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Abstract

Traditional security games concern the optimal randomized
allocation of human patrollers, who can directly catch attack-
ers or interdict attacks. Motivated by the emerging application
of utilizing mobile sensors (e.g., UAVs) for patrolling, in this
paper we propose the novel Sensor-Empowered security Game
(SEG) model which captures the joint allocation of human
patrollers and mobile sensors. Sensors differ from patrollers
in that they cannot directly interdict attacks, but they can no-
tify nearby patrollers (if any). Moreover, SEGs incorporate
mobile sensors’ natural functionality of strategic signaling.
On the technical side, we first prove that solving SEGs is
NP-hard even in zero-sum cases. We then develop a scalable
algorithm SEGer based on the branch-and-price framework
with two key novelties: (1) a novel MILP formulation for the
slave; (2) an efficient relaxation of the problem for pruning. To
further accelerate SEGer, we design a faster combinatorial
algorithm for the slave problem, which is provably a constant-
approximation to the slave problem in zero-sum cases and
serves as a useful heuristic for general-sum SEGs. Our experi-
ments demonstrate the significant benefit of utilizing mobile
Sensors.

Introduction

The past decade has seen significant interest in security
games, which concern the allocation of limited security re-
sources to protect critical targets from attack. This is driven in
part by many real-world security applications (Tambe 2011;
Yin et al. 2016; Rosenfeld and Kraus 2017; Bucarey et al.
2017). The security resources in most of these models and
applications are human patrollers, who can directly inter-
dict attacks. Recent advances in technology have stimulated
the rapidly growing trend of utilizing automated sensors for
patrolling and monitoring. Among these, Unmanned Aerial
Vehicles (UAVs) — or more generally, mobile sensors — are
perhaps the most widely used. Indeed, the UAV market is
estimated at USD 13 billions in 2016 and the law enforce-
ment/patrolling segment of the market is expected to account
for the largest share (Market Report 2016). The advantage of
mobile sensors is that they can automatically detect attacks
with advanced image processing techniques (Ren et al. 2015;
Bondi et al. 2017), thus serving as effective monitoring tools.
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Moreover, sensors can be more cost-effective additions than
hiring new patrollers (all sensors in this paper will refer to
mobile sensors, unless otherwise specified). However, the
drawback of sensors is that they usually cannot directly in-
terdict attacks in applications of interest in our work for
law enforcement and wildlife protection — these sensors can
only notify patrollers. This raises the natural question that
we intend to address in this paper: how to incorporate the
advantages of patrollers and sensors to improve security?

Particularly, we generalize the classical security game
model and consider a defender with both patrollers and sen-
sors. Only patrollers can directly interdict attacks. Sensors
can only deftect attacks and then notify nearby patrollers (if
any) to come to intervene. So the interdiction effect of sen-
sors relies on whether there are patrollers nearby. Moreover,
we assume that sensors can strategically send signals (e.g.,
by making noise or shining lights) to deter attacks. Our goal
is to compute the globally optimal defender policy, which
includes the joint allocation of patrollers and sensors as well
as the signaling schemes for sensors. Addressing this goal in-
volves two key challenges. The first is to optimally coordinate
the allocation of patrollers and sensors since sensors cannot
interdict attacks independently. The second challenge is to
design signaling schemes on top of the resource allocation,
inducing a bi-level optimization problem.

Our Contributions. In this paper, we propose the novel
Sensor-Empowered security Game (SEG) model, which natu-
rally extends classical security games to capture the emerging
application of utilizing UAVs to empower human patrolling.
Our model integrates perhaps the most natural two function-
alities of sensors for security, i.e., monitoring and signaling.
On the technical side, we first prove that it is NP-hard to com-
pute the optimal defender strategy even in zero-sum SEGs.
We then propose SEGer, a scalable algorithm based on the
branch and price framework with two novel ingredients: 1. a
compact mixed integer linear program (MILP) formulation
that exactly solves the NP-hard slave problem; 2. an efficient
relaxation of the problem for branch-and-bound pruning. To
further accelerate SEGer, we design a novel polynomial
time algorithm that is provably a (1 — 1)-approximation
to the slave problem in zero-sum cases while it serves as a
useful heuristic for solving general-sum SEGs. Finally, we
experimentally justify the advantage of utilizing sensors for
security as well as the scalability of our new algorithms.



Figure 1: Cycle Graph.

