
Deeper Insights into Graph Convolutional
Networks for Semi-Supervised Learning

Qimai Li,1 Zhichao Han,1,2 Xiao-Ming Wu1∗
1The Hong Kong Polytechnic University

2ETH Zurich
csqmli@comp.polyu.edu.hk, zhhan@student.ethz.ch, xiao-ming.wu@polyu.edu.hk

Abstract

Many interesting problems in machine learning are being re-
visited with new deep learning tools. For graph-based semi-
supervised learning, a recent important development is graph
convolutional networks (GCNs), which nicely integrate local
vertex features and graph topology in the convolutional lay-
ers. Although the GCN model compares favorably with other
state-of-the-art methods, its mechanisms are not clear and it
still requires considerable amount of labeled data for valida-
tion and model selection.
In this paper, we develop deeper insights into the GCN model
and address its fundamental limits. First, we show that the
graph convolution of the GCN model is actually a special
form of Laplacian smoothing, which is the key reason why
GCNs work, but it also brings potential concerns of over-
smoothing with many convolutional layers. Second, to over-
come the limits of the GCN model with shallow architectures,
we propose both co-training and self-training approaches to
train GCNs. Our approaches significantly improve GCNs in
learning with very few labels, and exempt them from requir-
ing additional labels for validation. Extensive experiments on
benchmarks have verified our theory and proposals.

1 Introduction
The breakthroughs in deep learning have led to a paradigm
shift in artificial intelligence and machine learning. On the
one hand, numerous old problems have been revisited with
deep neural networks and huge progress has been made in
many tasks previously seemed out of reach, such as ma-
chine translation and computer vision. On the other hand,
new techniques such as geometric deep learning (Bronstein
et al. 2017) are being developed to generalize deep neural
models to new or non-traditional domains.

It is well known that training a deep neural model typi-
cally requires a large amount of labeled data, which cannot
be satisfied in many scenarios due to the high cost of labeling
training data. To reduce the amount of data needed for train-
ing, a recent surge of research interest has focused on few-
shot learning (Lake, Salakhutdinov, and Tenenbaum 2015;
Rezende et al. 2016) – to learn a classification model with
very few examples from each class. Closely related to few-
shot learning is semi-supervised learning, where a large

∗Corresponding author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

amount of unlabeled data can be utilized to train with typi-
cally a small amount of labeled data.

Many researches have shown that leveraging unlabeled
data in training can improve learning accuracy significantly
if used properly (Zhu and Goldberg 2009). The key issue is
to maximize the effective utilization of structural and fea-
ture information of unlabeled data. Due to the powerful fea-
ture extraction capability and recent success of deep neu-
ral networks, there have been some successful attempts to
revisit semi-supervised learning with neural-network-based
models, including ladder network (Rasmus et al. 2015),
semi-supervised embedding (Weston et al. 2008), planetoid
(Yang, Cohen, and Salakhutdinov 2016), and graph convo-
lutional networks (Kipf and Welling 2017).

The recently developed graph convolutional neural net-
works (GCNNs) (Defferrard, Bresson, and Vandergheynst
2016) is a successful attempt of generalizing the powerful
convolutional neural networks (CNNs) in dealing with Eu-
clidean data to modeling graph-structured data. In their pi-
lot work (Kipf and Welling 2017), Kipf and Welling pro-
posed a simplified type of GCNNs, called graph convolu-
tional networks (GCNs), and applied it to semi-supervised
classification. The GCN model naturally integrates the con-
nectivity patterns and feature attributes of graph-structured
data, and outperforms many state-of-the-art methods signif-
icantly on some benchmarks. Nevertheless, it suffers from
similar problems faced by other neural-network-based mod-
els. The working mechanisms of the GCN model for semi-
supervised learning are not clear, and the training of GCNs
still requires considerable amount of labeled data for param-
eter tuning and model selection, which defeats the purpose
for semi-supervised learning.

In this paper, we demystify the GCN model for semi-
supervised learning. In particular, we show that the graph
convolution of the GCN model is simply a special form of
Laplacian smoothing, which mixes the features of a vertex
and its nearby neighbors. The smoothing operation makes
the features of vertices in the same cluster similar, thus
greatly easing the classification task, which is the key rea-
son why GCNs work so well. However, it also brings po-
tential concerns of over-smoothing. If a GCN is deep with
many convolutional layers, the output features may be over-
smoothed and vertices from different clusters may become
indistinguishable. The mixing happens quickly on small

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3538

Figure 1: Performance comparison of GCNs, label propaga-
tion, and our method for semi-supervised classification on
the Cora citation network.

datasets with only a few convolutional layers, as illustrated
by Fig. 2. Also, adding more layers to a GCN will make it
much more difficult to train.

However, a shallow GCN model such as the two-layer
GCN used in (Kipf and Welling 2017) has its own limits.
Besides that it requires many additional labels for validation,
it also suffers from the localized nature of the convolutional
filter. When only few labels are given, a shallow GCN cannot
effectively propagate the labels to the entire data graph. As
illustrated in Fig. 1, the performance of GCNs drops quickly
as the training size shrinks, even for the one with 500 addi-
tional labels for validation.

