
Minesweeper with Limited Moves

Serge Gaspers
UNSW Sydney and

Data61, CSIRO
Australia

Stefan Rümmele
UNSW Sydney and

University of Sydney
Australia

Abdallah Saffidine
UNSW Sydney, Australia

Kevin Tran
UNSW Sydney, Australia

Abstract

We consider the problem of playing Minesweeper with a lim-
ited number of moves: Given a partially revealed board, a
number of available clicks k, and a target probability p, can
we win with probability p. We win if we do not click on a
mine, and, after our sequence of at most k clicks (which re-
veal information about the neighboring squares) can correctly
identify the placement of all mines. We make the assumption,
that, at all times, all placements of mines consistent with the
currently revealed squares are equiprobable.
Our main results are that the problem is PSPACE-complete,
and it remains PSPACE-complete when p is a constant, in
particular when p = 1. When k = 0 (i.e., we are not allowed
to click anywhere), the problem is PP-complete in general,
but co-NP-complete when p is a constant, and in particular
when p = 1.

Introduction

Minesweeper is a puzzle game where the player is initially
presented with a blank grid of squares. Some squares contain
a mine, while others do not. The player can click on a square
to reveal information about the grid. If the clicked square is
a mine, the player instantly loses. Otherwise, a number from
0 to 8 is revealed, indicating the number of immediately ad-
jacent squares that contain a mine. The goal of the game is to
determine the location of all the mines without being blown
up.

Traditionally, the game ends once the player has revealed
every square that is not a mine. However we consider a slight
variant where the player instead can, at any time, state for
each square whether there is a mine there. The player wins
if they are right, otherwise they lose.

A natural question is: given a partially revealed board,
does the player have a strategy that wins with probability p?
This question has been studied by de Bondt (2012). We will
consider the variant which combines this question of win-
ning probability with a restriction on the number of times
the player can click. We assume, at any time, that each place-
ment of mines that is consistent with the partially revealed
board is equiprobable.

We consider three questions about winning probability
(de Bondt (2012) considers the latter two).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Complexity for Minesweeper problems when vary-
ing the number of clicks and probability of winning. The
results labeled ∗ were obtained by de Bondt (2012).

Clicks Probability

1 constant input

0 co-NP-c co-NP-c PP-c
unbounded ∈ Δ2

P PP-h∗ PSPACE-c∗
input PSPACE-c PSPACE-c PSPACE-c

• Can the player win for certain (with probability 1)?

• Can the player win with probability C, for some constant
C ∈ (0, 1)?

• Can the player win with probability p, where p is part of
the input?

We consider four restrictions on the number of clicks the
player can make:

• The player may click 0 times.

• The player may click as many times as they want (N
times, where N is the number of squares).

• The player may click k times, where k is part of the input.

This leads to 9 combinations of problems. We mainly fo-
cus on the 6 variants where the number of clicks is 0 or part
of the input, and our results are summarized in Table 1.

Related work

Kaye (2000) established that the Minesweeper Consistency
problem is NP-complete. This is the problem to decide
whether, for a partially revealed board, there is a placement
of mines consistent with the board. This result is among
the most well-known NP-completeness results, and helped
popularize the famous P vs NP problem (Stewart 2000).
Fix and McPhail (2004) showed that Minesweeper Consis-
tency remains NP-complete when each cell is surrounded
by at most 1 mine. Pedersen (2004) proved that checking
whether a partially revealed board has a unique solution is
DP-complete, as is checking whether a move is safe. In that
paper, a move is a click or a placement of a flag indicating
that the cell contains a mine and the input is not guaranteed

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

860

to be a consistent Minesweeper board. He also showed that
computing the number of consistent placements of mines
is #P-complete. Heinrich (2006a) extended Minesweeper to
graphs. The complexity of the problem for restrictions of
these graphs has been studied in several papers (Golan 2011;
Heinrich 2006a; 2006b). de Bondt (2012) showed that the
Minesweeper Consistency problem is also NP-complete for
hexagonal and triangular grids, as well as for square boards
where only a single cell is initially uncovered. Further, de
Bondt (2012) analysed the complexity of actually playing
Minesweeper, assuming, at every step that all remaining
consistent configurations of mines are equiprobable. For
winning with constant probability, he established that Mine-
sweeper is PP-hard, and for winning with a probability given
in the input, the problem is PSPACE-complete. Here, an un-
bounded number of clicks is allowed.