Related Work. This work is related to several lines of re-
search on security, and we discuss how we differ from
each separately. The first line of research concerns UAV
planning to optimize certain information gathering or mon-
itoring objective (Stranders et al. 2013; Mersheeva and
Friedrich 2015). These works consider (only) UAV plan-
ning and are usually in non-strategic settings. In contrast,
our work concerns joint allocation of different types of re-
sources and falls in a game-theoretic setting. Another inter-
esting line of research studies adversarial patrolling games
with alarm systems (Basilico, De Nittis, and Gatti 2017;
Basilico et al. 2017), which also utilizes sensors (i.e., alarms)
to assist patrollers. The sensors in all these works are static
(staying at fixed locations) and do not strategically sig-
nal. Sensors in our model, however, can strategically sig-
nal and are mobile. Such mobility gives us the extra flex-
ibility to optimize their (possibly randomized) allocation.
Finally, our work is also related to the recent work on
utilizing strategic signaling/deception to improve the de-
fender utility in security games (Zhuang and Bier 2011;
Xu et al. 2015; Rabinovich et al. ; Talmor and Agmon 2017,
Guo et al. 2017). These works focus on security games with
human patrollers, while our model optimizes the joint alloca-
tion of patrollers and signaling devices (i.e., sensors).

An Illustrative Example

To illustrate the basic idea, we start with a concrete example
concerning the protection of conservation areas (Fang et
al. 2016). Consider the problem where a defender needs to
protect 8 conservation areas whose underlying geographic
structure is captured by a cycle graph depicted in Figure
1 (e.g., they are the border areas of the park): each vertex
represents an area. Edges indicate the adjacency relation
among these areas. There is a poacher who seeks to attack
one area. For simplicity, assume that these 8 areas are of
equal importance. Particularly, if the poacher is caught by
a patroller at any area, the defender [poacher] gets utility 1
[—1]; If the poacher successfully attacks an area, the defender
[poacher] gets utility —5 [1.25]. The defender has only one
patroller, who can protect any area in the graph. Since areas
are symmetric, it is easy to see that the optimal patrolling
strategy here simply assigns the only patroller to each area
with equal probability 1/8. As a result, the poacher attacks
an arbitrary area, resulting in expected defender utility 1 - % +
(=5)- I =-17/4.

Now consider that the defender is assisted by 4 UAVs
(e.g., an NGO named Air Shepherd [http://airshepherd.org/]
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provides such UAVs for conservation). Each UAV can be
assigned to patrol any area. When the poacher visits any
area ¢, he will be caught right away if there is a patroller
at 7. If there is neither a patroller nor a UAV at area ¢, the
poacher successfully attacks the target. Now if there is a UAV
at ¢, since UAVs are usually visible by the poacher from a
distance, the poacher has a chance of choosing to attack or
not attack, based on his rational judgment, upon seeing the
UAV. If he chooses to attack, the attack will fail if there is a
patroller at any neighbor of area i, since the UAV can notify
the patroller to come to catch the poacher (e.g., this is how air
Shepherd operates). Otherwise, the attack succeeds (despite
the presence of the UAV). The poacher can also choose to
not attack, in which case both players get utility 0.

We are interested in the defender’s optimal strategy for
allocating these resources. By symmetry of the problem, it is
natural to consider the following randomized strategy. The
defender first chooses an area ¢ uniformly at random to place
the patroller, and then uses two UAVs to cover the left two
neighbors of 7 and another two to cover the right two neigh-
bors. The pattern is also illustrated in Figure 1 where the
thick dark vertex for placing the patroller is chosen uniformly
at random. Under such allocation, each vertex is assigned the
patroller with probability 1/8 and is assigned a UAV with
probability 4/8. By symmetry, the poacher still chooses an
arbitrary area to visit. With probability 1/8, the poacher will
be caught by the patroller right away; with probability 3/8,
the poacher encounters neither the patroller nor the UAVs,
thus will successfully conduct an attack. With the remaining
4/8 probability, the poacher will see a UAV and need to make
a choice of attacking or not attacking. It is easy to verify that
conditioned on a UAV showing up at an area, with probability
0.5 there is a patroller at its neighboring area. This is because
out of the four areas covered by UAVs, two of them are
neighbors of the patroller-covered area. Therefore, the ratio-
nal poacher will update his expected utility of committing an
attack, as (—1)-0.5+1.25-0.5 = 0.125 which is greater than
the utility of not attacking. So the poacher will attack the area,
resulting in expected defender utility 1-0.5+(—5)-0.5 = —2.
Taking expectation over all possible situations, the defender
derives expected utility 1- 1 + (=5)- 2 + (—2)- 4 = —11/4,
which is an improvement over her previous utility —17/4.

