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Abstract

Games have been a major focus of Al since the field formed
seventy years ago. Recently, video games have replaced chess
and go as the current “Mt. Everest Problem”. This paper looks
beyond the video games themselves to the application of Al
techniques within the ecosystems that produce them. Elec-
tronic Arts (EA) must deal with Al at scale across many game
studios as it develops many AAA games each year, and not
a single, Al-based, flagship application. EA has adopted a
horizontal scaling strategy in response to this challenge and
built a platform for delivering Al artifacts anywhere within
EA’s software universe. By combining a data warehouse for
player history, an Agent Store for capturing processes ac-
quired through machine learning, and a recommendation en-
gine as an action layer, EA has been delivering a wide range
of Al solutions throughout the company during the last two
years. These solutions, such as dynamic difficulty adjustment,
in-game content and activity recommendations, matchmak-
ing, and game balancing, have had major impact on engage-
ment, revenue, and development resources within EA.

Introduction

Game playing has a long history within the AI commu-
nity. Chess and checkers were the focus of early founda-
tional work (e.g. (Turing 1953) and (Samuel 1959)) and
have become, along with Jeopardy! (Ferrucci et al. 2013)
and Go (Silver et al. 2016), historical mile markers of this
field’s progress as game playing agents have surpassed hu-
man grandmaster performance. Recently, video games have
garnered the attention of researchers. Learning to play Atari
2600 games (Mnih et al. 2013) and Doom (Lample and
Chaplot 2017) from pixels and controllers represents the lat-
est efforts to build super-human game playing agents.
While game playing receives a lot of attention, the games
themselves have been the subject of research as well, his-
torically focusing on non-player character (NPC) behaviors,
player experience modeling, procedural content generation,
and massive scale data mining (Yannakakis 2012). Al aca-
demics and game engineers once found themselves sepa-
rated by a sophistication gap: high-potential academic tech-
niques on one side, and scripting (and other scalable, practi-
cal engineering techniques) on the other. This gap, however,
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is slowly shrinking, with some sides arguing that NPC Al
is almost solved (Nareyek 2007). Player experience mod-
eling employs Al techniques to capture predictive models
of player behaviors in a variety of situations. These behav-
iors include in-game purchases, game mode changes, and
skill scores. Procedural content generation attempts to alle-
viate the enormous cost and effort associated with feeding
the content furnace as well as providing a tailored experi-
ence for the player (Togelius et al. 2011). Game data mining
is critical to large game operations, providing insight into
the game ecosystem. For instance, understanding how play-
ers spend their time in a game is important for tuning the
current game and designing the next.

Another important area of Al research is decision support
and autonomy. Decision support systems (DSS) are used
by management, operations, and planners to make decisions
in unstructured or semistructured environments. Expert sys-
tems, underlying knowledge-driven DSS, have been a core
Al task for nearly as long as gaming (Jackson 1998). It can,
however, be very simple to turn a decision support tool into
an autonomous agent (Fox and Khan 2014).

The intersection of these disparate Al fields is the sub-
ject of this paper. The interactive entertainment industry,
or more succinctly, game companies, employ a wide range
of Al knowledge and technologies to deliver their prod-
ucts. Animators, game engineers, and data scientists rely on
constraint satisfaction, path finding, machine learning, and
many other traditional Al techniques. Game companies, like
most other industries, define task-specific work roles. Ani-
mators work with other animators who are attached to teams
tasked with delivering a game. Often, the only time anima-
tors, engineers, and scientists find themselves in the same
room is for the company all-hands.

Imagine what happens when a highly virulent technology
meme infects a cross section of game company employees.
As the meme takes hold in a team, they are compelled to race
after tools that promise solutions to long standing problems.
Take a company with hundreds of such teams each trying to
implement, deploy, and maintain their own meme-inspired
solutions. Tool proliferation leads to problems with interop-
erability as well as knowledge acquisition and transfer.