Computational techniques to compute the probability that
a cell has a mine or to compute the next best move include
constraint programming (Bayer, Snyder, and Choueiry 2006;
Becerra 2015; Collet 2005; Studholme 2000), Bayesian net-
works (Vomlelova and Vomlel 2009), and reinforcement
learning (Nakov and Wei 2003). Kadlac (2003) gave an al-
gorithm enumerating all consistent placements of mines on
an n × n board in time O∗(2n

2

). She also showed that the
Minesweeper Consistency problem is polynomial-time solv-
able for 1 × n grids, and Hu and Lin (2007) extended this
result to 2× n grids.

Preliminaries

Propositional Logic. We consider propositional logic
over some fixed universe U of propositional atoms and stan-
dard connectives ∨, ∧, and ¬. A literal is an atom x or a
negated atom ¬x. A clause is a disjunction of literals. A for-
mula in conjunctive normal form (CNF) is conjunction of
clauses. An interpretation or assignment is a set I ⊆ U con-
taining all variables set to true. If an interpretation I satisfies
a formula φ, we call I a model of φ. The formula φ is called
satisfiable if there exists a model of φ. The NP-complete
problem SAT takes as input a formula φ in CNF and asks
whether φ is satisfiable. A quantified boolean formula (QBF)
is an expression of the form ∃x1∀x2∃x3 . . . Qnxnφ, where
Qn is ∃ if n is odd and ∀ otherwise and φ is a propositional
formula over atoms {x1, . . . , xn}. The PSPACE-complete
QBF problem takes as input a QBF formula ψ and asks
whether ψ is true.

Minesweeper. A Minesweeper board consists of an m×n
grid of squares. The neighbourhood of a square p contains
all squares of Chebyshev distance 1, that is all squares that
are at most 1 row and at most 1 column away from p. If p is
not located at the boarder of the grid, its neighbourhood has
cardinality 8. Each square either contains a mine or it does
not. Additionally, each square can be in one of two states,
either revealed or hidden (blank). A revealed square contain-
ing a mine displays this information. A revealed square that
does not contain a mine shows a number from 0 to 8. This
number corresponds to how many of its neighbours contain
a mine. When the player clicks on a hidden square, it be-

comes revealed. If it shows a mine, the player loses. We say
a board is partially revealed, if it contains revealed and hid-
den squares. If a partially revealed board is given as problem
input, we assume that none of the revealed squares shows a
mine. A solution candidate to a Minesweeper board is the lo-
cation of all mines, that is mapping from hidden squares to
true or false. The player wins by identifying the location of
all mines, that is giving a solution candidate that matches the
real location of mines. The (x, y)-MS decision problem gets
as input a partially revealed board and the question is if the
player can identify the location of all mines with probability
at least y, using no more than x clicks. The probability factor
comes into play when guessing a solution candidate as well
as clicking on hidden squares. For example, (N, 1)-MS asks
the player to win for certain, making as many clicks as they
would like. (input, 1)-MS (a slight abuse of notation) asks
the player to win for certain, given some number of clicks
part of the input.

(0, C)-MS

(0, C)-MS
Input: A partially played Minesweeper grid.

Output: Is it possible to determine the location of all the
mines with probability C, with no clicks?

Since the player can make no clicks, the best they can do
is to report an arbitrary assignment of mines to the hidden
cells that is consistent with the partially observed grid. This
gives the player a 1/s chance of winning, where s is the
number of different consistent assignments of mines to the
grid. So, the problem is equivalent to answering: are there
at most s = �1/C	 different consistent assignments? This
problem is in co-NP, since a NO-instance can be verified
by giving s + 1 consistent assignments. To show co-NP-
hardness, consider the following related problem:

FEWER-THAN-k-SSAT
Input: A satisfiable formula φ.

Output: Does φ have fewer than k satisfying assign-
ments?

Lemma 1. FEWER-THAN-k-SSAT is co-NP-hard, for any
k with k ≥ 2.

We note that FEWER-THAN-1-SSAT is trivial since the
input formula is satisfiable by assumption.

Theorem 2. (0, C)-MS and (0, 1)-MS are co-NP-
complete.