To overcome the limits and realize the full potentials of
the GCN model, we propose a co-training approach and a
self-training approach to train GCNs. By co-training a GCN
with a random walk model, the latter could complement the
former in exploring global graph topology. By self-training a
GCN, we can exploit its feature extraction capability to over-
come its localized nature. Combining both the co-training
and self-training approaches can substantially improve the
GCN model for semi-supervised learning with very few la-
bels, and exempt it from requiring additional labeled data for
validation. As illustrated in Fig. 1, our method outperforms
GCNs by a large margin.

In a nutshell, the key innovations of this paper are: 1)
providing new insights and analysis of the GCN model for
semi-supervised learning; 2) proposing solutions to improve
the GCN model for semi-supervised learning. The rest of
the paper is organized as follows. Section 2 introduces the
preliminaries and related works. In Section 3, we analyze
the mechanisms and fundamental limits of the GCN model
for semi-supervised learning. In Section 4, we propose our
methods to improve the GCN model. In Section 5, we con-
duct experiments to verify our analysis and proposals. Fi-
nally, Section 6 concludes the paper.

2 Preliminaries and Related Works

First, let us define some notations used throughout this pa-
per. A graph is represented by G = (V , E), where V is the
vertex set with |V| = n and E is the edge set. In this pa-
per, we consider undirected graphs. Denote by A = [aij] ∈
R

n×n the adjacency matrix which is nonnegative. Denote
by D = diag(d1, d2, . . . , dn) the degree matrix of A where

di =
∑

j aij is the degree of vertex i. The graph Lapla-
cian (Chung 1997) is defined as L := D − A, and the
two versions of normalized graph Laplacians are defined as
Lsym := D−

1
2LD−

1
2 and Lrw := D−1L respectively.

Graph-Based Semi-Supervised Learning

The problem we consider in this paper is semi-supervised
classification on graphs. Given a graph G = (V , E , X),
where X = [x1,x2, · · · ,xn]

� ∈ Rn×c is the feature ma-
trix, and xi ∈ Rc is the c-dimensional feature vector of ver-
tex i. Suppose that the labels of a set of vertices Vl are given,
the goal is to predict the labels of the remaining vertices Vu.

Graph-based semi-supervised learning has been a popu-
lar research area in the past two decades. By exploiting the
graph or manifold structure of data, it is possible to learn
with very few labels. Many graph-based semi-supervised
learning methods make the cluster assumption (Chapelle
and Zien 2005), which assumes that nearby vertices on a
graph tend to share the same label. Researches along this
line include min-cuts (Blum and Chawla 2001) and ran-
domized min-cuts (Blum et al. 2004), spectral graph trans-
ducer (Joachims 2003), label propagation (Zhu, Ghahra-
mani, and Lafferty 2003) and its variants (Zhou et al. 2004;
Bengio, Delalleau, and Le Roux 2006), modified adsorption
(Talukdar and Crammer 2009), and iterative classification
algorithm (Sen et al. 2008).

But the graph only represents the structural information of
data. In many applications, data instances come with feature
vectors containing information not present in the graph. For
example, in a citation network, the citation links between
documents describe their citation relations, while the doc-
uments are represented as bag-of-words vectors which de-
scribe their contents. Many semi-supervised learning meth-
ods seek to jointly model the graph structure and feature at-
tributes of data. A common idea is to regularize a super-
vised learner with some regularizer. For example, manifold
regularization (LapSVM) (Belkin, Niyogi, and Sindhwani
2006) regularizes a support vector machine with a Laplacian
regularizer. Deep semi-supervised embedding (Weston et al.
2008) regularizes a deep neural network with an embedding-
based regularizer. Planetoid (Yang, Cohen, and Salakhutdi-
nov 2016) also regularizes a neural network by jointly pre-
dicting the class label and the context of an instance.

Graph Convolutional Networks

Graph convolutional neural networks (GCNNs) generalize
traditional convolutional neural networks to the graph do-
main. There are mainly two types of GCNNs (Bronstein et
al. 2017): spatial GCNNs and spectral GCNNs. Spatial GC-
NNs view the convolution as “patch operator” which con-
structs a new feature vector for each vertex using its neigh-
borhood information. Spectral GCNNs define the convo-
lution by decomposing a graph signal s ∈ Rn (a scalar
for each vertex) on the spectral domain and then apply-
ing a spectral filter gθ (a function of eigenvalues of Lsym)
on the spectral components (Bruna et al. 2014; Sandryhaila
and Moura 2013; Shuman et al. 2013). However this model
requires explicitly computing the Laplacian eigenvectors,

3539

which is impractical for real large graphs. A way to circum-
vent this problem is by approximating the spectral filter gθ
with Chebyshev polynomials up to Kth order (Hammond,
Vandergheynst, and Gribonval 2011). In (Defferrard, Bres-
son, and Vandergheynst 2016), Defferrard et al. applied this
to build a K-localized ChebNet, where the convolution is
defined as:

gθ � s ≈
K∑

k=0

θ′kTk(Lsym)s, (1)

where s ∈ Rn is the signal on the graph, gθ is the spectral
filter, � denotes the convolution operator, Tk is the Cheby-
shev polynomials, and θ′ ∈ RK is a vector of Chebyshev
coefficients. By the approximation, the ChebNet is actually
spectrum-free.

