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Abstract

The brain uses spikes in neural circuits to perform many dy-
namical computations. The computations are performed with
properties such as spiking efficiency, i.e. minimal number of
spikes, and robustness to noise. A major obstacle for learn-
ing computations in artificial spiking neural networks with
such desired biological properties is due to lack of our un-
derstanding of how biological spiking neural networks learn
computations.

Here, we consider the credit assignment problem, i.e. deter-
mining the local contribution of each synapse to the network’s
global output error, for learning nonlinear dynamical com-
putations in a spiking network with the desired properties
of biological networks. We approach this problem by fusing
the theory of efficient, balanced neural networks (EBN) with
nonlinear adaptive control theory to propose a local learning
rule. Locality of learning rules are ensured by feeding back
into the network its own error, resulting in a learning rule de-
pending solely on presynaptic inputs and error feedbacks. The
spiking efficiency and robustness of the network are guar-
anteed by maintaining a tight excitatory/inhibitory balance,
ensuring that each spike represents a local projection of the
global output error and minimizes a loss function. The result-
ing networks can learn to implement complex dynamics with
very small numbers of neurons and spikes, exhibit the same
spike train variability as observed experimentally, and are ex-
tremely robust to noise and neuronal loss.

Recurrent networks in the nervous system perform a vari-
ety of tasks that could be formalized as dynamical systems.
In many cases, these dynamical systems are learned based
on examples (“desired” trajectories), a form of supervised
learning. For example, to learn to control an arm, sensory-
motor circuits can learn to predict both the arm state trajec-
tories and the sensory feedbacks, that are caused by specific
motor commands.

Such learning occurs under several constraints. First,
synapses have only access to local information. Because any
local change in a synapse could have unpredictable effects
on the rest of the network, previous approaches have often
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used non-local, biologically implausible learning rules such
as temporal backpropagation (Werbos 1990) or FORCE
learning (Sussillo and Abbott 2009).

Second, information in the nervous system is commu-
nicated with spikes. In order to obey the constraints im-
posed by the brain that is extremely costly to our metabolism
(Laughlin, de Ruyter van Steveninck, and Anderson 1998),
spiking neural networks should work with reasonably small
number of spikes per dimension of the internal state dynam-
ics. Such efficiency requires that there is no redundancy in
the representation, so that spike trains of different neurons
are uncorrelated.

Third, learning has to be able to resist various perturba-
tions, such as varying levels of noise or the loss of neurons.
Such robustness requires some level of degeneracy in neural
populations, so that a given network has more neurons than
strictly needed to learn a task.

These constraints are also important for implementation
of dynamical computation in robotic systems with neuro-
morphic hardware. The goal in these systems is to design
and implement micro-electronic systems that emulate the
structure and function of the brain (Schuman et al. 2017).
Spiking networks make the transmission of information
among units less costly and more robust to noise than fir-
ing rate transmission. They can also trade off accuracy for
speed or latency. Spiking efficiency make sure the consump-
tion of energy due to emitting spikes is minimal. Robustness
makes the system resilient to damage and noise, and local-
ity of learning rules makes the physical implementation of
plasticity rules easier in neuromorphic hardware.

No previous approach has been able to meet all three
constraints at the same time. A few recent approaches
based on adaptive control theory (Slotine and Coetsee 1986;
Slotine and Li 1991) have been able to provide online learn-
ing rules for spiking networks. In (DeWolf et al. 2016), a
spiking network controller was trained to be adaptive to
unknown changes in kinematics and dynamics. In (Gilra
and Gerstner 2017), a spiking network was trained to pre-
dict nonlinear dynamics using a local learning rule. How-
ever, none of the works enforce spiking efficiency i.e., they
do not require smallest possible number of spikes. Spik-
ing efficiency and robustness were introduced in efficient



balanced networks (EBN) (Boerlin, Machens, and Deneve
2013; