values, whereas a more general expressiveness is
achieved in Probabilistic Soft Logic (PSL) where formulas
can take any [0, 1] value. PSL (Bach 2015) is a probabilistic
programming language that allows to consider disjunctive
logic clauses (including Horn clauses as a special case) con-
verted into real-valued functions by means of Łukasiewicz
logic operators, where the resulting cost function is shown
to be convex.

In this paper we provide a theoretical result stating that
logic rules expressed in a specific propositional Łukasiewicz
fragment correspond to convex logical constraints that can
be exploited to train a learning agent. The fragment con-
tains the weak conjunction and the strong disjunction ap-
plied to literals. By the McNaughton theorem, each con-
straint function corresponding to any formula in the frag-
ment is a convex piecewise linear function with integer co-
efficients. Given the structure of the McNaughton functions
for this specific fragment, we show that the constraint func-
tions can be implemented as a set of linear constraints in the
variable space. Given this result, we show how a collective
classification task can be directly formulated as a quadratic
programming problem. Finally, we provide an example to
show the effect of the logical rules to improve the classifica-
tion performance on a simple benchmark. It is interesting to
notice that the theoretical result regarding the convex frag-
ment is very general and it is not limited to the proposed ap-
plication. For example, it can be used to extend the fragment
of logic that can be represented in PSL, while preserving
convexity.

The paper is organized as follows. Section 2 reports the
theoretical results characterizing the Łukasiewicz fragment
that yields convex logical constraints. Then in Section 3 it is
shown how the theory can be applied to formulate the col-
lective classification task as a quadratic programming prob-
lem. Section 4 provides an applicative example showing
the effect of rules expressed by the proposed fragment in
a transductive classification task. Finally, some conclusions
are drawn in Section 5.

2 Convex Łukasiewicz Fragment

In a multi–task learning problem, beyond factual knowl-
edge, we can express abstract relations among the objec-
tive functions by means of logical constraints. In principle
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they can be expressed in any logic, however we are espe-
cially interested in logics whose formulas have a suitable
functional representation. By the McNaughton Theorem we
know that, for the propositional case, the algebra of formulas
of Łukasiewicz Logic Ł on n variables is isomorphic to the
algebra of McNaughton functions defined on [0, 1]n. More-
over Ł has an involutive negation (i.e. ¬¬x = x) and every
Ł-formula has an equivalent prenex normal form (i.e. quan-
tifiers followed by a quantifier–free part).

Syntax of propositional Ł-formulas is defined in the usual
way (see i.e. (Novák, Perfilieva, and Močkoř )). We recall
that, for the propositional case, Ł is sound and complete with
respect to the variety of MV-algebras that is generated by the
standard algebra [0, 1]Ł = ([0, 1], 0, 1,¬,∧,∨,⊗,⊕,→)1

whose operations, for every x, y ∈ [0, 1], are defined as:

x ∧ y = min{x, y}, x⊗ y = max{0, x+ y − 1},
x ∨ y = max{x, y}, x⊕ y = min{1, x+ y},
¬x = 1− x, x → y = min{1, 1− x+ y}.

The operations ∧ and ⊗ are the interpretations of the weak
and strong conjunction2 of Ł respectively, while ∨ and ⊕
represent the weak and strong disjunction. Further, ⊗ and
→ are the Łukasiewicz t-norm and its residuum. We also
note that x → y is definable as ¬x ⊕ y and we will write 0̄
(1̄) for the formula corresponding to the strong conjunction
(disjunction) of any literal with its negation.

Some fundamental properties, holding among MV-
algebras operations, are the De Morgan laws between both
weak and strong operations, as well as the Distributive laws
of strong over weak operations. We only notice that the dis-
tributive property does not hold between strong conjunction
and strong disjunction.