Today, the AI and deep learning memes have spread
throughout many companies, including Electronic Arts
(EA). The focus is on the wonderful promises of individual



applications (e.g. conversational interfaces enabled by deep
learning), neglecting the ecosystem in which they are sup-
posed to operate. This is a minor issue for startups focused
on pushing a single product out the door, but can be a terri-
ble resource drain on larger organizations with teams spread
across the world.

This paper describes our technological, as well as educa-
tional and organizational, response to this situation. We will
first provide some insight into how game companies utilize
Al. We then introduce our realization that we can leverage
Al techniques to improve many aspects of our business. We
then describe a system capable of providing Al artifacts any-
where in the organization. Finally, we discuss how this cen-
tralization has impacted EA.

Context

EA is a game publishing company with many semi-
independent studios that releases about ten games per year.
Given that it takes about three years to produce a AAA
game, it means that there are at least thirty active develop-
ment teams at any given time. Some of these teams con-
tinue developing additional content after release as well as
providing operations support. Added to these game teams,
many player-facing groups (e.g. customer support) and cen-
tral services (e.g. marketing and publishing) also exist within
EA. This situation engenders the formation of silos that limit
communication and knowledge transfer.

In 2011, EA recognized that change was necessary. With
thirty semi-independent studios, game teams were operat-
ing their own identity, commerce, and data warehousing so-
lutions. Independent identity services for each game was
not going to scale as EA transformed from producing ship-
and-forget games to providing 24/7 high availability gaming
platforms. In this context EA created the Digital Platform
(EADP) to centralize these critical and common services.
Maintaining multiple login services is a headache; maintain-
ing a hundred is a security nightmare (Vacca 2009). Consoli-
dation enables operating at scale and has improved quality of
service (compare the disastrous SimCity release (Wikipedia
2017) to the relatively smooth Battlefield 1 release).

User Personas

In 2017, the phrases “Al” and “deep learning” have pen-
etrated the common culture (Kennedy and Mifsud 2017).
People have conversations with, rather than on, their phones
and argue the legal ramifications of self-driving cars while
robots pour their cappuccinos. Despite the increasing ubig-
uity of Al, few agree what it means. For our purposes, we
view Al as a spectrum of goal-driven behavior. Al is not just
a temporally defined wavefront focused on the next ground
breaking application “twenty minutes in the future”!. Use-
ful AI can range from amazing to mundane, and thanks to
the magic of long tails the latter will out number the former.
We operationalize this definition as anything deriving from
“Russell and Norvig” (Russell and Norvig 2010) or any in-
troductory textbook. Thus, everything from thermostats to
the Terminator fall within our mandate.

! According to Max Headroom.
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Wide Deep Broad
Resources Effort Projects
Data Sets Game Al Applications
Low Iris Connect-Four One
Mid MNIST Checkers Hundred
High ImageNet Go Thousands

Table 1: Three different types of platform scaling.

Diverse groups of people employ Al techniques and tech-
nologies in their day-to-day operations. Analysts and data
scientists consolidate game data into reports and insights.
Beyond machine learning, others face standard operations
research optimization problems or resort to simulations for
hypothesis testing. Game engineers construct behavior trees
(Colledanchise and Ogren 2017) to describe NPC behaviors.
NPCs must also intelligently navigate their environments,
hence path finding is crucial. Animators must figure out how
to stitch together short animations to form continuous se-
quences that give the appearance of smooth movement. They
construct movement manifolds to control limbs and facial
expressions (Elgammal and Lee 2008). Consequently artists,
engineers, marketers, scientists, and management deal with
a wide range of Al problems.

Scaling Strategy

Systems can scale in many dimensions. For our purposes,
we will focus on three axes: width, depth, and breadth. Scal-
ing for width entails acquiring more resources to achieve
your goals. Bigger data sets, larger memory, more process-
ing nodes reflect a change in scale along this axis. We re-
serve the dimension of depth to capture effort. An afternoon
proof of concept project is shallow compared to the effort
required to develop a self-driving car. Recent deep learning
advances have pushed along the width and depth axes by
training complex neural network architectures on massive
data sets (Goodfellow, Bengio, and Courville 2016). Finally,
breadth captures the number of projects. Does your com-
pany focus on one flagship project or does it sprinkle Al
everywhere within the organization? In this paper, we focus
on the latter; how Al can transform from handcrafted art to
wholesale engineering across the organization.