If the defender only optimizes the allocation of these re-
sources without extra tactics, it turns out that —11/4 is the
maximum utility that she could possibly achieve. Interest-
ingly, we show that the defender can further improve her util-
ity via strategic signaling, which is a natural functionality of
UAVs. Such improvement is possible when the poacher visits
an area ¢ covered by a UAV. In particular, let 65 [0;_] denote
the random event that there is a patroller [no patroller] at some
neighbor of area ¢. As mentioned before, conditioned on see-
ing a UAV at 4, the poacher infers P(0s,) = P(0,—) = 0.5.
However, the UAV will know the precise state of ¢ through
communications with the defender. The UAV could strategi-
cally signal the state of area ¢ to the attacker with the goal of
deterring his attack. This may sound counter-intuitive at first,
but it turns out that strategic signaling does help. In particular,
the following signaling scheme with two signals improves



the defender’s utility:

P(alert|fs4) =1
P(alert|fs_) = 0.8

P(quiet|fsy) = 0;
P(quiet|fs_) = 0.2.

That is, when there is a patroller near area ¢ (state 0. ), the
UAV always sends an alert signal; when there is no patroller
near ¢ (state 65_), 80% percent of the time the UAV still
sends an alert signal while keeps guiet otherwise.

We assume that the poacher is aware of the signal-
ing scheme and will best respond to each signal. If he
receives an alert signal, which occurs with probability:
P(alert) = P(alert|f0s4 )P(0s4) + Plalert|0,— )P0, ) =
0.9, the poacher infers a posterior distribution on the state
by Bayes rule: P(6, |alert) = 2l P er) 5 gpg

P(alert)
P(0;_|alert) = %. This posterior results in expected poacher
utility 3 - (—1) + § - 1.25 = 0, which is the same as not at-
tacking. We assume that the poacher breaks tie in favor of the
defender (see justifications later) and, in this case, chooses
to not attack. This results in utility O for both players. On the
other hand, if the poacher receives a quiet signal, he knows
for sure that there is no patroller nearby thus chooses to attack,
resulting in defender utility —5. As a result, the above signal-
ing scheme (which occurs whenever a poacher encounters a
UAV) results in defender utility 0 - 0.9 + (—5) - 0.1 = —0.5.
Overall, the defender’s expected utility is further improved to
1-14(=5)-2+(=0.5) 5 = —2, which is less than half
of the original loss —17/4.

Remark. A signal takes effect only through its underlying
posterior distribution over O;. In the above example, the
attack would not have been deterred if the UAV always sends
an alert signal since in that case the poacher would ignore
the signal and act based on his prior belief. However, the
signals could be deceptive in the sense that an alert may be
issued even when there is no patroller nearby. The poacher
still prefers to not attack even he is aware of the deception!

SEGs: Sensor-Empowered Security Games

Basic Setup. Consider a security game played between a
defender (she) and an attacker (he). The defender possesses &
human patrollers and m mobile sensors. She aims to protect
n targets, whose underlying geographic structure is captured
by an undirected graph G. We use [n] to denote the set of
all targets, i.e., all vertices. The attacker seeks to attack one

target. Let U i//(i (7) denote the defender/attacker (d/a) pay-

off when the defender successfully protects/fails to protect
(+/—) the attacked target i. Assume U (i) > 0 > U4 (i)
and U{ (i) < 0 < U® (i) for any i. Sensors cannot directly
interdict an attack, however they can inform patrollers to
come when detecting the attacker at a target. Particularly,
let integer 7 > 0 be the intervention distance such that a
sensor-informed patroller within distance 7 to the attacked
target can successfully come to intervene in the attack. If
there is no patroller within distance 7 to the attacked target,
the target is not protected despite being covered by a sen-
sor. So a target covered by some resource (i.e., sensors) is
not necessarily protected, which is a key difference between
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SEGs and classical security games. We assume that sensors
are visible. Therefore, the attacker knows whether a target is
covered by a sensor or not, upon visiting the target.

Defender’s Action Space of Resource Allocation. We as-
sume that any patroller or sensor can be assigned to cover
any target on G without scheduling restrictions. Therefore,
a defender pure strategy covers an arbitrary subset of k ver-
tices with patrollers and another subset of m vertices with
sensors. For convenience, we call both patrollers and sen-
sors resources. W.l.o.g., we assume that the defender never
places more than one resource at any target (otherwise, re-
allocating one resource to any uncovered target would only
do better). Observe that targets in SEGs have 4 possible
states: (1) covered by a patroller (state 6 ); (2) uncovered
by any resource (state 6_); (3) covered by a sensor and at
least one patroller is within distance 7 (state 05 ); (4) cov-
ered by a sensor but no patroller is within distance 7 (state
0s_). Note that only state 6., #s, mean successful defense.
Let© = {0,0_,60,.,0s_} denote the set of all states. Any
resource allocation uniquely determines the state for each
target and vice versa. Therefore we can equivalently use a
state vector e € ©" to denote a defender pure strategy. Let
e; € O denote the state of target ¢ € [n] and £ C O™ denote
the set of defender pure strategies. A defender mixed strategy
is a distribution over the exponentially large set £.