Since [0, 1]Ł generates the whole MV-variety, the alge-
bra of Ł-formulas on n variables is isomorphic to the al-
gebra of functions from [0, 1]n to [0, 1] constructible from
the projections by means of pointwise defined operations.
In particular, the zero of the algebra is the constant func-
tion equal to 0 and, given ◦ ∈ {∧,∨,⊗,⊕,→}, for every
(t1, . . . , tn) ∈ [0, 1]n :

¬f(t1, . . . , tn) = 1− f(t1, . . . , tn),

(f ◦ g)(t1, . . . , tn) = f(t1, . . . , tn) ◦ g(t1, . . . , tn).
In addition, we know exactly which kind of functions corre-
sponds to Łukasiewicz formulas. The result is expressed by
the the well–known McNaughton Theorem.
Definition 1. Let f : [0, 1]n → [0, 1] be a continuous func-
tion with n ≥ 0, f is called a McNaughton function if it is
piecewise linear with integer coefficients, that is, there exists
a finite set of linear polynomials p1, . . . , pm with integer co-
efficients such that for all (t1, . . . , tn) ∈ [0, 1]n, there exists
i ≤ m such that

f(t1, . . . , tn) = pi(t1, . . . , tn).

1Through the paper we use the same symbols for connectives
and algebraic operations.

2The difference can be explained as follows: α∧ β gives us the
availability of both α and β but we can peak just one of them; α⊗β
forces us to peak both formulas in the pair (α, β).

Theorem 1 (McNaughton Theorem). For each n ≥ 0, the
class of [0, 1]-valued functions defined on [0, 1]n that cor-
respond to formulas of propositional Łukasiewicz logic co-
incides with the class of McNaughton functions defined on
[0, 1]n and equipped with pointwise defined operations.

As a consequence, for every Ł-formula ϕ depending on
n propositional variables, we can consider its corresponding
function fϕ : [0, 1]n → [0, 1], whose value on each point
is exactly the evaluation of the formula with respect to the
same variable assignment. For the McNaughton Theorem fϕ
is a McNaughton function.

About Convexity

Because of the functional representation of formulas, we
have a natural way to consider logical constraints in a learn-
ing setting. Nevertheless, in general such constraints are not
convex, hence we are interested in operations (correspond-
ing to logical connectives) that preserve concavity or con-
vexity.
Lemma 1. Let f, g be two [0, 1]-valued functions defined on
[0, 1]n, then
1. f is convex if and only if the function ¬f is concave;
2. if f, g are concave then the functions f ∧ g and f ⊕ g are

concave;
3. if f, g are convex then the functions f ∨ g and f ⊗ g are

convex.
As a result we get that, if f is a convex function and g is

concave, then f → g = ¬f ⊕ g is concave.
Let us consider the two different Łukasiewicz fragments

(∧,⊕)∗ and (⊗,∨)∗ of concave and convex McNaughton
functions respectively, they are defined as follows.
Definition 2. Let (∧,⊕)∗ and (⊗,∨)∗ be the smallest sets
of formulas (up to equivalence) such that:
• if y is a propositional variable, then 0̄, y,¬y ∈ (∧,⊕)∗

and 1̄, y,¬y ∈ (⊗,∨)∗;
• if ϕ1, ϕ2 ∈ (∧,⊕)∗, then ϕ1 ∧ ϕ2, ϕ1 ⊕ ϕ2 ∈ (∧,⊕)∗;
• if ϕ1, ϕ2 ∈ (⊗,∨)∗, then ϕ1 ⊗ ϕ2, ϕ1 ∨ ϕ2 ∈ (⊗,∨)∗.

As a consequence of Lemma 1 and the previous definition,
the set of Horn clauses, namely the set of formulas of the
form (x1⊗ . . .⊗xm) → y with x1, . . . , xm, y propositional
variables, is (properly) contained in (∧,⊕)∗.

Since we are interested in convex McNaughton functions,
which are among others piecewise linear functions, the fol-
lowing result (see i.e. (Rockafellar and Wets 2009)) turns
out to be fundamental for our investigation.
Theorem 2. Any convex piecewise linear function on R

n

can be expressed as a max of a finite number of affine func-
tions.