Table 1 outlines the three scaling dimensions. For the di-
mension of width, we look at data sets. As the complexity of
the data set increases from simple (e.g. ~400 measurments
in the Iris set (Fisher 1936)), to midsized (e.g. the MNIST
database of tens of thousands of handwritten digits (LeCun
etal. 1998)), to very large (e.g ImageNet’s millions of hand-
annotated images (Deng et al. 2009)), it becomes increas-
ingly difficult to manage training and evaluation of models
exposed to these data sets. Similar escalation can be seen
in the depth dimension regarding the amount of effort. De-
veloping a Connect-Four Al player is often an introductory
Al homework assignment. Schaeffer led a small, four per-
son, team to create a world-class checkers player (Schaef-
fer 2008). The DeepMind team that developed AlphaGo, the
first program to defeat a Go world champion, numbered at



least twenty (he number of authors on the Nature paper) (Sil-
ver et al. 2016). Increased effort, as measured by the number
of people working on a single task, requires strong organi-
zational structure to facilitate and support team-wide com-
munication. The final dimension, breadth, draws attention to
the number of tasks themselves. The design considerations
for a platform capable of supporting a few tasks are different
from supporting thousands.

We have adopted several key strategies to aid this tran-
sition. First, we prefer to think about systems over models.
Machine learning models, or any Al artifact, for that mat-
ter, capture functionality, but do not interact with the world
themselves. In order to have impact, models must be embed-
ded in systems. For example, a thermometer provides useful
information about temperature, but does not do anything un-
til it is embedded within a thermostat. This distinction is im-
portant because we choose impact over accuracy. Increasing
the accuracy of the thermometer from two significant digits
to five will not improve the performance of the thermostat.
As these systems are rarely deployed in stationary environ-
ments, it is important to identify repeatable processes for
constructing Al artifacts. Or more succinctly, we prefer pro-
cess over solution. One-off solutions are fine for demos, but
nobody wants to revisit their churn model every other week.
Finally, in order to support these strategies, there must be a
single framework to rule them all.

Components

Universal availability of Al artifacts demands a solid foun-
dation. We have been slowly growing this foundation
through a series of incremental projects over the last five
years. In this section, we describe the key components that
comprise our Al infrastructure. Keep in mind that each part
of the infrastructure came into existence for its own reasons.
There never was a long-standing plan to provide an Al ser-
vice. Rather, as our small group developed real solutions to
game team problems, we made sure that the design of each
component was forward looking well beyond the immediate
use cases. In retrospect, we were following Gall’s law (Gall
1975):

A complex system that works is invariably found to
have evolved from a simple system that worked. The
inverse proposition also appears to be true: A complex
system designed from scratch never works and cannot
be made to work. You have to start over, beginning with
a working simple system.

Evolutionary design was a key strategy for the Intelli-
gent Systems team. The team started as one machine learn-
ing engineer and grew to eleven scientists and engineers af-
ter five years. Embedded within the much larger Data Plat-
form (~100 engineers), it had little direct influence on pro-
duction architecture matters. All of our Al components en-
tered production riding on simple use cases (e.g. delivering
most played map-mode to Battlefield 1) providing the most
generic solutions that simplified implementation.

A high-level view of the Al architecture appears in Fig-
ure 1. The data warehouse on the bottom of the figure serves
as the foundation. It contains our repository of anonymized

7682

Game Clients

Al And Servers Al

Components Service
Player

Messaging
Service
) Player
'I-:_".‘Iff History
Cache
Data Warehouse
Hadoop

Figure 1: Block diagram of Al system components embed-
ded within the data platform. Models generated within Spark
(or other sources) are kept in the Agent Store. Agents are de-
ployed in the recommendation engine (as a service endpoint)
or externally in game clients or servers. Developers can cre-
ate models in Spark through Zeppelin. The data warehouse,
messaging service, and history cache were pre-existing in-
frastructure (black text).

player data collected via telemetry from game clients and
servers. The warehouse is built using the Hadoop distributed
processing framework. Machine learning takes place on our
Spark platform as well as ad hoc analytics (through a Zep-
pelin notebook interface) and some extract, transform, load
(ETL) jobs. An ETL job within a data warehouse gener-
ates tables from other tables. The majority of ETL jobs rely
on Hive to perform necessary aggregations within the data
warehouse. The Agent Store collects trained models and
pipelines from Spark, and other sources (not shown). Since
the storage format is Turing-complete, the Agent Store is a
code repository more than a parameter repository. External
entities, game clients, and servers can access stored mod-
els through the recommendation microservice. The player
messaging system acts as a broker for the recommendation
engine by combining information from the request with his-
torical information about the player from the player history
cache. Last, but most important, is the experimentation mi-
croservice that helps us ensure that changes to our Al sys-
tems have real impact. We now examine each component in
detail.

Data Warehouse

The key to providing an intelligent, player first, environment
is data. Game clients and servers provide a distributed com-
puting environment within which our games operate. Clients
run on many platforms, including consoles, mobile devices,
personal computers, and web browsers, providing multiple
sources of event data. Game servers come in different flavors
as well—each backend developed by a different game team
with differing priorities. A standard telemetry taxonomy is
in place to unify the collection, aggregation, and storage of



player information from all of these sources within a central
warehouse. The data warehouse is responsible for storing
and curating player history.

Originally, the primary mission of the data platform team
was to support game analytics across EA. This mission
was satisfied with a standard Hadoop cluster where nearly
all ETLs were specified as Hive queries. The current pro-
duction cluster supporting ingestion, ETLs, and ad hoc
querying is spread over 2000 computing nodes. Data plat-
form also supported a player messaging service for deliver-
ing text and image in-game messages. It accepts requests
from game clients and servers and returns a static mes-
sage payload depending upon the user-defined player seg-
ments (e.g. a marketer wants to present an offer to 18-29
year old males in North America who play Battlefield 1).
The messaging service employs a player history cache that
surfaces relevant player information (e.g. session days for
each game, kill/death ratios, etc.) for segmentation. This
cache, stored in an open-source NoSQL document-ordered
database (Couchbase (Brown 2012)), reduces response la-
tency by storing a subset of features of active players.

Agent Store

Data without process is like fuel without an engine—
potential but no action. The Agent Store allows us to store Al
processes for later use. Originally called the “model store,” it
was tasked with capturing the results of our machine learn-
ing efforts. One major problem within EA was deploying
machine learning models to production environments. Of-
ten a data scientist would collect model parameters and pass
them to an engineer to instantiate the model in an ETL, a
streaming filter, or RESTful API. This process is wrought
with risk—miscommunication, library differences, and un-
spoken assumptions could turn implementing a simple linear
model into a quarter-long engineering effort. With the intro-
duction of the model store, we elevated machine learning
models to become first-class citizens within the data ware-
house. Models are stored as data that can be accessed any-
where within the company. Most importantly, models are
stored as code, not parameters. Parameter-only storage ig-
nores data transformations on inputs and outputs that are
crucial to deployment (e.g. z-score transformations and one-
hot encodings) and are often miscommunicated during the
engineering effort.

The choice of storage format is crucial. It must be able
to capture all foreseeable models as well as any data trans-
formations. We use Portable Format for Analytics (PFA) as
the model representation language (Pivarski, Bennett, and
Grossman 2016). PFA was designed to represent scoring en-
gines, and does so by representing an abstract syntax tree
in JSON or YAML. The example PFA function in Figure 2
sums the squares of the first n integers.

PFA is Turing complete. Labeling it as a scoring engine
representation forgoes many other applications of the pro-
cesses it can describe. For this reason, we started referring
to this service as the Agent Store, focusing on the general
applicability of its contents.