Mobile Sensor Signaling. Another novel ingredient of SEGs
is that they naturally integrate the sensor functionality of
strategic signaling, which can be easily implemented for
most sensors (e.g., UAVs). Particularly, let 3 denote the set of
possible signals that a sensor could send (e.g, noise, warning
lights, etc.). Let O4 = {054, 05—} denote the set of possible
states when a sensor covers the target. A signaling scheme,
w.r.t. target ¢, is a randomized map

rnd
m Oy — X,

which is characterized by variables {m;(e;, 0;) }e,co,,0,e5-
Here 7;(e;, 0;) is the joint probability that target 7 is at state
e; € O, and signal o; € X is sent. So Zoiez mi(e;, o;) must
equal P(¢; ), the marginal probability that target i is at state
e;. A sensor at target ¢ first determines its state e; € O, and
then sends a signal o; with probability 7;(e;, 0;) /P(e;). We
assume that the defender commits to a signaling scheme and
the rational attacker is aware of the commitment.

Upon observing signal o;, the attacker updates his belief

. _ mi(0sy,04)
on the target state: P(6s4|0;) = Wi(95+70'i)“ljr7ri(65—70'i)
P(0s_|o;) =1 —P(05|0;), and derives expected utility

AtU(0;) = U2 (i) - POy |0) + U (i) - P(0s_|0s).

and

The attacker will attack target ¢ if AttU(o;) > 0. When
AttU(o;) < 0, the rational attacker chooses to not attack,
in which case both players get utility 0. We assume that the
attacker breaks tie in favor of the defender when AttU(o;)
0. This is without loss of generality because the defender can
always slightly tune the probabilities to favor her preferred
attacker action. The following lemma shows that the optimal
signaling scheme needs not to use more than two signals.



Lemma 1. [Adapted from (Kamenica and Gentzkow 2011)]
There exists an optimal signaling scheme (w.r.t. a target) that
uses at most two signals, each resulting in an attacker best
response of attacking and not attacking, respectively.

The proof of Lemma 1 tracks the following intuition: if
two signals result in the same attacker best response, merging
these signals into a single one would not change any player’s
utility. In our previous example, an alert signal results in not
attacking while a quiet signal result in attacking.

Attacker’s Action Space. We assume that the defender com-
mits to a mixed strategy (i.e., randomized resource alloca-
tion) and signaling schemes. The attacker is aware of the
defender’s commitment, and will rationally respond. In par-
ticular, the attacker first chooses a target to visit. If he ob-
serves a sensor at the target, the attacker then makes a second
decision and determines to attack or not, based on the signal
from the sensor. If the attacker chooses to not attack, both
players get utility 0. The attacker will choose actions that
maximize his utility.

Justification of Commitment and Other Assumptions.

Commitment to mixed strategies is a common assumption
in security games, and has been well-justified (Tambe 2011).
The commitment to signaling schemes is natural and real-
istic in our setting because these schemes need to be im-
plemented as software in the sensor. Once the code is fi-
nalized and deployed, the defender is committed to use the
signaling scheme prescribed by the code. We also assume
that the attacker is aware of the signaling scheme and will
best respond to each signal. This is because by interacting
with the system, e.g., choosing to attack regardless of the
signal, the attacker can gradually learn each signal’s pos-
terior which is simply a Bernoulli distribution. This is par-
ticularly true in “green security”” domains which generally
involve limited penalty for being caught (Carthy et al. 2016;
Fang et al. 2016). Moreover, there is a community of attackers
who can learn these probabilities by sharing knowledge.

Solving SEGs is Hard

We are interested in solving SEGs, by which we mean com-
puting the globally optimal defender commitment consisting
of the mixed strategy and signaling schemes. We first prove
that solving SEGs is NP-hard even in zero-sum cases. Then
we formulate the problem using the multiple-LP approach
(Conitzer and Sandholm 2006). Note that all proofs in this
paper are illustrated with sketches or explanations. Formal
proofs are available in the online appendix.

Theorem 2. Computing the optimal defender commitment is
NP-hard even in zero-sum SEGs.

Proof Sketch. The proof is by a reduction from the domi-
nating set problem. Particularly, given any graph G with
n vertices, we construct a zero-sum SEG instance with
k patrollers and m = n — k sensors. Let 7 = 1 and
UL(i) = UL(i) = 0,U% (i) = —=1 = —U“(i ) for every
1. That is the defender receives utility O for successfully pro-
tecting a target and utility —1 for failing to protect a target.
The key step of the proof is to argue that G has a dominating
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set of size k if and only if the optimal defender utility is O in
the constructed SEG. 0

A Formulation with Exponential-Size LPs

The main challenge of solving SEGs is its nature as a bi-level
optimization problem since signaling schemes are built on
top of the mixed strategy. We show that the problem can be
formulated as multiple (exponential-size) LPs.

We first formulate the signaling process w.r.t. target ¢. For
convenience, let y; = P(e; = 044) and z; = P(e; = 6,5-)
denote the marginal probabilities of state 0, , 05, respec-
tively. Thanks to Lemma 1, we can w.l.0.g. restrict to sig-
naling schemes with two signals o1, 0o that result in the
attacker best response of attacking and not attacking, re-
spectively. Define variables 7;" = 7;(0s1,01) € [0, y;] and
m; = mi(0s—,01) € [0, z;]. To guarantee that o1, oy result
in the desired attacker best responses we need two con-
straints: U2, (7F, 77 ) = «f - UL (1) + m; - U (i) > 0 and
U (1) = (s w VUL 0) 4 (21— Y (1)
0. Under these constraints, the defender’s expected util-
ity from oy is UZ (v}, 7)) = =t - UL(i) + =y - U2(0).
Recall that the defender utility from o is 0. Crucially,
Ug U U2 are all linear functions of 7,7, w;, y;, 2.

With these representations of defender and attacker utilities
from different signals, we are ready to present LPs to compute
the optimal defender mixed strategy. In particular, for any
fixed target ¢ we exhibit an LP that computes the optimal de-
fender strategy, subject to that visiting target ¢ is the attacker’s
best response. Details are given in the following linear pro-
gram with variables {pe}ece and x;, y;, z;, w;, 7w, , m; for
alli € [n].

max 2 UL (t) +w U (t) + UL (mf 7))
st UL () +w U (t) + UG, (n) e ) =

UL (i) +w U (3) + U, (mf,77) Vi#t

ecEie;=0, Pe = Ti Vi € [n]
Dcectie;—0,, Pe = Vi Vi€ [n]
ZeGE:ei:OS_ Pe = Zi Vie [ ]
ity +zi+w =1 Vi€ [n)
Zeeiipe:l
Pe >0 Veef&
U, (w7 ) 20 Vi€ [n]
Ua( 27 z?ylazl)g VZG[TL]
0<7m <y, 0<7 <z Vi€ [n]

Q)]
In LP (1), variable p, is the probability of pure strategy e and
i, Yi, Zi, W; are the marginal probabilities of different states.
Note that Program (1) is an LP since UO,1 , Ugl, Ug, are all
linear functions. The last three sets of constraints guarantee
that {m;", 7, } is a feasible signaling scheme at each target
1. The first set of constraints enforce that visiting target ¢ is
an attacker best response. The remaining constraints define
various marginal probabilities. It is easy to see that LP (1)
computes the optimal defender commitment, subject to that
visiting target ¢ is an attacker best response.

The optimal commitment can be computed by solving
LP (1) for each t and picking the solution with maximum
objective. A scalable algorithm for solving SEGs is given
next.



SEGer- A Branch and Price Approach

The challenge of solving SEGs are two-fold. First, LP (1)
has exponentially many variables. Second, we have to solve
LP (1) for each t € [n], which is very costly. In this section,
we propose SEGer (SEGs engine with LP relaxations) —
a branch and price based algorithm — to solve SEGs. We
omit the standard description of branch and price (see, e.g.,
(Barnhart et al. 1998)) but highlight how SEGer instantiates
the two key ingredients of this framework: (a) an efficient
relaxation of LP (1) for branch-and-bound pruning; (b) a
column generation approach for solving LP (1). We will
describe the column generation step first.

Column Generation & An MILP for the Slave

Our goal is to efficiently solve the exponential-size LP (1).
The idea of column generation is to start by solving a re-
stricted version of LP (1), where only a small subset £’ C &
of pure strategies are considered. We then search for a pure
strategy e € £ \ £’ such that adding e to £ improves the
optimal objective value. This procedure iterates until no pure
strategies in £ \ £’ can improve the objective, which means
an optimal solution is found. The restricted LP (1) is called
the master, while the problem of searching for a pure strategy
e € &\ & isreferred to as the slave problem. The slave is
derived from the dual program of LP (1), particularly, from
the dual constraints corresponding to primal variable pes. We
omit its textbook derivation here (see, e.g., (Tambe 2011) for
details), while only directly describe the slave problem in our
setting as follows.

Slave Problem: Given different weights o, 8;,v; € R for
each i, solve the following weight maximization problem:

maximizeece Z o; + Z Bi + Z vi- (2)

ie; =04 ite; =0, ire; =04 _

We mention that «;, 3;,; in the slave are the optimal dual
variables for the constraints that define x;, y;, 2; respectively
in LP (1). The slave is an interesting resource allocation
problem with multiple resource types (i.e., patrollers and
sensors) which affect each other. Using a reduction from
dominant set, it is not difficult to prove the follows.

Lemma 3. The slave problem is NP-hard.