This means that, for each n-ary convex McNaughton
function f there exist A1, . . . , Ak ∈ Z

n, b1, . . . , bk ∈ Z

such that:

for all x ∈ [0, 1]n f(x) =
k

max
i=1

A′
i · x+ bi. (1)

On the other hand, every concave McNaughton function can
be expressed as the minimum of a finite number of affine
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functions. We only mention that the coefficients of the affine
functions are constructively determined by the shape of the
considered formula.

Example. Let us consider ϕ = ((x ∧ y)⊕ ¬y ⊕ z) ∧ ¬z,
then ϕ ∈ (∧,⊕)∗ and it is equivalent to (x⊕¬y⊕ z)∧ (y⊕
¬y ⊕ z) ∧ ¬z. From this latter expression, we get:

fϕ(x, y, z) = min{1, x− y + z + 1, 1− z}.
Finally, exploiting (1) and thanks to Lemma 1, we can prove
that the defined fragments of Łukasiewicz logic coincide
with the sets of all Ł-formulas whose corresponding Mc-
Naughton functions are either concave or convex.
Proposition 1. Let fϕ : [0, 1]n → [0, 1] be a McNaughton
function. Then fϕ is concave if and only if ϕ ∈ (∧,⊕)∗ and
fϕ is convex if and only if ϕ ∈ (⊗,∨)∗ .

This result allows us to conclude that, in each case, we
are taking into account the largest fragment of Łukasiewicz
logic whose McNaughton functions are either concave or
convex.

3 Collective Classification with Logical

Constraints

We consider a learning problem in which we consider a set
of learnable task functions corresponding to predicates in
P = {p(aj)

j : j ∈ NJ}3, each with its own fixed arity aj . In
general, we may assume that each predicate is defined on a
subset of a power of R, such that p(aj)

j : Rj1 × . . .×Rjaj
=

Rnj
→ R, where for k = 1, . . . , aj , Rjk ⊆ R

jk and so
Rnj

⊆ R
nj , nj = nj1 + . . . + njaj

. However, we assume
that the predicates are evaluated on finite, already fixed, sets
of sample points. In other words, we consider a collective
learning setting in which we are only interested to com-
pute the values of the predicates on the available discrete
set of points. We may assume that an appropriate model
(f.i. a neural network or a kernel machine) has already been
trained4 to compute the prior values of pj(x

j
l ) for a given

input xj
l ∈ R

nj . If we suppose that each variable occurring
in predicates takes its values from a discrete set Sjk , in gen-
eral we can consider the Cartesian product of the sets Sjk
as the evaluation set Sj for the j-th task,

Sj = {xj
s = (xj

1, . . . ,x
j
aj
) ∈ R

nj : xj
k ∈ Sjk , s ∈ Nsj},

whose elements will be used to evaluate pj . The value of
the predicate on the s-th sample point in Sj will be denoted
as pjs = pj(x

j
s), and the values will be collected into the

vector pj =
[
pj1, . . . , pjsj

] ∈ R
sj . Finally, in the following

we will indicate as p̂j as the available vector of priors for
the predicate values.

Let KB = {ϕh : h ∈ NH} be a knowledge base of first
order Łukasiewicz formulas defined on the set of predicates

3Where, for every j ∈ N, Nj = {n ∈ N : n ≤ j}.
4Even if in the present work we restrict the attention on the

collective classification setting, the proposed framework can be ex-
ploited also to define a learning scheme for the predicate function
themselves.

P. KB represents a set of logical constraints that establish
some relations that must hold between the predicates. Since
we are dealing with a finite domain for variables, each quan-
tified formula can be replaced with a propositional one ap-
plying the following equivalence once per quantifier:

∀xψ(x) 

∧

xj
k∈Sjk

ψ[xj
k/x], ∃xψ(x) 


∨

xj
k∈Sjk

ψ[xj
k/x],

(2)
where x is the k-th argument of a certain predicate pj occur-
ring in the formula ψ and [xj

k/x] represents the substitution
of the element xj

k in place of x in ψ. If two or more predi-
cates share a variable, in possibly different arguments, then
that variable will be evaluated on the same set of values for
those predicates. By applying (2) to remove all the quan-
tifiers, we obtain a set of formulas KB′, where the propo-
sitional variables correspond to the possible groundings of
predicates occurring in formulas. Each grounding of the j-
th predicate is a value corresponding to a specific entry in
the vector pj . Hence, in this setting, these values can be
thought of as (propositional) variables. Clearly, when two
(or more) predicates pj1 and pj2 share the same quantified
variable as argument, the variables pj1s1 and pj2s2 corre-
sponding to their groundings have to be selected accordingly
to the shared values in their arguments.