In (Kipf and Welling 2017), Kipf and Welling simplified
this model by limiting K = 1 and approximating the largest
eigenvalue λmax of Lsym by 2. In this way, the convolution
becomes

gθ � s = θ
(
I +D−

1
2AD−

1
2

)
s, (2)

where θ is the only Chebyshev coefficient left. They further
applied a normalization trick to the convolution matrix:

I +D−
1
2AD−

1
2 → D̃−

1
2 ÃD̃−

1
2 , (3)

where Ã = A+ I and D̃ =
∑

j Ãij .
Generalizing the above definition of convolution to a

graph signal with c input channels, i.e., X ∈ Rn×c (each
vertex is associated with a c-dimensional feature vector), and
using f spectral filters, the propagation rule of this simpli-
fied model is:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)Θ(l)

)
, (4)

where H(l) is the matrix of activations in the l-th layer, and
H(0) = X , Θ(l) ∈ Rc×f is the trainable weight matrix
in layer l, σ is the activation function, e.g., ReLU(·) =
max(0, ·).

This simplified model is called graph convolutional net-
works (GCNs), which is the focus of this paper.

Semi-Supervised Classification with GCNs

In (Kipf and Welling 2017), the GCN model was applied for
semi-supervised classification in a neat way. The model used
is a two-layer GCN which applies a softmax classifier on the
output features:

Z = softmax
(
Â ReLU

(
ÂXΘ(0)

)
Θ(1)

)
, (5)

where Â = D̃−
1
2 ÃD̃−

1
2 , softmax(xi) = 1

Z exp(xi) with
Z =

∑
i exp(xi). The loss function is defined as the cross-

entropy error over all labeled examples:

L := −
∑
i∈Vl

F∑
f=1

Yif lnZif , (6)

where Vl is the set of indices of labeled vertices and F is the
dimension of the output features, which is equal to the num-
ber of classes. Y ∈ R|Vl|×F is a label indicator matrix. The

Table 1: GCNs vs. Fully-connected networks

One-layer
FCN

Two-layer
FCN

One-layer
GCN

Two-layer
GCN

0.530860 0.559260 0.707940 0.798361

weight parameters Θ(0) and Θ(1) can be trained via gradient
descent.

The GCN model naturally combines graph structures and
vertex features in the convolution, where the features of un-
labeled vertices are mixed with those of nearby labeled ver-
tices, and propagated over the graph through multiple lay-
ers. It was reported in (Kipf and Welling 2017) that GCNs
outperformed many state-of-the-art methods significantly on
some benchmarks such as citation networks.

3 Analysis
Despite its promising performance, the mechanisms of the
GCN model for semi-supervised learning have not been
made clear. In this section, we take a closer look at the GCN
model, analyze why it works, and point out its limitations.

Why GCNs Work

To understand the reasons why GCNs work so well, we
compare them with the simplest fully-connected networks
(FCNs), where the layer-wise propagation rule is

H(l+1) = σ
(
H(l)Θ(l)

)
. (7)

Clearly the only difference between a GCN and a FCN is
the graph convolution matrix Â = D̃−

1
2 ÃD̃−

1
2 (Eq. (5)) ap-

plied on the left of the feature matrix X . To see the impact of
the graph convolution, we tested the performances of GCNs
and FCNs for semi-supervised classification on the Cora ci-
tation network with 20 labels in each class. The results can
be seen in Table 1. Surprisingly, even a one-layer GCN out-
performed a one-layer FCN by a very large margin.

Laplacian Smoothing. Let us first consider a one-layer
GCN. It actually contains two steps. 1) Generating a new
feature matrix Y from X by applying the graph convolution:

Y = D̃−1/2ÃD̃−1/2X. (8)
2) Feeding the new feature matrix Y to a fully connected
layer. Clearly the graph convolution is the key to the huge
performance gain.

Let us examine the graph convolution carefully. Suppose
that we add a self-loop to each vertex in the graph, then the
adjacency matrix of the new graph is Ã = A+I . The Lapla-
cian smoothing (Taubin 1995) on each channel of the input
features is defined as:

ŷi = (1− γ)xi + γ
∑
j

ãij
di

xj (for 1 ≤ i ≤ n), (9)

where 0 < γ ≤ 1 is a parameter which controls the weight-
ing between the features of the current vertex and the fea-
tures of its neighbors. We can write the Laplacian smoothing
in matrix form:

Ŷ = X − γD̃−1L̃X = (I − γD̃−1L̃)X, (10)

3540

(a) 1-layer (b) 2-layer (c) 3-layer (d) 4-layer (e) 5-layer

Figure 2: Vertex embeddings of Zachary’s karate club network with GCNs with 1,2,3,4,5 layers.

where L̃ = D̃ − Ã. By letting γ = 1, i.e., only using the
neighbors’ features, we have Ŷ = D̃−1ÃX , which is the
standard form of Laplacian smoothing.