The Agent Store supported versioning from the start, as
one would expect from any other source code repository.
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input: int
output: int
action:
- let: {n: input}
- let: {sum: 0}
- while: {"<": [0, n]}
do:
- set: {sum: {+: [sum,
{: [n, nl}1}t}
- set: {n: {-: [n, 11}}
- sum

Figure 2: An example of Portable Format for Analytics
(PFA) written in YAML. This function sums the squares of
the first n integers.

Most importantly, a rich collection of metadata are stored
with the models to identify who, what, when, and how the
model came into existence. All of this source information
makes it easy to automate model evaluation and retraining.
For instance, a periodic process could test for system drift by
requesting a model and running it against new player data,
triggering retraining if the output metrics are unusual.

Agent Creation

We think of Agent Store representation as “generate once,
run everywhere”. Models are rarely written by hand or cus-
tom script. Rather, we have augmented existing tools and
written several new tools for generating models for de-
ployment anywhere within EA. We have offered Spark as
the central machine learning support service, focusing on
SparkML and TensorFlow as our machine learning libraries
of choice. Other libraries can be used, however our group
only supports automatic uploads and downloads of models
from the Agent Store. We have also integrated Agent Store
with EA’s development tools for its main game development
platform used across all studios. There is also a behavior
store for collecting training sets of NPC behaviors, thus of-
fering a declarative mechanism for describing desired ac-
tions as opposed to the standard procedural approach (Al
engineers specifying behavior trees by hand). We also en-
courage dual control of in-game elements. For instance, a
designer should be able to temporarily switch an NPC to
human control in order to easily specify what it should be
doing under the current circumstances. Our notion of spec-
trum also applies to agent creation. The motivation behind
many game playing agent projects is to find the utility max-
imizing agent representation. We have many applications
for which the intermediate representations are just as use-
ful. For instance, dynamic difficulty adjustment could drive
NPC model selection to personalize interactions to maxi-
mize retention. As agents evolve through training, they may
exhibit different playing styles and be useful for exploring
those styles in simulation.

Agent Instantiation

The Agent Store is more than just a database of ma-
chine learning models and metadata. It supports the second



half of our “generate once run everywhere” strategy. PFA
comes with interpreters in several different programming
languages. Thus, instantiation points can request an agent
description and evaluate it on the spot with local data. This
use case is the standard one for PFA. Given that agents are
abstract syntax trees, it is possible to compile the represen-
tation to any target language. The Agent Store can not only
provide PFA code for interpretation, but raw code in Python,
C++, or C#, as well as DLLs and JARs. These methods en-
able on-the-fly agent changes within running systems such
as game clients and servers.

One key application that uses agents is our recommenda-
tion engine, Reco. It offers a RESTful API for providing dy-
namic content generated from player history (from the data
warehouse) and current context (from the requester). Reco
uses models to determine which actions should be taken
(segmentation) as well as what outputs should be generated
(computation). Our notion of recommendation is broader
than the typical recommendation system definition, as the
engine provides the next best activity for a player given their
context. While we provide standard collaborative filtering
and multi-armed bandit capabilities, the next best activity
could be the result of a logistic regression, decision tree, or
a simple database lookup (e.g. most played map and mode).
Reco is viewed as the action layer for the data warehouse.

Reco is implemented as a microservice within the mes-
saging service. The core of Reco is a prioritized rule system.
A recommendation is defined as a collection of condition-
action pairs with a dynamic priority. Conditions, actions,
and prioritization functions are defined using either Ruby
or Javascript. Both interpreters are available within the Java
development environment used by the data platform team.
Reco rules are stored in a MySql database and can be up-
dated online and pushed from integration to production in
minutes. This level of flexibility has dramatically decreased
development times from weeks to an afternoon for services.

Burying recommendations within the messaging service
was a historical accident. Messaging, at the time, was ser-
vicing requests from dozens of games in a variety of con-
texts. The initial recommendation use cases consisted of
simple data retrieval tasks: e.g. retrieve most-played map-
mode for a single game. Hence, serving up map-modes was
shunted off to a microservice so not to impact the delivery
of static content. The design decision to interpret rules at
run-time was also contentious, as many within the organiza-
tion argued against it (because interpreters are slow). After
several POC evaluations, a consensus was reached to build
a Java microservice that contained JRuby interpreter even
though the Rails POC exhibited similar latency (~10ms)
with less complexity. In retrospect, the original messaging
system should have been designed to deliver dynamic mes-
sages from the start.