Next we propose a mixed integer linear program (MILP)
formulation for the slave problem. Our idea is to use three
binary vectors v!,v2,v3 € {0,1}" to encode for each target
whether it is in state 0, 05, 05_ respectively. For example,
target i is at state 6, if and only if v? = 1. The main chal-
lenge then is to properly set up linear (in)equalities of these
vectors to precisely capture their constraints and relations.

The capacity for each resource type results in two natu-
ral constraints: 3, ¢, v} < kand > ien) (v +v3) < m.
Moreover, since at most one resource is assigned to any tar-
get, we have v} + v? + v? < 1 for each i € [n]. Finally,
we use the set of constraints A™ - v > v? to specify which
vertices could possibly have state 6, (i.e., have a patroller
within distance 7). To see that this is the correct constraint,
we claim that no vertex in v! is within distance 7 to i if
and only if AT -v' = 0 where AT is the i’th row of A”.
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This is easy to verify for 7 = 1 and follows by induction
for general 7. It turns out that these constraints are sufficient
to encode the slave problem. Details are presented in MILP
(3), whose correctness is summarized in Proposition 4. Here,
a = (ag,..,a,)" (8,7 defined similarly) and (v! - ) is
the inner product between v! and . Matrix A € {0,1}"*"
is the adjacency matrix of G and A is the 7°th power of A.

(vi-a)+(v2- B) + (v )
Zie[n] Uil <k

Zie[n] (v} +0f) <m

vil + ’U? + v? <1,

AT vl > v2

vivZ v3e{0,1}"

max
S.t.

fori € [n]. ®)

Proposition 4. Let {&' & &3} be an optimal solution to

MILP (3). Then assigning k patrollers to vertices in &' and
m sensors to vertices in &2 4+ &> correctly solves Slave (2).
Here, for vector v € {0,1}", we say “i isin v” iff v; = 1.

LP Relaxation for Branch-and-Bound Pruning

Our goal of using branch-and-bound is to avoid solving LP
(1) one by one for each ¢, which is too costly. The idea is to
come up with an efficiently-computable upper bound of LP
(1) for each t, so that once the best objective value among
the solved LP (1)’s is larger than the upper bound of all the
(yet) unsolved ones, we can safely claim that the current best
solution is optimal without solving the remaining LPs. In this
section, by properly relaxing LP (1) we obtain such an upper
bound, which leads to significant speed-up in experiments.

The standard approach for finding relaxations in security
games is to ignore scheduling constraints. Unfortunately, this
does not work in our case since our security resources do
not have scheduling constraints. The difficulty of our prob-
lem lies in characterizing marginal probabilities of different
states in ©. Our idea is to utilize the constraints in MILP
(3). Observe that v, v2, v3 in MILP (3) can be viewed as
marginal vectors of a pure strategy for state 0,0, ,0,_
respectively. Recall that x,y,z in LP (1) are the marginal
vectors of a mixed strategy p for state 0,0, ,05_ respec-
tively. Therefore, the x, y, z of any pure strategy must satisfy
the constraints in MILP (3) by setting v! = x, v? =y,
v3 = z. By linearity, the x, y, z of any mixed strategy must
also satisfy these constraints. This results in a relaxation of
LP (1) by substituting the constraints in LP (1) that define
5, Yi, 2; With the constraints of MILP (3).

Proposition 5. The following is a valid relaxation of LP (1).
Moreover, this relaxation results in a linear program with
polynomially number of variables and constraints.

Zeef:ei:éhr Pe = T, Vi
Ze€¢‘,':e,L:0SJr Pe = yi7v’L

Zie[n] T < k
S itz <m

ecfe; =60, _ Pe = Zlvv’b e T +y’ + zi S 17 Vi
ZeGEpe:l ATXZy n
pe >0, Vec & xy,z€[0,1]

Relaxation: substitute left part in LP (1) with right part



A Faster Approximate Algorithm for Slave

In this section, we design a novel polynomial-time algorithm
to approximately solve the slave problem, which can be used
to accelerate SEGer. Our algorithm is provably a %(1 —
%)—approximation to the slave problem in zero-sum cases.
The approximation guarantee relies on a special property
of the slave for zero-sum SEGs, stated as follows, which
unfortunately is not true in general. However, the algorithm
can still be used as a good heuristic for solving general-sum
SEGs.

Lemma 6. In zero-sum SEGs, the «;, 3;,~; in Slave (2) are
guaranteed to satisfy: «; > f3; > ~; > 0 for any i € [n).