Proof. We have argued co-NP-membership above. To show
hardness, we reduce FEWER-THAN-k-SSAT to (0, C)-MS.
Kaye (2000) shows how to embed a SAT formula onto a
Minesweeper grid as a Boolean circuit, such that each valid
placement of mines corresponds uniquely to a satisfying as-
signment. We can use the same construction here to embed
an instance of FEWER-THAN-k-SSAT onto the grid (we re-
quire that the formula have at least one satisfying assign-
ment to make a valid Minesweeper game, which FEWER-
THAN-k-SSAT promises). (0, 1

k−1)-MS is a YES-instance
if and only if there are fewer than k satisfying assignments.

861

This shows that (0, C)-MS is co-NP-hard, and thus co-NP-
complete for any C of the form 1/k, k ∈ Z

+. In particu-
lar, this also holds for k = 1. Hence, (0, 1)-MS is co-NP-
complete as well.

With no clicks, the probability of winning is always of the
form 1/k, k ∈ Z

+, since given no clicks, the game amounts
to guessing one of the possible assignments of mines that
satisfy the revealed numbers. So it is not necessary to con-
sider other values of C.

(0, input)-MS

(0, input)-MS
Input: A partially played Minesweeper grid and prob-

ability C.
Output: Is it possible to determine the location of all the

mines with probability C, with no clicks?

To show that this problem is PP-complete, consider the fol-
lowing problem:

THRESHOLD-SSAT
Input: A satisfiable formula φ and an integer k.

Output: Does φ have at least k satisfying assignments?

Lemma 3. THRESHOLD-SSAT is PP-complete.

Theorem 4. (0, input)-MS is PP-complete.

Proof. An instance of THRESHOLD-SSAT can be embedded
onto a Minesweeper grid as a Boolean circuit using the tech-
nique of Kaye (2000). (0, input)-MS is a NO instance with
this grid and winning probability C = 1

k−1 if and only if the
formula has k satisfying assignments. Since PP is closed un-
der complement, this shows that (0, input)-MS is PP-hard.

To show that it is in PP (and so PP-complete), we reduce
the other way. Let each non-revealed square in the grid be
a variable, where an assignment of true indicates that the
square contains a mine (false indicates it does not). The for-
mula is satisfied only if the placement of mines represented
by the variables fits all the revealed numbers. W.l.o.g. let
a revealed square contain the number i and let v1, . . . , vm
be the variables representing the neighbours of this revealed
square. We need a subformula that expresses that exactly i
of the variables v1, . . . , vm are set to true. Such cardinality
constraints can be encoded in polynomial size using for ex-
ample the methods of Sinz (2005). The number s of possible
satisfying assignments of the resulting formula is equal to
the number of mine placements that satisfy the partial grid.
Furthermore, the probability of winning without clicks is 1

s .
Hence, let k ∈ Z

+ be the smallest integer such that C ≤ 1
k .

We can win with probability ≥ C if and only if the formula
has fewer than k + 1 satisfying assignments, that is the for-
mula together with k + 1 is a NO instance of THRESHOLD-
SSAT.

(input, 1)-MS

In this section, we prove that playing Minesweeper with
winning probability 1 and a limited number of clicks given
as input is intractable. More precisely, we show that the fol-
lowing decision problem is PSPACE-complete.

(input, 1)-MS
Input: A partially played Minesweeper grid and an in-

teger k.
Output: Is it possible to determine the location of all

mines with probability 1 in k clicks?

We defer membership in PSPACE to Theorem 8 where we
show PSPACE-membership of the more general problem
(input, input)-MS. For hardness, we first consider a vari-
ant played on digraphs and show that it is PSPACE-hard via
a reduction from QBF. Then we give a reduction from the
digraphs variant to the Minesweeper grid of (input, 1)-MS.

PSPACE-hardness of (input, 1)-MS on a digraph

To show PSPACE-hardness, we first consider a variant of
Minesweeper generalised to digraphs, and then reduce from
this. In this generalization, the board consists of vertices rep-
resenting squares that can again contain mines and might be
hidden or revealed. The neighbourhood of a vertex is de-
fined via directed edges. When clicking on a hidden vertex
that does not contain a mine, the vertex displays a number
corresponding to the number of outgoing edges that point to
vertices that contain a mine.