Now if we replace the normalized Laplacian D̃−1L̃ with
the symmetrically normalized Laplacian D̃−

1
2 L̃D̃−

1
2 and let

γ = 1, we have Ŷ = D̃−1/2ÃD̃−1/2X , which is exactly the
graph convolution in Eq. (8). We thus call the graph con-
volution a special form of Laplacian smoothing – symmet-
ric Laplacian smoothing. Note that here the smoothing still
includes the current vertex’s features, as each vertex has a
self-loop and is its own neighbor.

The Laplacian smoothing computes the new features of a
vertex as the weighted average of itself and its neighbors’.
Since vertices in the same cluster tend to be densely con-
nected, the smoothing makes their features similar, which
makes the subsequent classification task much easier. As we
can see from Table 1, applying the smoothing only once has
already led to a huge performance gain.

Multi-layer Structure. We can also see from Table 1 that
while the 2-layer FCN only slightly improves over the 1-
layer FCN, the 2-layer GCN significantly improves over the
1-layer GCN by a large margin. This is because applying
smoothing again on the activations of the first layer makes
the output features of vertices in the same cluster more sim-
ilar and further eases the classification task.

When GCNs Fail

We have shown that the graph convolution is essentially
a type of Laplacian smoothing. A natural question is how
many convolutional layers should be included in a GCN?
Certainly not the more the better. On the one hand, a GCN
with many layers is difficult to train. On the other hand,
repeatedly applying Laplacian smoothing may mix the fea-
tures of vertices from different clusters and make them indis-
tinguishable. In the following, we illustrate this point with a
popular dataset.

We apply GCNs with different number of layers on the
Zachary’s karate club dataset (Zachary 1977), which has 34
vertices of two classes and 78 edges. The GCNs are un-
trained with the weight parameters initialized randomly as
in (Glorot and Bengio 2010). The dimension of the hidden
layers is 16, and the dimension of the output layer is 2. The
feature vector of each vertex is a one-hot vector. The outputs
of each GCN are plotted as two-dimensional points in Fig. 2.
We can observe the impact of the graph convolution (Lapla-
cian smoothing) on this small dataset. Applying the smooth-

ing once, the points are not well-separated (Fig. 2a). Apply-
ing the smoothing twice, the points from the two classes are
separated relatively well. Applying the smoothing again and
again, the points are mixed (Fig. 2c, 2d, 2e). As this is a
small dataset and vertices between two classes have quite a
number of connections, the mixing happens quickly.

In the following, we will prove that by repeatedly apply-
ing Laplacian smoothing many times, the features of vertices
within each connected component of the graph will con-
verge to the same values. For the case of symmetric Lapla-
cian smoothing, they will converge to be proportional to the
square root of the vertex degree.

Suppose that a graph G has k connected components
{Ci}ki=1, and the indication vector for the i-th component
is denoted by 1(i) ∈ R

n. This vector indicates whether a
vertex is in the component Ci, i.e.,

1
(i)
j =

{
1, vj ∈ Ci

0, vj �∈ Ci
(11)

Theorem 1. If a graph has no bipartite components, then
for any w ∈ R

n, and α ∈ (0, 1],

lim
m→+∞ (I − αLrw)

m
w = [1(1),1(2), . . . ,1(k)]θ1,

lim
m→+∞ (I − αLsym)

m
w = D−

1
2 [1(1),1(2), . . . ,1(k)]θ2,

where θ1 ∈ R
k, θ2 ∈ R

k, i.e., they converge to a linear
combination of {1(i)}ki=1 and {D− 1

21(i)}ki=1 respectively.

Proof. Lrw and Lsym have the same n eigenvalues (by mul-
tiplicity) with different eigenvectors (Von Luxburg 2007). If
a graph has no bipartite components, the eigenvalues all fall
in [0,2) (Chung 1997). The eigenspaces of Lrw and Lsym

corresponding to eigenvalue 0 are spanned by {1(i)}ki=1

and {D− 1
21(i)}ki=1 respectively (Von Luxburg 2007). For

α ∈ (0, 1], the eigenvalues of (I −αLrw) and (I −αLsym)
all fall into (-1,1], and the eigenspaces of eigenvalue 1 are
spanned by {1(i)}ki=1 and {D− 1

21(i)}ki=1 respectively. Since
the absolute value of all eigenvalues of (I − αLrw) and
(I − αLsym) are less than or equal to 1, after repeatedly
multiplying them from the left, the result will converge to
the linear combination of eigenvectors of eigenvalue 1, i.e.
the linear combination of {1(i)}ki=1 and {D− 1

21(i)}ki=1 re-
spectively.

Note that since an extra self-loop is added to each ver-
tex, there is no bipartite component in the graph. Based on

3541

the above theorem, over-smoothing will make the features
indistinguishable and hurt the classification accuracy.