Example. Let us consider P = {p(1)1 , p
(2)
2 } with the logi-

cal constraint

ϕ : ∀x∃y(p1(x) → p2(x, y)).

Now let us suppose S11 = S21 = {a, b} and S22 = {c, d},
then ϕ′ corresponds to

[(p1(a) → p2(a, c)) ∨ (p1(a) → p2(a, d))]∧
∧[(p1(b) → p2(b, c)) ∨ (p1(b) → p2(b, d))]

If we consider the grounding vectors for the two predicates

p1 = [p1(a), p1(b)],

p2 = [p2(a, c), p2(a, d), p2(b, c), p2(b, d)]

ϕ′ can be rewritten as

[(p11 → p21)∨(p11 → p22)]∧[(p12 → p23)∨(p12 → p24)].

Every n−ary formula ϕ in KB′ is expressed in the con-
text of propositional Łukasiewicz Logic Ł and, hence, it is
isomorphic to a McNaughton function fϕ : [0, 1]n → [0, 1].
For the sake of simplicity, we write fh for the function cor-
responding to the formula ϕ′

h. Moreover, each formula ϕ′
h

in KB′ actually depends only on the groundings of the oc-
curring predicates, but to use a uniform notation, we will
write every formula as depending on all groundings of all
predicates, i.e. fϕ′(p) being p = [p1, . . . ,pJ ] ∈ R

S , where
S = s1 + . . . + sJ . We can enforce the satisfaction of log-
ical constraints in KB′ by requiring 1 − fh(p) = 0, for all
h = 1, . . . , H . In order to allow soft violations of these con-
straints, we can introduce a set of slack variables obtaining
the following contraints:

1− fh(p) ≤ ξh with ξh ≥ 0 for h ∈ NH . (3)
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If fh is a concave function, then gh = 1 − fh is a con-
vex one that corresponds to the formula ¬ϕ′

h. Hence in this
case, gh(p) ≤ ξh is a convex constraint. When we restrict
to formulas in the concave Łukasiewicz fragment defined in
the previous section, we obtain constraints defined by con-
vex McNaughton functions that can be written according to
(1) as the maximum of affine functions:

gh(p) = 1−fh(p) = max
i∈NIh

Mh
i ·p+qhi ≤ ξh for h ∈ NH ,

where Mh
i ∈ R

1,S and qhi ∈ R are integer coefficients deter-
mined by the shape of the formula ¬ϕ′

h. Now, since gh(p)
is a max of terms, we have gh(p) ≤ ξh if and only if

Mh
i · p+ qhi ≤ ξh for all i ∈ NIh . (4)

This means for every h ∈ NH , we can consider the Ih lin-
ear constraints expressed by (4) in place of (3). Even if the
number of constraints is increased, each of them is now an
affine function, so we can deal with a quadratic program-
ming problem.

In order to guarantee the consistency in the definition of
the logical constraints, we need to limit the values of the
predicate groundings to be into the interval [0, 1]. This sim-
ply requires to add the following hard constraints:

0 ≤ pjs ≤ 1, for j ∈ NJ , s ∈ Nsj . (5)

Given this setting, the considered multi–task learning
problem is formulated as

min
p

∑

j∈NJ

||pj − p̂j ||2 + C1

∑

h∈NH

ξh subject to

1− fh(p) ≤ ξh ξh ≥ 0 h ∈ NH

0 ≤ pjs ≤ 1 j ∈ NJ , s ∈ Nsj ,

where C1 > 0 is used to weigh the degree of satisfaction
of the constraints. This optimization problem aims at find-
ing the grounding for the predicates closest to the given pri-
ors and yielding the minimal violation of the logical con-
straints in KB. When dealing with formulas in the consid-
ered Łukasiewicz fragment, by using the rewriting of equa-
tion (4), we obtain a quadratic programming problem that
can be efficiently solved.