MINESWEEPER ON A DIRECTED GRAPH (MSDG)
Input: A partially revealed directed graph Mineswee-

per representation and an integer k.
Output: Is it possible to determine the location of all

mines with probability 1 in k clicks?

To show that this problem is PSPACE-hard we will reduce
from QBF.

Dual Rail Logic We now construct an alternative variant
of wires and logic gate gadgets, which we use to represent
the QBF formula. Firstly the wire consists of two paths of
vertices connected as in Fig. 1a. It is clear that in each path,
either every second unknown vertex is a mine, or every other
one is. If one knows whether or not a particular vertex in one
of the paths contains a mine, then one can infer the state of
all the vertices in that path. Denote one of the paths in the
wire as the True path and denote the other the False path.

• If the player knows about the state of the vertices in the
True path, then the wire transmits true.

• Likewise if the player knows about the state of the vertices
in the False path, then the wire transmits false.

• If the player knows the state of neither path, then the wire
does not transmit any value.

• We will ensure in our construction that no winning strat-
egy can know the state of both paths at the same time.

Constructing a NOT gate and a wire splitter is fairly
straightforward (Fig. 1b and 1c).

Lastly, we need to construct an AND gate (combining it
with the NOT gate) before we can represent every formula.
To do this, we need another gadget.

Force-click gadget We would like to restrict where the
player can click to make the player follow our construction
as planned. So we create a gadget that forces the player to
click at least once in a subset S of vertices.

862

t 1 t′ 1 t.

f 1 f ′ 1 f.

TRUE PATH

FALSE PATH

(a) A dual rail wire gadget. In the True
path all the t are mines, or all the t′ are
mines. Likewise for the False path with
respect to f and f ′.

t 1 f ′ 1 f.

f 1 t′ 1 t.

(b) Dual Rail NOT gate.

t t′1

f f ′1

. . .

. . .

1 t t′1 . . .

1 f f ′1 . . .

1 t t′1 . . .

1 f f ′1 . . .

(c) Dual Rail Wire Splitter.

Figure 1: Dual Rail logic.

u

v

w

1

1

. . .

. . .

. . .

. . .

Figure 2: In order to win with certainty, the player must click
one of the highlighted vertices (representing the set S).

The construction in Fig. 2 goes as follows: create three
vertices u, v, and w. The pair u, v as well as the pair v, w is
pointed at by a vertex with value 1. So either u and w both
contain a mine or v does. For each vertex in S, create an
edge from it that points to u and one that points to w.

The player cannot click u, v, or w directly, since either of
them could contain a mine. So any strategy that wins all the
time must click one of the vertices in S.
S may have edges to other vertices, so we must be careful

to make sure that this construction does not interfere with the
information the player would normally gain from clicking
vertices in S. We will ensure that in our constructions, ev-
ery vertex that is unknown has outdegree at most 1, with the
exception of vertices belonging to a force-click set, which
have outdegree 3. Since the status of u and w coincides, in-
formation revealed by vertices in S allows us to pinpoint the
locations of the mines at u, v, and w. If the vertex from S

u

v

w

1

1

. . .

. . .

. . .

. . .

Figure 3: XOR gate if we take “having a mine” to indicate
true: x is a mine only when either of t1 and t2 is a mine but
not both.

t1

t′1

t′2

t2

1

1

x1

x2

y

y′1
tout t′out1

f1

f ′
1

f ′
2

f2

1

1

fout f ′
out1

T1 ↓

T2 ↑

Tout−−−→

F1 ↓

F2 ↑

Fout−−−→

Figure 4: AND gate gadget. The XOR node is the one de-
scribed in Fig. 3, with x1 and x2 being the inputs and y being
the output.

reveals a number that is at most 1, then v contains a mine,
otherwise u and w contains mines. We will set k to be ex-
actly the number of force-click sets to make sure that the
player must guess exactly one from each set.

Dual Rail AND gate We do this by first constructing a
XOR gadget as in Fig. 3. Now, we can construct an AND
gate. Let the true path for the first (second) input to the AND
gate be named T1 (T2) and the false path F1 (F2). Denote
the output wire’s true (false) path to be Tout (Fout). Figure 4
shows how to construct an AND gate. The player is forced to
click exactly one vertex in each purple box by the force-click
gadget.