The above analysis raises potential concerns about stack-
ing many convolutional layers in a GCN. Besides, a deep
GCN is much more difficult to train. In fact, the GCN used
in (Kipf and Welling 2017) is a 2-layer GCN. However, since
the graph convolution is a localized filter – a linear combina-
tion of the feature vectors of adjacent neighbors, a shallow
GCN cannot sufficiently propagate the label information to
the entire graph with only a few labels. As shown in Fig. 1,
the performance of GCNs (with or without validation) drops
quickly as the training size shrinks. In fact, the accuracy of
GCNs decreases much faster than the accuracy of label prop-
agation. Since label propagation only uses the graph infor-
mation while GCNs utilize both structural and vertex fea-
tures, it reflects the inability of the GCN model in exploring
the global graph structure.

Another problem with the GCN model in (Kipf and
Welling 2017) is that it requires an additional validation set
for early stopping in training, which is essentially using the
prediction accuracy on the validation set for model selection.
If we optimize a GCN on the training data without using the
validation set, it will have a significant drop in performance.
As shown in Fig. 1, the performance of the GCN without val-
idation drops much sharper than the GCN with validation. In
(Kipf and Welling 2017), the authors used an additional set
of 500 labeled data for validation, which is much more than
the total number of training data. This is certainly undesir-
able as it defeats the purpose of semi-supervised learning.
Furthermore, it makes the comparison of GCNs with other
methods unfair as other methods such as label propagation
may not need the validation data at all.

4 Solutions
We summarize the advantages and disadvantages of the
GCN model as follows. The advantages are: 1) the graph
convolution – Laplacian smoothing helps making the classi-
fication problem much easier; 2) the multi-layer neural net-
work is a powerful feature extractor. The disadvantages are:
1) the graph convolution is a localized filter, which performs
unsatisfactorily with few labeled data; 2) the neural network
needs considerable amount of labeled data for validation and
model selection.

We want to make best use of the advantages of the GCN
model while overcoming its limits. This naturally leads to a
co-training (Blum and Mitchell 1998) idea.

Co-Train a GCN with a Random Walk Model

We propose to co-train a GCN with a random walk model
as the latter can explore the global graph structure, which
complements the GCN model. In particular, we first use a
random walk model to find the most confident vertices – the
nearest neighbors to the labeled vertices of each class, and
then add them to the label set to train a GCN. Unlike in (Kipf
and Welling 2017), we directly optimize the parameters of a
GCN on the training set, without requiring additional labeled
data for validation.

We choose to use the partially absorbing random walks
(ParWalks) (Wu et al. 2012) as our random walk model. A

Algorithm 1 Expand the Label Set via ParWalks

1: P := (L+ αΛ)−1

2: for each class k do
3: p :=

∑
j∈Sk

P:,j

4: Find the top t vertices in p
5: Add them to the training set with label k
6: end for

partially absorbing random walk is a second-order Markov
chain with partial absorption at each state. It was shown in
(Wu, Li, and Chang 2013) that with proper absorption set-
tings, the absorption probabilities can well capture the global
graph structure. Importantly, the absorption probabilities can
be computed in a closed-form by solving a simple linear sys-
tem, and can be fast approximated by random walk sampling
or scaled up on top of vertex-centric graph engines (Guo et
al. 2017).

The algorithm to expand the training set is described in
Algorithm 1. First, we calculate the normalized absorption
probability matrix P = (L + αΛ)−1 (the choice of Λ may
depend on data). Pi,j is the probability of a random walk
from vertex i being absorbed by vertex j, which represents
how likely i and j belong to the same class. Second, we
need to measure the confidence of a vertex belonging to class
k. We partition the labeled vertices into S1,S2, ..., where
Sk denotes the set of labeled data of class k. For each class
k, we calculate a confidence vector p =

∑
j∈Sk

P:,j , where

p ∈ R
n and pi is the confidence of vertex i belonging to

class k. Finally, we find the t most confident vertices and
add them to the training set with label k to train a GCN.

GCN Self-Training

Another way to make a GCN “see” more training examples
is to self-train a GCN. Specifically, we first train a GCN with
given labels, then select the most confident predictions for
each class by comparing the softmax scores, and add them
to the label set. We then continue to train the GCN with the
expanded label set, using the pre-trained GCN as initializa-
tion. This is described in Algorithm 2.

The most confident instances found by the GCN are sup-
posed to share similar (but not the same) features with the la-
beled data. Adding them to the labeled set will help training
a more robust and accurate classifier. Furthermore, it com-
plements the co-training method in the situation that a graph
has many isolated small components and it is not possible to
propagate labels with random walks.