Among the considered logical constraints, we can include
formulas implementing a manifold regularization effect in
the original feature space (Diligenti, Gori, and Saccà 2015).
In fact, the topological properties of the original domains of
the predicates are not explicitly represented in the consid-
ered setting, a part from the values assigned for the given
priors. If we consider the predicate pj(xj) and we know that
two groundings pjs1 = pj(x

j
s1) and pjs2 = pj(x

j
s2) are

computed on two samples belonging to a given manifold,
then we can express this fact by a given predicate Mjs1s2
whose value can range in [0, 1] to weigh the membership
of the two points to the same manifold. For instance, when
dealing with a spatial regularization manifold we can exploit

the common definition Mjs1s2 = e−
||xj

s1
−x

j
s2

||2
σ2 , for a given

value for the neighborhood width parameter σ. The logical

constraint that imposes the coherency of the predicate eval-
uations on the manifold is expressed by

Mjs1s2 → ((pjs1 → pjs2) ∧ (pjs2 → pjs1))

that can be rewritten as

¬Mjs1s2 ⊕ [(¬pjs1 ⊕ pjs2) ∧ (¬pjs2 ⊕ pjs1)] .

This formula corresponds to the following linear constraints
for each grounding:

Mjs1s2 + pjs1 − pjs2 − 1 ≤ ξh1
,

Mjs1s2 − pjs1 + pjs2 − 1 ≤ ξh2
.

4 Experimental Results

The experimental analysis was carried out on an image clas-
sification task. The classification problem is based on the
original benchmark proposed by P.Winston (Winston and
Horn 1986), which was initially designed to show the ability
of logic programming to determine the class of an animal
from some partial clues. The dataset used in this paper is
composed by 3325 images, taken from ImageNet database
equally divided into 7 categories, each one representing an
animal class: albatross, cheetah, giraffe, ostrich, penguin,
tiger, zebra. The images of each animal present in the dataset
occur at different distances, angles and poses. All images
used in these experiments have size 32×32 pixels. The vec-
tor of numbers used to represent each image is composed by
two parts: one representing the colors in the image, and one
representing its shape. In particular, the feature representa-
tion contains a 12-dimension normalized color histogram for
each channel in the RGB color space. Furthermore, the SIFT
descriptors (Lowe 1999) have been built by sampling a set
of images from the dataset and then detecting all the SIFT
representations present in at least one of the sampled im-
ages. Finally, the SIFT representations have been clustered
into 600 visual words. The final representation of an image
contains 600 values, where the i-th element represents the
normalized count of the i-th visual word for the given im-
age (bag-of-descriptors). As previously done in Diligenti et
al.(Diligenti, Gori, and Scoca 2016), the test phase does not
get as input a sufficient set of clues to perform classifica-
tion, but the image representations are used by the learning
framework to develop the intermediate clues over which to
perform inference.

Assuming to be in a transductive context, all images are
available at training time but only a subset of the super-
visions are available. In particular, in the experiments the
amount of training supervisions is varied between 10% and
90%.

The knowledge domain is expressed in terms of first order
logic rules as shown in Table 1, where 7 of the predicates
in the KB correspond to the final animal classes, and the
others are intermediate predicates that help in determining
the final classes during the inference process performed by
collective classification. For example, hair, mammal, milk,
carnivore, etc. are intermediate predicates whereas cheetah
is a final predicate representing a final class in the multi-task
classification.