Our algorithm originates from the following idea. That
is, the slave problem can be viewed as a two-step resource
allocation problem. At the first step, a vertex subset 1" of size
at most £ is chosen for allocating patrollers; At the second
step, a subset I C [n] \ T of size at most m is chosen for
allocating sensors. Our key observation is that given 7', the
second step of choosing I is easy. Particularly, let

TN ={i|i ¢ T but AT ; > 0 for some j € T'}

denote the set of all vertices that are not in 7" but within
distance 7 to some vertices in 7' (interpreted as neighbors of
T). With some abuse of notions, let 7¢ = [n] \ (T'UTY)
denote the set of remaining vertices. Notice that 7', TV, T
are mutually disjoint. The following lemma illustrates how
to pick the optimal set I, given T'.

Lemma 7. Given T, the second step of the slave (i.e., picking
set I) simply picks the m vertices corresponding to the largest
m weights in {B; | i € TN} U {v; | i € T¢}.

Lemma 7 is true because when 7' is given, the weight
of covering target ¢ by a sensor is determined — either 3;
if i € TN or ~; if i € T°. Thus the main difficulty of
solving the slave problem lies at the first step, i.e., to find
the allocation for patrollers. For convenience, let operator
(W) denote the sum of the largest m weights in weight
set W. Utilizing Lemma 7, the objective value of the slave,
parameterized by set 7', can be viewed as a set function of 7":

F(T)=ier o+ Siax({Bi [ 1 € TV} U {mi | 1 € T7)

As a result, the slave problem can be re-formulated as a set
Sfunction maximization problem:

Slave Reformulation: max

TC[n]:|T|<k f(T)

The NP-hardness of the slave implies that there is unlikely
a polynomial-time algorithm that maximizes f(T") exactly.
One natural question is whether f(7') is submodular, since
submodular maximization admits good approximation guar-
antees (Calinescu et al. 2011). Unfortunately, the answer
turns out to be “No” (see the supplementary material for a
counter example). Nevertheless, we show that maximizing
f(T) admits a constant approximation under conditions.

Theorem 8. When o; > f3; > v; > 0,Vi € [n], there is a
poly-time %(1 - %)-approximate algorithm for the slave.
To prove Theorem 8, our key insight is that though f(T) is

not submodular, a carefully-crafted variant of f(T'), defined
below, can be proved to be submodular. Particularly, let
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9(T) = Yier i + Siax ({Bi [ € TN UTYU {; | i € T°})

The only difference between f(7) and g(7T') is that the weight
set in the definition of f(7") [resp., g(T")] contains f3;s for
any i € TV [resp.,i € T™ U T]. Notice that g(7') can be
evaluated in polynomial time for any 7' C [n].

Our algorithm, named TailoredGreedy (details in Al-
gorithm 1), runs the greedy algorithm for maximizing g(7")
and then uses the output to construct a solution for the
slave, i.e., for maximizing f(7). The remaining proof is
divided into two parts. First, we prove that g(7") is mono-
tone submodular. This requires a somewhat intricate proof
with careful analysis of the function. Then we show that
TailoredGreedy yields a 3(1 — 1)-approximation for
the slave problem. The key step for proving this result is to
establish the following relation between function f(7") and

g(T): f(T) < g(T') < 2f(T).

Algorithm 1 TailoredGreedy

Input: weights o, 5;,v; € R for any i € [n]

Output: a pure strategy in £
1: Initialization: T = ().
2: fort=1to k do
3 Compute i* = arg max;cp,—7[g(T U {i}) — g(T)].
4: Addi* to T
5: end for

6: return the pure strategy that covers vertices in 7' with
patrollers and covers the m vertices corresponding to the
largest m weights in {3; | i € TN}U{v; | i € T} with
Sensors.

Experimental Results

In this section, we experimentally test our model and algo-
rithms. All LPs and MILPs are solved by CPLEX (version
12.7.1) on a machine with an Intel core i5-7200U CPU and
11.6 GB memory. All the game payoffs are generated via the
covariant game model (Nudelman et al. 2004). Particularly,
let y[a, b] denote the uniform distribution over interval [a, b].
For any i € [n], we generate U (i) ~ p[0,10],U (i) ~
u[—10,0],U4 (i) = cor - UL(i) + (1 + cor) - u[—10,0]
and U%(i) = cor - U%(i) + (1 + cor) - u[0,10] where
cor € [—1,0] is a parameter controlling the correlation be-
tween the defender and attacker payoffs. The game is zero-
sum when cor = —1. All general-sum games are generated
with cor = —0.6 unless otherwise stated. The graph G is
generated via the Erdos — Rényi random graph model.