The state of Tout can only (safely) be determined if the
player knows the state of T1 and T2. The XOR gadget from
Fig. 3 ensures that the state of Tout can only be determined
if the player knows both the state of T1 and T2.

The state of Fout can be determined if either F1 or F2 are
known. If F1 (F2) is known, the player can infer which of f1
(f2) and f ′

1 (f ′
2) does not contain a mine and can click it to

determine the state of Fout.
It is not possible to figure out the state of both Tout and

Fout without guessing.

Existential & Universal Qualifiers Now we need to con-
struct gadgets for universal and existential choices. We can
assume without loss of generality that the quantifiers are al-
ternating and start with an existential one. Fig. 5b shows how

863

t

t′
1

TFINAL ↑
a0 b0 a1 b1

1 1 1 1

g0 g1

. . .

(a) Winning gadget.

xt t t′1 . . .

xf f f ′1 . . .
0

T∃0−−→
F∃0−−→

(b) First existential quantifier. Clicking on
xt (xf) corresponds to existentially setting
the first variable to true (false).

t

t′
1

f ′

f
1

ct

cf

1

t t′1 . . .

f f ′1 . . .

T∀i−−→

F∀i−−→

T∃i−1
↓

F∃i−1 ↑

S2S1

(c) Revealing universal choices.

t

t′

f ′

f

1

1

xT

yT

xF

yF

1

1

1

t t′1 . . .

f f ′1 . . .

T∃i−−→

F∃i−−→

T∀i−1
↓

F∀i−1 ↑

S1 S2

(d) Existentials after the first one.

Figure 5: Construction for the winning gadget and for the
quantifier gadgets.

to construct the first existential quantifier. Since the player
can click only one of xt and xf , they can reveal the state
of only one of the paths T∃0

and F∃0
. Hence, this choice

corresponds to setting the truth value of the first variable.
Once the player has chosen the value of existential vari-

able ∃i−1, the construction in Fig. 5c can be used to reveal
the universal variable ∀i. The player clicks the vertex in the
set S1 which they know to be safe (which is only the case af-
ter selecting ∃i−1). This reveals which vertex is safe in S2. If
it is ct (cf), the player can reveal the state of path T∀i (F∀i).

The gadget for existential choices (∃i) after the first one
(i > 0), is shown in Fig. 5d. In this gadget, either both the
vertices labelled xT and xF contain mines (and yT , yF do
not), or the vertices labelled yT and yF contain mines (and
xT , xF do not). The player can click the vertex of S1 that
they know to be safe (after revealing the previous universal),
which reveals the placement of mines in S2. If the player
wishes to set ∃i to true (false), then they should click xT or
yT (xF or yF), whichever is safe.

Each quantified variable feeds into the next so that the

player must select them in order. Each variable also splits
off into a circuit that represents the formula, made of the
constructions previously described. If the circuit is satisfied,
then the player can infer the state of the true path in the fi-
nal output wire, TFINAL. We would like this to lead into a
winning gadget.

Winning Gadget For every vertex gi that is initially un-
known in our construction so far (excluding the vertices in
the force-click gadget) create a pair of vertices ai and bi,
both of which point to it. The ai and bi are connected to
each other as shown in Fig. 5a. This construction ensures
that either all of the ai are mines (and the bi are not) or all
the bi are mines (and the ai are not). Knowing the state of
path TFINAL will allow the player to determine which is the
case, allowing them to use this gadget (clicking each of the
ai or bi) to find out the state of all the remaining unknown
vertices. If the player does not know the state of TFINAL

(i.e., they have not satisfied the circuit), then they cannot de-
termine which vertices have mines. The player cannot win
without access to this gadget since they must at some point
determine the state of the ai and bi vertices.
Lemma 5. MSDG is PSPACE-hard.

Proof. The construction above reduces an instance of QBF
in polynomial time to an instance of MSDG. The player
has a 100% winning strategy if and only if the QBF can be
satisfied, showing PSPACE-hardness.