A feedforward neural network having one single output
neuron and a single hidden layer containing 30 neurons was
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(carnivore(x) ∧ tawny(x) ∧ blackstripes(x)) → tiger(x)
(mammal(x) ∧ cud(x)) → ungulate(x)
(bird(x) ∧ swim(x) ∧ blackwhite(x)) → penguin(x)
layeggs(x) → bird(x)
(mammal(x) ∧ pointedteeth(x) ∧ claws(x) ∧ forwardeyes(x)) → carnivore(x)
(mammal(x) ∧ meat(x)) → carnivore(x)
(ungulate(x) ∧ white(x) ∧ blackstripes(x)) → zebra(x)
(mammal(x) ∧ hoofs(x)) → ungulate(x)
(carnivore(x) ∧ tawny(x) ∧ darkspots(x)) → cheetah(x)
hair(x) → mammal(x)
(ungulate(x) ∧ longlegs(x) ∧ longneck(x) ∧ tawny(x) ∧ darkspots(x)) → giraffe(x)
milk(x) → mammal(x)
(bird(x) ∧ longlegs(x) ∧ longneck(x) ∧ black(x)) → ostrich(x)
feather(x) → bird(x)
(bird(x) ∧ goodflier(x)) → albatross(x)
mammal(x) ⊕ bird(x)
cheetah(x)⊕tiger(x)⊕giraffe(x)⊕zebra(x)⊕ostrich(x)⊕penguin(x)⊕albatross(x)
hair(x) ⊕ feather(x)
darkspots(x) → ¬ blackstripes(x)
blackstripes(x) → ¬ darkspots(x)
tawny(x) → (¬ black(x) ∧¬ white(x))
black(x) → (¬ tawny(x) ∧¬ white(x))
white(x) → (¬ black(x) ∧¬ tawny(x))
black(x) → ¬ white(x)
black(x) → ¬ tawny(x)
white(x) → ¬ black(x)
white(x) → ¬ tawny(x)
tawny(x) → ¬ white(x)
tawny(x) → ¬ black(x)

Table 1: Examples of the rules in the KB used for training
the models in the Winston image classification benchmark.

trained for each final or intermediate predicate in the KB.
The single output neuron used a sigmoidal activation func-
tion, while the hidden neurons used a rectified linear acti-
vation function. The networks are trained against the train-
ing set labels using a quadratic cost function on the out-
put. Resilient backpropagation (Riedmiller and Braun 1993;
Mosca and Magoulas 2015) was used to accelerate the con-
vergence of the training process, which was executed for 500
full-batch iterations and using 0.0001 as initial learning rate
for all the weights. The network outputs are used to initial-
ize the values of the grounded predicates for the subsequent
collective classification step.

Three settings are compared in the experiments. In the
first setting, the neural networks classify directly the images
based on their input feature based representation without any
logic knowledge. In the second, the proposed collective clas-
sification, based on the given KB, is applied after initializing
the grounded predicate values using only the supervisions
available in the train set, whereas setting the other values to
0.5. Finally, in the third setting, the collective classification
is performed after the initialization of each grounded pred-
icate with the output of the corresponding neural network
for that grounding. Basically, this last classifier in general
provides a better prior also for those nodes that are not su-
pervised.

Figure 4 reports the accuracy on the test labels for dif-
ferent percentages of the available supervisions for train-
ing. The accuracy is computed on the 7 exclusive final ani-
mal classes, where the class assignment for a pattern is per-
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Figure 1: Accuracy of the classifiers varying the amount of
available training supervisions.

formed via an argmax of the output classification values.
Collective classification exploiting the KB significantly

improves the performances of the neural network classifiers.
In particular, the inference step consolidates the final assign-
ments by fixing the inconsistencies of the classifier outputs
using the prior knowledge. Among the two collective clas-
sification settings, the best performance is obtained by ex-
ploiting the outputs of the neural networks as priors. This
is because the neural networks not only fit well the avail-
able supervisions, but also provide a better prior for the un-
supervised grounded predicates. When many supervisions
are available, the inference process tends to be fully spec-
ified (the benchmark assumes that it is always possible to
uniquely identify an animal given a complete set of clues,
e.g. the values for the intermediate predicated are known),
and the gap in the performances of the two collective classi-
fiers becomes smaller.