Sensors Improve the Defender’s Utility

Figure 2 shows the comparison of the defender utility under
different scenarios. All data points in Figure 2 are averaged
over 30 random instances and each instance has 30 targets.
The left panel of Figure 2 compares the following scenar-
i0s. The defender has a fixed budget that equals the total cost
of 7 patrollers, and the cost of a patroller may equal the cost
of 3 or 5 or 7 sensors (corresponding to ratio 3, ratio 5 and
ratio 7 line, respectively). The x-axis coordinate & means
the defender gets k patrollers and ratio x (7 — k) sensors;
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y-axis is the defender utility. The figure demonstrates that a
proper combination of patrollers and sensors results in better
defender utility than just having patrollers (i.e., k = 7). This
is the case even when the cost ratio is 3. The figure also shows
that many sensors with few patrollers will not perform well
neither. Therefore, the number of patrollers and sensors need
to be properly balanced in practice.

The right panel of Figure 2 compares the defender util-
ity in three different models: 1. signaling — SEG model;
2.no signaling - SEG model but assuming sensors do
not strategically signal; 3. no sensor — classical security
games. Both signalingand no signaling have 4 pa-
trollers and 10 sensors while no sensor has 6 patrollers
with no sensors (i.e., cost ratio between the patroller and
sensor is 5). The x-axis is the correlation parameter of the
general-sum games. The graph G used in this figure is a
cycle graph motivated by the protection of the border of con-
servation parks as in our previous illustrative example. The
figure shows that signaling results in higher utility than
no signaling, demonstrating the benefit of using strate-
gic signaling in this setting. Such a benefit decreases as the
game becomes closer to being zero-sum (i.e., cor tends to
—1). This is as expected since it is well-known that signaling
does not help in zero-sum cases due to its strict competition
(Xu et al. 2015). Both signaling and no signaling
result in a stably higher utility that no sensor regardless
of players’ payoff correlation.

TailoredGreedy vs. MILP

In Figure 3, we compare the performances of MILP (3) and
TailoredGreedy on solving just the slave problem. No-
tice that running time in the right panel is in logarithmic
scale. Each data point is an average over 15 instances with
randomly generated «v; > f3; > ~; > 0 for each 7 € [n]. Fig-
ure 3 shows that TailoredGreedy achieves only slightly
worst objective value than MILP but is much more scalable.
The scalability superiority of TailoredGreedy becomes
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particularly clear for larger instances (n >280) where MILP
starts to run in exponential time while TailoredGreedy
is a polynomial time algorithm.

Game Solving: Utility & Scalability Comparisons

Finally, we compare the performance of different algo-
rithms in solving SEGs in Figure 4. Since zero-sum SEGs
can be formulated by a single LP, which can then be
solved by column generation. We compare two algorithms
in this case: CG[milp] — column generation with MILP
(3) for the slave; CG[grdy] —column generation with
TailoredGreedy for the slave. Note that CG [milp] is
optimal while CG[grdy] is not optimal since it uses an ap-
proximate algorithm for the slave.! Figure 4(b) shows that
our algorithms can solve zero-sum SEGs with 80 ~ 100
targets (depending on the algorithm) within 10 minutes.
CG[grdy] achieves less utility than CG[milp], but is
more scalable (exact calculations show that CG[grdy] is
at least 6 times faster). Interestingly, the utility gap between
CG[milp] and CG[grdy] becomes smaller as n grows,
while their running time gap becomes larger. This suggests
that it is more desirable to use CG [mi1p] for small instances
and CG[grdy] for large instances if some utility loss is ac-
ceptable.

For general-sum SEGs (Figures 4(c) and 4(d)), we consider
three algorithms: 1. SEGer [milp] — SEGer using MILP
for column generation; 2. SEGer [grdy] — SEGer us-
ing TailoredGreedy for column generation; 3. Nt LP —
solving LP (1) one by one for each ¢ without branch and
bound. Surprisingly, though SEGer [grdy] is not optimal,
it achieves close-to-optimal objective value in this case and
runs faster than SEGer [milp] (roughly half of the run-
ning time of SEGer [milp]). On the other hand, both
SEGer [milp] and SEGer [grdy] are much more scal-
able than NtLP. In fact, the running time for solving a
general-sum SEG by SEGer [milp] is only slightly more
than the running time of solving a zero-sum SEG of the same
size, which demonstrates the significant advantage of our
branch and price algorithm.

Conclusions and Future Work

In this paper, we initiated the study of strategic coordina-
tion of human patrollers and mobile sensors. We proposed
the SEG model, which integrates sensors’ functionalities of
monitoring and signaling into security games, and provided
an algorithmic study for the model. Our work raises several
opening directions for future research. One important ques-
tion is to consider sensors’ false positive/negative detections
in the model. It is also interesting to analyze the advantages
of using mobile sensors compared to static ones. Finally, our
work did not consider scheduling constraints and patrol path
planning for sensors and patrollers, which is an intriguing
direction for future research.

'We also implemented the algorithm that uses
TailoredGreedy first and then switch to MILP when
TailoredGreedy does not improve the objective. However, this
approach seems to not help in our case and results in the same
running time as CG [milp], thus we do not present it here.
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