Algorithm 2 Expand the Label Set via Self-Training

1: Z := GCN(X) ∈ R
n×F , the output of GCN

2: for each class k do
3: Find the top t vertices in Zi,k

4: Add them to the training set with label k
5: end for

Combine Co-Training and Self-Training. To improve

3542

the diversity of labels and train a more robust classifier, we
propose to combine co-training and self-learning. Specifi-
cally, we expand the label set with the most confident pre-
dictions found by the random walk and those found by the
GCN itself, and then use the expanded label set to continue
to train the GCN. We call this method “Union”. To find more
accurate labels to add to the labeled set, we also propose to
add the most confident predictions found by both the random
walk and the GCN. We call this method “Intersection”.

Note that we optimize all our methods on the expanded
label set, without requiring any additional validation data.
As long as the expanded label set contains enough correct
labels, our methods are expected to train a good GCN clas-
sifier. But how much labeled data does it require to train a
GCN? Suppose that the number of layers of the GCN is τ ,
and the average degree of the underlying graph is d̂. We pro-
pose to estimate the lower bound of the number of labels
η = |Vl| by solving (d̂)τ ∗ η ≈ n. The rationale behind this
is to estimate how many labels are needed to for a GCN with
τ layers to propagate them to cover the entire graph.

5 Experiments

In this section, we conduct extensive experiments on real
benchmarks to verify our theory and the proposed methods,
including Co-Training, Self-Training, Union, and Intersec-
tion (see Section 4).

We compare our methods with several state-of-the-art
methods, including GCN with validation (GCN+V); GCN
without validation (GCN-V); GCN with Chebyshev filter
(Cheby) (Kipf and Welling 2017); label propagation using
ParWalks (LP) (Wu et al. 2012); Planetoid (Yang, Cohen,
and Salakhutdinov 2016); DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014); manifold regularization (ManiReg) (Belkin,
Niyogi, and Sindhwani 2006); semi-supervised embedding
(SemiEmb) (Weston et al. 2008); iterative classification al-
gorithm (ICA) (Sen et al. 2008).

Experimental Setup

We conduct experiments on three commonly used citation
networks: CiteSeer, Cora, and PubMed (Sen et al. 2008).
The statistics of the datasets are summarized in Table 2. On
each dataset, a document is described by a bag-of-words
feature vector, i.e., a 0/1-valued vector indicating the ab-
sence/presence of a certain word. The citation links between
documents are described by a 0/1-valued adjacency matrix.
The datasets we use for testing are provided by the authors
of (Yang, Cohen, and Salakhutdinov 2016) and (Kipf and
Welling 2017).

For ParWalks, we set Λ = I , and α = 10−6, following
Wu et al.. For GCNs, we use the same hyper-parameters as
in (Kipf and Welling 2017): a learning rate of 0.01, 200 max-
imum epochs, 0.5 dropout rate, 5 × 10−4 L2 regularization
weight, 2 convolutional layers, and 16 hidden units, which
are validated on Cora by Kipf and Welling. For each run,
we randomly split labels into a small set for training, and a
set with 1000 samples for testing. For GCN+V, we follow
(Kipf and Welling 2017) to sample additional 500 labels for
validation. For GCN-V, we simply optimize the GCN using

Table 2: Dataset statistics

Dataset Nodes Edges Classes Features

CiteSeer 3327 4732 6 3703
Cora 2708 5429 7 1433
PubMed 19717 44338 3 500

training accuracy. For Cheby, we set the polynomial degree
K = 2 (see Eq. (1)). We test these methods with 0.5%, 1%,
2%, 3%, 4%, 5% training size on Cora and CiteSeer, and
with 0.03%, 0.05%, 0.1%, 0.3% training size on PubMed.
We choose these labeling rates for easy comparison with
(Kipf and Welling 2017), (Yang, Cohen, and Salakhutdinov
2016), and other methods. We report the mean accuracy of
50 runs except for the results on PubMed (Yang, Cohen, and
Salakhutdinov 2016), which are averaged over 10 runs.

Results Analysis

The classification results are summarized in Table 3, 4 and 5,
where the highest accuracy in each column is highlighted in
bold and the top 3 are underlined. Our methods are displayed
at the bottom half of each table.

We can see that the performance of Co-Training is closely
related to the performance of LP. If the data has strong man-
ifold structure, such as PubMed, Co-Training performs the
best. In contrast, Self-Training is the worst on PubMed, as it
does not utilize the graph structure. But Self-Training does
well on CiteSeer where Co-Training is overall the worst. In-
tersection performs better when the training size is relatively
large, because it filters out many labels. Union performs best
in many cases since it adds more diverse labels to the train-
ing set.

Comparison with GCNs. At a glance, we can see that on
each dataset, our methods outperform others by a large mar-
gin in most cases. When the training size is small, all our
methods are far better than GCN-V, and much better than
GCN+V in most cases. For example, with labeling rate 1%
on Cora and CiteSeer, our methods improve over GCN-V by
23% and 28%, and improve over GCN+V by 12% and 7%.
With labeling rate 0.05% on PubMed, our methods improve
over GCN-V and GCN+V by 37% and 18% respectively.
This verifies our analysis that the GCN model cannot effec-
tively propagate labels to the entire graph with small train-
ing size. When the training size grows, our methods are still
better than GCN+V in most cases, demonstrating the effec-
tiveness of our approaches. When the training size is large
enough, our methods and GCNs perform similarly, indicat-
ing that the given labels are sufficient for training a good
GCN classifier. Cheby does not perform well in most cases,
which is probably due to overfitting.