5 Conclusions

The paper provides a theoretical result that defines a frag-
ment in the Łukasiewicz logic that yields convex constraints
that can be embedded in the training procedure for a learn-
ing agent. Convexity in general allows the definition of more
efficient methods for the optimization process at the basis
of the learning task. For instance, convexity guarantees the
unicity of the solution and it is one of the keys of the suc-
cess of kernel machines. As an example, we showed that the
proposed result can be exploited to define collective classi-
fication from a knowledge base as a quadratic programming
problem.

Future work will aim at analyzing the implications of the
specific choice of the fragment connectives with respect to
the fuzzy interpretation of the rules. Moreover, the extension
of the results to other contexts beside collective classifica-
tion is under investigation.
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Appendix

Proof of Lemma 1. 1. This point is obvious remembering
that for all x, ¬f(x) := 1− f(x).

2. If f, g are concave then for all x, y ∈ [0, 1]n, λ ∈ [0, 1],
(f ∧g)(λx+(1−λ)y) = min{f(λx+(1−λ)y), g(λx+
(1 − λ)y)} ≥ min{λf(x) + (1 − λ)f(y), λg(x) + (1 −
λ)g(y)} ≥ {λ(f ∧ g)(x) + (1− λ)(f ∧ g)(y)}.
Moreover, by definition (f ⊕ g)(x) = min{1, f(x) +
g(x)} thus if (f ⊕ g)(λx+ (1− λ)y) = 1 then obviously
it is greater or equal than λ(f⊕g)(x)+(1−λ)(f⊕g)(y).
Otherwise f⊕g = f+g and sum preserves concavity (and
it preserves convexity too) so the thesis easily follows.

3. This point follows from 1. and 2. plus recalling that f ∨
g = ¬(¬f ∧ ¬g) and f ⊗ g = ¬(¬f ⊕ ¬g).

Proof of Proposition 1. By hypothesis fϕ is a concave
piecewise linear function hence there exist some elements
aij , bi ∈ Z for i = 1, . . . ,m and j = 1, . . . , n, such that:

fϕ(x) =
m
min
i=1

ai1x1 + . . .+ ainxn + bi, x ∈ [0, 1]n.

If we set pi(x) = ai1x1+ . . .+ainxn+bi for i = 1, . . . ,m,
our claim follows provided every pi corresponds to a for-
mula in (∧,⊕)∗, indeed the operation of minimum is exactly
performed by the connective ∧. Let us fix i ∈ {1, . . . ,m},
then we can write

pi(x) =
∑

j∈Pi

aijxj +
∑

j∈Ni

aijxj + bi,

where Pi = {j ≤ n : aij > 0} and Ni = {j ≤ n :
aij < 0}. It is worth noticing that in general pi will assume
values out of the unit interval. However pi(x) ≥ 0 for all
x ∈ [0, 1]n and the values greater than 1 obviously do not
contribute to fϕ. Thanks to this last remark, we can take
into account a formula whose corresponding McNaughton
function corresponds to pi truncated to 1 and restricted in
[0, 1]n. Let us consider the formula

ϕi =
⊕

j∈Pi

|aij |xj ⊕
⊕

j∈Ni

|aij |¬xj ⊕ qi,

where |aij |xj = xj ⊕ . . . ⊕ xj , |aij | times and qi =
1̄ ⊕ . . . ⊕ 1̄, qi times if it is greater than 0, or 0̄ other-
wise. Indeed the first strong disjunction corresponds to all
the positive monomials of pi. The second one corresponds
to all the negative monomials of pi, but it also introduces the
quantity

∑
j∈Ni

|aij |. Finally qi = bi −
∑

j∈Ni
|aij |, with

qi ≥ 0 since pi(x) ≥ 0 for all x ∈ [0, 1]n and in particular
pi(x̄) = bi−

∑
j∈Ni

|aij | ≥ 0 where x̄ is the vector with 0 in
positive and 1 in negative monomial positions respectively.
The overall formula can be written as ϕ = ϕ1∧. . .∧ϕm.
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