Experimentation

The Agent Store is tied to our experimentation platform in
several ways. Foremost, experimentation runs through the
recommendation engine. A recommendation, in the context
of an experiment, is linked to an experiment identifier and
condition assignment. This information is passed along with
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the recommendation, where the requester ties it to future
telemetry events sent to the data warehouse. This seamless
integration allows us to measure experiment performance
across a wide range of predefined performance metrics. This
capability is a vast improvement over various third-party so-
lutions which require establishing new telemetry hooks and
pre-experiment commitment to metrics. For example, pre-
sentation of the results of an A/B test for a feature that im-
pacts retention often prompts someone to ask “How does it
affect monetization?”, sending some poor data scientist off
to painfully reconstruct a monetization analysis that draws
from two data sources (the warechouse and the third-party
experimentation platform vendor).

In addition to providing core capabilities for the exper-
imentation platform, the Agent Store residents can be the
subject of tests themselves. Reco can act as a proxy for
the Agent Store and select which models are sent to the re-
quester for instantiation in the game client or server.

Finally, the experimentation component embodies our
choice of impact over accuracy. Artifact updates are treated
as experiments, where the key performance metrics (KPMs)
can be compared after deployment. If these KPMs are below
expectation, the update can be rolled back.

Impact

The framework we described above has been under develop-
ment for five years and has stabilized in the last two years.
During this time, the platform has enabled the deployment
of several projects involving more than ten games. Each of
the projects made significant impact on engagement, mon-
etization, and development efforts. In this section, we will
briefly outline some of the projects and their impacts.

One of our early projects was dynamic difficulty adjust-
ment. Early analysis of churn rates and difficulty (measured
in average number of trials to pass a level) showed high cor-
relation. The first attempt used a churn prediction model to
estimate the likelihood of a player not playing after a week
to control game difficulty by restricting the range of random
seeds used to generate board configurations. Some seeds re-
sulted in easier board configuration than others (e.g. conve-
nient location of resources and objectives). If a player was
about to churn, the game would provide an easier board.
This simple control loop increased engagement, as measured
by games played per day and session time, by about 10%.
Churn models were updated weekly and were phased into
production over a couple of days using the experimentation
tool. Setting up these experiments was the only manual com-
ponent of the process.

Soon after this system had been deployed, we realized
that game progression could be viewed as a random walk
through a level-x-trial graph. By collecting churn probabil-
ities and difficulty measurements, it was possible to maxi-
mize player flow through the graph using dynamic program-
ming (Xue et al. 2017). This new method significantly in-
creased both the number of rounds played and game play du-
ration by about 7% over the previous method. Within these
games, ad-based monetization increased as well. Our Al ser-
vice architecture simplified the development, deployment,
and evaluation of this new solution.



From a traditional recommendation system view, we have
delivered two crucial projects (Wu et al. 2017). First, the
home screen in Battlefield 1 provides recommendations for
maps and modes, training videos, and information pages.
The appearance of this content is under the control of our
recommendation engine. Strategic selection of map/mode
recommendation has increased seven day retention by 18%.
We also provide product and video recommendations within
the EA’s Origin online store. Employing a multi-armed ban-
dit mechanism has produced 12% increase in click-through
rate.

We extended our recommendations to the area of match-
making to deliver a novel approach to this perennial prob-
lem (Chen et al. 2017). Matchmaking connects players in
online player-versus-player games. Common wisdom says
that matches should be fair—players should face other play-
ers of the same skill level. We demonstrated that this intu-
itive strategy fails from an engagement perspective. A better
way to match players in order to keep them playing involves
examining their win/loss histories and skill levels to maxi-
mize retention over all players. The AI platform described
above was critical to developing models and easing integra-
tion with EA’s central matchmaking service.