Comparison with other methods. We compare our
methods with other state-of-the-art methods in Table 6. The
experimental setup is the same except that for every dataset,
we sample 20 labels for each class, which corresponds to the
total labeling rate of 3.6% on CiteSeer, 5.1% on Cora, and
0.3% on PubMed. The results of other baselines are copied
from (Kipf and Welling 2017). Our methods perform simi-
larly as GCNs and outperform other baselines significantly.

3543

Table 3: Classification Accuracy On Cora

Cora
Label Rate 0.5% 1% 2% 3% 4% 5%

LP 56.4 62.3 65.4 67.5 69.0 70.2
Cheby 38.0 52.0 62.4 70.8 74.1 77.6
GCN-V 42.6 56.9 67.8 74.9 77.6 79.3
GCN+V 50.9 62.3 72.2 76.5 78.4 79.7

Co-training 56.6 66.4 73.5 75.9 78.9 80.8
Self-training 53.7 66.1 73.8 77.2 79.4 80.0
Union 58.5 69.9 75.9 78.5 80.4 81.7
Intersection 49.7 65.0 72.9 77.1 79.4 80.2

Table 4: Classification Accuracy on CiteSeer

CiteSeer
Label Rate 0.5% 1% 2% 3% 4% 5%

LP 34.8 40.2 43.6 45.3 46.4 47.3
Cheby 31.7 42.8 59.9 66.2 68.3 69.3
GCN-V 33.4 46.5 62.6 66.9 68.4 69.5
GCN+V 43.6 55.3 64.9 67.5 68.7 69.6

Co-training 47.3 55.7 62.1 62.5 64.5 65.5
Self-training 43.3 58.1 68.2 69.8 70.4 71.0
Union 46.3 59.1 66.7 66.7 67.6 68.2
Intersection 42.9 59.1 68.6 70.1 70.8 71.2

Although we did not directly compare with other baselines,
we can see from Table 3, 4 and 5 that our methods with
much fewer labels already outperform many baselines. For
example, our method Union on Cora (Table 3) with 2% la-
beling rate (54 labels) beats all other baselines with 140 la-
bels (Table 6).

Influence of the Parameters. A common parameter of
our methods is the number of newly added labels. Adding
too many labels will introduce noise, but with too few la-
bels we cannot train a good GCN classifier. As described in
the end of Section 4, we can estimate the lower bound of
the total number of labels η needed to train a GCN by solv-
ing (d̂)τ ∗ η ≈ n. We use 3η in our experiments. Actually,
we found that 2η, 3η and 4η perform similarly in the experi-
ments. We follow Kipf and Welling to set the number of con-
volutional layers as 2. We also observed in the experiments
that 2-layer GCNs performed the best. When the number of
convolutional layers grows, the classification accuracy de-
creases drastically, which is probably due to overfitting.

Computational Cost. For Co-Training, the overhead is
the computational cost of the random walk model, which
requires solving a sparse linear system. In our experiments,
the time is negligible on Cora and CiteSeer as there are only
a few thousand vertices. On PubMed, it takes less than 0.38
seconds in MatLab R2015b. As mentioned in Section 4, the
computation can be further speeded up using vertex-centric
graph engines (Guo et al. 2017), so the scalability of our
method is not an issue. For Self-Training, we only need to
run a few epochs in addition to training a GCN. It converges
fast as it builds on a pre-trained GCN. Hence, the running
time of Self-Training is comparable to a GCN.

Table 5: Classification Accuracy On PubMed

PubMed
Label Rate 0.03% 0.05% 0.1% 0.3%

LP 61.4 66.4 65.4 66.8
Cheby 40.4 47.3 51.2 72.8
GCN-V 46.4 49.7 56.3 76.6
GCN+V 60.5 57.5 65.9 77.8

Co-training 62.2 68.3 72.7 78.2
Self-training 51.9 58.7 66.8 77.0
Union 58.4 64.0 70.7 79.2
Intersection 52.0 59.3 69.4 77.6

Table 6: Accuracy under 20 Labels per Class

Method CiteSeer Cora Pubmed

ManiReg 60.1 59.5 70.7
SemiEmb 59.6 59.0 71.7
LP 45.3 68.0 63.0
DeepWalk 43.2 67.2 65.3
ICA 69.1 75.1 73.9
Planetoid 64.7 75.7 77.2
GCN-V 68.1 80.0 78.2
GCN+V 68.9 80.3 79.1

Co-training 64.0 79.6 77.1
Self-training 67.8 80.2 76.9
Union 65.7 80.5 78.3
Intersection 69.9 79.8 77.0

6 Conclusions

Understanding deep neural networks is crucial for realiz-
ing their full potentials in real applications. This paper con-
tributes to the understanding of the GCN model and its ap-
plication in semi-supervised classification. Our analysis not
only reveals the mechanisms and limitations of the GCN
model, but also leads to new solutions overcoming its limits.
In future work, we plan to develop new convolutional filters
which are compatible with deep architectures, and exploit
advanced deep learning techniques to improve the perfor-
mance of GCNs for more graph-based applications.