Converting back to the grid

Kaye (2000) showed how to encode an instance of SAT into
a Minesweeper grid. For our conversion, we will use Kaye’s
wire and wire splitter gadget. The core part of a wire for vari-
able x is a sequence of unknown cells labelled alternately x
and x′. These have the property that either all x or all x′
cells contain a mine. Each unknown vertex y in the original
graph will be represented as a wire on the grid. If the wire
transmits true (i.e., when each y cell contains a mine), then
the corresponding vertex has a mine in it. If the wire trans-
mits false (each y′ contains a mine), then the corresponding
vertex does not have a mine. Each vertex in our gadgets for
MSDG that contain a number have outdegree at most 3. So
the construction in Fig. 6 can be used to enforce that the right
number of adjacent vertices contain mines.

Lastly, the gadget in Fig. 7 can be used to mimic clicking
in the original graph. The bold x is the only cells that will
give information when clicked1, so this gadget can only be
used if x does not contain a mine, i.e., when the vertex rep-
resented by the wire x does not contain a mine. The depicted
gadget represents the case of a click in our force-click gad-
get in Fig. 2. The wires u and w wires correspond to the two
neighbours of x that either both have a mine or none of them
(the translation of this constraint is not depicted in Fig. 7).
The y wire corresponds to the other neighbour of x (outside
of the force-click gadget). Hence, all three different numbers

1We could click any other individual cell to tell if there is a mine
in them or not, but if there is, we automatically lose. So it is just as
good to assume that it is not a mine and not click. de Bondt (2012)
presents this reasoning.

864

...

1 2 2 1

1 1 3 b′ 1

· · · 2 a′ a b 3 1

2 E 2

1 3 d c c′ 2 · · ·
1 d′ 3 1 1

1 2 2 1

...

Figure 6: Circles represent revealed mines. Exactly E−4 of
the vertices represented by wires a, b, c and d can contain
mines. If there are fewer than 4 wires, the gadget can be
slightly altered by revealing the areas of unused wires.

...

1 1 1

1 2 u′ 1

1 1 2 3 u 2 1

· · · 1 x x′ xxx y y′ 1 · · ·
1 1 2 3 w 2 1

1 2 w′ 2

1 1 1

...

Figure 7: Clicking any of the non-bold squares in this con-
struction is either unsafe or reveals no information.

that the bold x can reveal allow us to identify the position of
the mines among squares labeld u, y, and w.

Every hidden vertex in our construction has either outde-
gree 3 and is part of a force-click gadget, or it has outdegree
1. In the latter case we can simplify the gadget in Fig. 7 by
ommiting the u and w wires and adjusting the revealed num-
bers accordingly.

Theorem 6. (input, 1)-MS is PSPACE-hard.

Proof. The construction above is a polynomial time reduc-
tion from MSDG to (input, 1)-MS. Hence, (input, 1)-MS
is PSPACE-hard.

(input, C)-MS and (input, input)-MS

We will show that determining if there is a strategy that wins
C = p/q of the time, for constant p/q is also PSPACE-
complete.

x1 x2 . . . xm xm+1 . . . xn

1

v1 v2 vm

0 0 0

Figure 8: Chance gadget, that can be won with probability
m+1
n , given m clicks.

(input, C)-MS
Input: A partially revealed Minesweeper grid and an

integer k.
Output: Is it possible to determine the location of all

mines with probability C = p/q in k clicks?

Theorem 7. (input, C)-MS and (input, input)-MS are
PSPACE-hard.

Proof. We will show that (input, C)-MS is PSPACE-hard.
Since (input, C)-MS is a special case of (input, input)-
MS, it will follow that (input, input)-MS is also PSPACE-
hard. We will make use of the instance shown in Fig. 8 that
can be won with probability m+1

n given m clicks. Only the
vertices vi are safe and give additional information when
clicked, so it is optimal to spend all m clicks on these ver-
tices. If the single mine that is hidden among x1, . . . , xn is
revealed to be among the first m of these vertices the player
can correctly solve this gadget with probability 1. Other-
wise, she needs to guess the position among the n − m re-
maining vertices. The probability of losing, over all possi-
ble distributions of mines is

(
1− m

n

) · n−m−1
n−m = n−m−1

n .
Hence, the probability of wining is m+1

n .
So, by setting m+ 1 = p and n = q, we have an instance

that can be won p/q of the time. We will use the same tech-
nique as for (input, 1)-MS to transform our gadget to the
Minesweeper grid. The only problem is, that the gadget for
converting numbered vertices (Fig. 6) is limited to outdegree
of up to 4. But our chance gadget contains the vertex labeled
1 with outdegree n. We can use the construction in Fig. 9
to iteratively split a numbered 1 vertex with high outdegree
in multiple ones having outdegree 4. We introduce new hid-
den vertices y1, . . . , y�n

3 � and y′1, . . . , y
′
�n

3 � and make sure
that the primed versions correspond to the negation of the
non-primed ones. We can use these new vertices to split the
outdegree as shown in Fig. 9.