Games with massive virtual economies often draw a wide
range of nefarious activities. People are willing to pay real,
non-virtual, money for virtual goods. Many websites, un-
affiliated with the games themselves, exist for the pur-
pose of exchanging credit card numbers for gold, coins,
and levels. These sites drove the growth of gold farming
in massive multiplayer online games (Keegan et al. 2011).
Currency farming can negatively affect player experience
through market inflation (excess currency chasing limited
resources leads to price increases) or pay-to-win arms races
(six months of game play circumvented by an online pur-
chase).

Our Al services help EA combat these economic threats
to player experience through the Bad Actor Detection Sys-
tem (BADS). BADS is a suite of machine learning models
trained to identify accounts exhibiting questionable behav-
ior, such as coin farming, high volume currency exchanges,
and account take-over. The system relies on account labels
generated by security teams who constantly monitor game
activity looking for exploit indicators. These labels are then
used to identify players exhibiting similar behaviors. BADS
has been responsible for banning hundreds of thousands of
accounts over the last two years with a false positive rate less
than 1%.

Games are complex software systems. As such they are
notoriously difficult to tune properly. The initial use case
for our agent work involved game playing agents to explore
several game facets. The first project focused on estimat-
ing level difficulty within our match-three games (Bejew-
eled Stars and Secret Life of Pets). This exploration uncov-
ered some unexpected sources of difficulties in these games
(e.g. initial board configurations that were significant out-
liers from the other boards at that level). The most difficult
aspect of this work was playing from pixels. Developing im-
age processing techniques to identify board state consumed
more developer time than any other part of the project. It was
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also the most fragile—templates for one game could not be
leveraged for the next.

In following work on The Sim’s Mobile, we took ad-
vantage of in-game hooks to collect state and trigger ac-
tions. A game balance specialist was able to play through
this game in about a day and a half. After instrumentation,
the agents could play at the rate of about thousand com-
plete games in about an hour. Again, our agents were able
to identify many unexpected relationships in game progres-
sion at a much faster rate. The major roadblock we faced
with this game was that our team had to install the game
hooks ourselves. Even with a weeks worth of engineering af-
ter each release, the agents approach was significantly faster
than manual game play. We have extended this system to
a new mobile game coming out in 2018, but this time the
game team has taken responsibility for the simulation hooks.
Now, game balance simulations can be run immediately af-
ter a release freeze. We have been talking to quality assur-
ance teams to take advantage of our approaches to further
mechanize their testing efforts.

We have also leveraged our experience with game play-
ing agents to build NPC agents. By connecting EA’s internal
tools for developing game engine applications, game engi-
neers have used agents to control various in-game elements
including NPCs, cameras, and vehicles. We are currently
working with several new game teams to incorporate our Al
services within their development workflows.

In addition to our external projects, the Agent Store has
helped with the problem of data quality in the warehouse.
We have a system for anomaly detection that scans table
columns for missing, corrupt, or unusual data. The major-
ity of detection relies on a very dense collection of descrip-
tive statistics over the last twenty days (e.g. mean, mini-
mum, and maximum of a data column with respect to a ti-
tle and platform). Alerts are generated if today’s statistics
are out of line with recent history. For selected key metrics,
we construct expectations (models) that capture seasonali-
ties and other impactful events. These models are pushed to
the Agent Store and are then instantiated in an ETL that ver-
ifies that these key metrics are moving in the right direction.
The anomaly detection system has dramatically increased
the quality of the data within the warehouse. Missing data is
now measured in hours rather than weeks. Fewer ETLs are
rerun because data problems are identified at the end of the
day and often resolved within.

The central Al service with EA has had tremendous im-
pact on the company. Foremost, we have been able to sig-
nificantly increase game engagement through dynamic dif-
ficulty adjustment and matchmaking. The anomaly detec-
tion efforts have increased data quality and reduced costs
incurred by rerunning ETLs. We have improved player expe-
rience by safely banning hundreds of thousands of bad actor
accounts from our games. Game balancing with agents has
increased game quality with minimal overhead costs.