Acknowledgments

This research received support from the grant 1-ZVJJ funded
by the Hong Kong Polytechnic University. The authors
would like to thank the reviewers for their insightful com-
ments and useful discussions.

References

Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
regularization: A geometric framework for learning from la-
beled and unlabeled examples. Journal of machine learning
research 7:2434.
Bengio, Y.; Delalleau, O.; and Le Roux, N. 2006. Label
propagation and quadratic criterion. Semi-supervised learn-
ing 193–216.

3544

Blum, A., and Chawla, S. 2001. Learning from labeled and
unlabeled data using graph mincuts. In ICML, 19–26. ACM.
Blum, A., and Mitchell, T. 1998. Combining labeled and
unlabeled data with co-training. In Proceedings of the 11th
annual conference on Computational learning theory, 92–
100. ACM.
Blum, A.; Lafferty, J.; Rwebangira, M.; and Reddy, R. 2004.
Semi-supervised learning using randomized mincuts. In
ICML, 13. ACM.
Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; and Van-
dergheynst, P. 2017. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine 34(4):18–
42.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014.
Spectral networks and locally connected networks on
graphs. ICLR.
Chapelle, O., and Zien, A. 2005. Semi-supervised classi-
fication by low density separation. In Proceedings of the
Tenth International Workshop on Artificial Intelligence and
Statistics, 57–64. Max-Planck-Gesellschaft.
Chung, F. R. 1997. Spectral graph theory. American Math-
ematical Soc.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NIPS, 3844–3852. Curran Associates,
Inc.
Glorot, X., and Bengio, Y. 2010. Understanding the dif-
ficulty of training deep feedforward neural networks. In
Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 249–256. PMLR.
Guo, H.; Tang, R.; Ye, Y.; Li, Z.; and He, X. 2017. A graph-
based push service platform. In International Conference
on Database Systems for Advanced Applications, 636–648.
Springer.
Hammond, D. K.; Vandergheynst, P.; and Gribonval, R.
2011. Wavelets on graphs via spectral graph theory. Applied
and Computational Harmonic Analysis 30(2):129–150.
Joachims, T. 2003. Transductive learning via spectral graph
partitioning. In ICML, 290–297. ACM.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science 350(6266):1332–1338.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710. ACM.
Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; and
Raiko, T. 2015. Semi-supervised learning with ladder net-
works. In NIPS, 3546–3554. Curran Associates, Inc.
Rezende, D.; Danihelka, I.; Gregor, K.; Wierstra, D.; et al.
2016. One-shot generalization in deep generative models.
In ICML 2016, 1521–1529. ACM.

Sandryhaila, A., and Moura, J. M. 2013. Discrete signal pro-
cessing on graphs. IEEE transactions on signal processing
61(7):1644–1656.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3):93.
Shuman, D. I.; Narang, S. K.; Frossard, P.; Ortega, A.; and
Vandergheynst, P. 2013. The emerging field of signal pro-
cessing on graphs: Extending high-dimensional data analy-
sis to networks and other irregular domains. IEEE Signal
Processing Magazine 30(3):83–98.
Talukdar, P. P., and Crammer, K. 2009. New regularized al-
gorithms for transductive learning. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, 442–457. Springer.
Taubin, G. 1995. A signal processing approach to fair sur-
face design. In Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, 351–358.
ACM.
Von Luxburg, U. 2007. A tutorial on spectral clustering.
Statistics and computing 17(4):395–416.
Weston, J.; Ratle, F.; Mobahi, H.; and Collobert, R. 2008.
Deep learning via semi-supervised embedding. In Proceed-
ings of the 25th international conference on Machine learn-
ing, 1168–1175. ACM.
Wu, X.; Li, Z.; So, A. M.; Wright, J.; and Chang, S.-f. 2012.
Learning with Partially Absorbing Random Walks. In NIPS
25, 3077–3085. Curran Associates, Inc.
Wu, X.-M.; Li, Z.; and Chang, S. 2013. Analyzing the har-
monic structure in graph-based learning. In NIPS.
Yang, Z.; Cohen, W. W.; and Salakhutdinov, R. 2016. Re-
visiting semi-supervised learning with graph embeddings.
In Proceedings of the 33rd International conference on Ma-
chine learning, 40–48. ACM.
Zachary, W. W. 1977. An information flow model for con-
flict and fission in small groups. Journal of anthropological
research 33(4):452–473.
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and
Schölkopf, B. 2004. Learning with local and global con-
sistency. In NIPS 16, 321–328. MIT Press.
Zhu, X., and Goldberg, A. 2009. Introduction to semi-
supervised learning. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning 3(1):1–130.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. D. 2003. Semi-
supervised learning using gaussian fields and harmonic
functions. In ICML 2003, 912–919. ACM.

3545