Now we can transform a QBF instance into an instance
of (input, C)-MS. We create an instance that is an isolated
combination of our chance gadget from Fig. 8 and our QBF
gadget used for showing Theorem 6. The player must win
with probability p/q, making up to m+ k clicks, where k is
the number of force-click gadgets in the QBF gadget.

If the player uses exactly m clicks in the chance gadget
and k clicks in the QBF gadget, then the player can win with
probability p/q if and only if the QBF can be satisfied (since
knowing how to satisfy the QBF allows the QBF gadget to

865

x1 x2 x3 y1

1

x4 x5 x6 y2

1 . . .

y�n
3 �

1

y′1 y′2 . . . y′�n
3 �

1

Figure 9: Iteratively split a numbered 1 vertex with high out-
degree into multiple ones having outdegree 4.

x

u

w

from Fig. 2 becomes:

x x1

x′
1

1

x2

x′
2

1

. . .

. . .

xm

x′
m

1

u

w

m groups

Figure 10: Clicking v reveals which of v1 and v′1 is safe to
click, which in turn reveals which of v2 and v′2 is safe and so
on, eventually revealing u.

be won with probability 1, for a total probability of p/q with
the chance gadget included).

However, the player is not obliged to use m clicks in the
chance gadget and k in the QBF gadget. It cannot help to
use more than m clicks in the chance gadget (since there
are only m useful places to click), but it might happen that
the player can solve the chance gadget with a single click,
for example if clicking on v1 reveals that x1 contains the
mine. To prevent that the saved m− 1 clicks can be used to
influence the outcome, we modify the QBF gadget by modi-
fying every vertex x in a force-click set (Fig. 2) as shown in
Fig. 10. This delay gadget now requires the player to click
m + 1 times to actually reveal the information one would
get from clicking x before the modification. The player is
accordingly given k(m+ 1) clicks in the QBF gadget. Now
the player cannot save enough clicks from the chance gadget
to actually help in the QBF gadget.

So this shows that the only way to win with probability C
is to satisfy the QBF.

Theorem 8. (input, input)-MS is in PSPACE.

Discussion and Future Work

We have considered the complexity of Minesweeper when
all consistent placements of mines are, at any time,
equiprobable, we are given an upper bound k on the num-
ber of clicks we can make, and we have a lower bound p

7 u v

Figure 11: Chance gadget, if the player is to win for certain,
they must spend one click on u (which is certainly safe) to
tell if v contains a mine.

on the winning probability. de Bondt (2012) already con-
sidered the case when the number of clicks is unbounded
and p is a constant or part of the input. This leaves the
question when k = ∞ and p = 1. To solve such an in-
stance, one can keep making safe clicks until there is no
more safe click. If, after that, the only consistent assignment
of mines to cells is the one where all hidden cells have a
mine, we have a yes-instance, otherwise we have a no in-
stance. The problem of checking whether a click is safe is
in co-NP, since a no-certificate is a consistent assignment of
mines that places a mine where we’d like to click. Checking
whether the only consistent assignment of mines to cells is
the one where all hidden cells have a mine is in co-NP as
well since a no-certificate is a different consistent placement
of mines. Therefore, the (unbounded, 1)-MS problem is in
PNP = Δ2

P.
For a constant number of clicks and p = 1, the problem

turns out to be co-NP-complete.

Lemma 9. (K, 1)-MS is co-NP-complete.

Proof sketch. For hardness, we reduce from the co-NP-
complete (0, 1)-MS problem. We simply add K isolated
copies of Fig. 11. The player must spend all K of their clicks
(one for each of the K copies) here, leaving 0 clicks to solve
the original (0, 1)-MS instance.