Other Al Service Frameworks

EA is not the only organization facing model management
issues in an enterprise setting. Model management (MM) is



the problem of tracking, storing, and indexing large num-
bers of machine learning models. Many such systems focus
on facilitating the data scientist’s workflow (e.g. VisTrails
(Callahan et al. 2006)). ModelDB (Vartak 2017) provides a
searchable history of modeling events. ModelHub (Miao et
al. 2017) focuses on workflow management by proposing
a domain-specific query language for models, a versioning
system for model parameter storage, and a read-optimized
parameter archival storage system. While easing the model
development burden is important, these systems neglect the
difficult problem of executing models in production environ-
ments. In organizations that split data science and engineer-
ing, productizing models is thought of as somebody else’s
problem (Magnusson 2016).

Google has developed TensorFlow Extended (TFX), a
platform for providing production scale access to Tensor-
Flow (Baylor et al. 2017). They wanted to provide a sin-
gle machine learning platform for many tasks that ensured
production-level reliability and scalability. Shared, easy-to-
use, configuration of components and tools was essential,
as well as, being able to perform continuous training. TFX
encompassed several components including data analysis,
data transformation, data validation, trainer, model evalua-
tion and validation, and serving. TensorFlow Serving, the
deployment solution of TFX, offers remote API access to
models generated within this framework.

Uber has developed Michelangelo for creating, manag-
ing, and deploying machine learning models at scale (Her-
mann and Balso 2017). They focused on addressing a six-
step workflow: manage data; train, evaluate, and deploy
models, make and monitor predictions. The components of
Michelangelo include a shared feature store, a large-scale
model training platform, a model repository (Cassandra) for
both parameters and metadata. Models can be deployed for
offline usage (containerized Spark job), through an online
prediction service, or as Java library.

Many cloud computing providers offer Al services along
side other more traditional products. Amazon delivers pre-
dictive analytics support through Amazon Web Services via
Machine Learning Service. The Google Cloud Platform sup-
ports a number of Al capabilities, such as speech recogni-
tion, translation and image content identification. Microsoft
allows users to run machine learning applications through its
Distributed Machine Learning Toolkit. IBM Watson Devel-
oper Cloud provides customers empower applications with
Watson Intelligence as well as exposing the Watson Al en-
gine as an analytics service. The common theme of all these
commercial offerings is the desire to support siloed efforts
within an organization, but not managing many projects
across an organization.

Conclusion

Our strategy over the years has been to identify as many
small, yet high impact, projects as possible, in order to
demonstrate the utility of our services. No moon-shot
projects with promises to deliver on a time scale measured
in years, but small concrete wins to ratchet confidence over
time. This breadth-first strategy prioritizes many system fea-
tures over others. Flexibility, ease of use, and simple deploy-
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ment were key design considerations that outweighed execu-
tion speed.

The effort behind this platform was as much organiza-
tional as it was technical. EA has ten thousand employees
with studios in North America, Europe and Asia. Adoption
of our platform was not based on the merits of the platform,
but on impact of the solutions we were able to build with it.
Game teams are not interested in the tech stack. They want
their problems solved with the least amount of effort and
risk. Systems solve problems, not models.

Education was an important aspect as well. There would
be minimal, if any, adoption, if all we did was publish an
API and documentation. Key to our success has been our
educational efforts. By visiting game studios and deliver-
ing classes on the common machine learning platform and
Al development tools, we were able to jump start adoption.
During these classes, we emphasized “facilitated develop-
ment” where game teams would bring us in on projects early
to help guide them to solutions.

Unlike other application areas, Al is not the core com-
ponent of products within the video game industry. A wide
range of Al techniques can be applied throughout EA’s game
ecosystem, help us to deliver on our “Player First” promise.
Centralization of Al services follows in the footsteps of
other mission critical services such as identity, commerce,
and data warehousing. To this end, our platform enables a
broad spectrum of Al agent processes anywhere. We focused
on breadth over depth and width, making it easy for product
managers and developer to conceive and implement Al any-
where in the company.
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