For memberships, consider the game tree for Mineswee-
per. It has depth at most K since the player can make at most
K clicks. The branching factor is O(N), since there are at
most N places the player can click. For each click, there are
10 possible results: either the player hits a mine and loses or
a number from 0 to 8 is revealed. Since K is a constant, the
game tree is polynomial in size, O(NK).

For each leaf, we can certify to a polynomial verifier that
it has non-zero probability of losing by giving two consis-
tent assignments of mines, and since there are a polynomial
number of leaves, all the certificates for the losing leaves can
be encoded in a polynomial length string.

A verifier that runs in polynomial time can also run min-
imax on the game tree since it is polynomial in size. Thus
there is a polynomial verifier that can verify a no instance
with a polynomial length certificate.

For a constant number of clicks, we leave the complexity
of (K,C)-MS and (K, input)-MS open.

Acknowledgments

Serge Gaspers is the recipient of an Australian Research
Council (ARC) Future Fellowship (FT140100048). Abdal-

866

lah Saffidine is the recipient of an ARC DECRA Fellow-
ship (DE150101351). This work received support under the
ARC’s Discovery Projects funding scheme (DP150101134).

References

Bayer, K. M.; Snyder, J.; and Choueiry, B. Y. 2006. An
interactive constraint-based approach to minesweeper. In
Proceedings of The Twenty-First National Conference on
Artificial Intelligence and the Eighteenth Innovative Appli-
cations of Artificial Intelligence Conference (AAAI 2006),
1933–1934. AAAI Press.
Becerra, D. J. 2015. Algorithmic approaches to playing
minesweeper. Bachelor’s thesis, Harvard.
de Bondt, M. 2012. The computational complexity of
minesweeper. Technical Report 1204.4659, arXiv CoRR.
Collet, R. 2005. Playing the minesweeper with constraints.
In Proceedings of the Second International Conference on
Multiparadigm Programming in Mozart/Oz (MOZ 2004),
251–262. Springer.
Fix, J. D., and McPhail, B. 2004. Offline
1-Minesweeper is NP-complete. Unpublished
Manuscript, Available at: www.minesweeper.info/articles/
Offline1MinesweeperIsNPComplete.pdf.
Golan, S. 2011. Minesweeper on graphs. Applied Mathe-
matics and Computation 217(14):6616–6623.
Heinrich, M. 2006a. Komplexität und Varianten von
Minesweeper. Diplomarbeit, TU Wien.
Heinrich, M. 2006b. More properties for NP-
complete Minesweeper graphs. Unpublished
Manuscript, Available at: www.minesweeper.info/articles/
MorePropertiesForNPCompleteMinesweeperGraphs.pdf.
Hu, S.-C., and Lin, S.-S. 2007. 2 × n minesweeper consis-
tency problem is in p. In Proceedings of the 2007 National
Computer Symposium (NCS 2007).
Kadlac, M. 2003. Explorations of the minesweeper consis-
tency problem. Oregon State University, Research Experi-
ences for Undergraduates.
Kaye, R. 2000. Minesweeper is np-complete. The Mathe-
matical Intelligencer 22(2):9–15.
Nakov, P., and Wei, Z. 2003. Minesweeper, #Minesweeper.
Unpublished Manuscript, Available at: http://www.
minesweeper.info/articles/Minesweeper(Nakov,Wei).pdf.
Pedersen, K. 2004. The complexity of Minesweeper and
strategies for game playing. Technical report, University of
Warwick.
Sinz, C. 2005. Towards an optimal CNF encoding of
boolean cardinality constraints. In van Beek, P., ed., Prin-
ciples and Practice of Constraint Programming - CP 2005,
11th International Conference, CP 2005, Sitges, Spain, Oc-
tober 1-5, 2005, Proceedings, volume 3709 of Lecture Notes
in Computer Science, 827–831. Springer.
Stewart, I. 2000. Million-dollar minesweeper. Scientific
American 283(4):94–95.
Studholme, C. 2000. Minesweeper as a constraint satisfac-
tion problem. University of Toronto project report.

Vomlelova, M., and Vomlel, J. 2009. Applying bayesian
networks in the game of minesweeper. In Proceedings of the
12th Czech-Japan Seminars on Data Analysis and Decision
Making under Uncertainty, 153–162.

867

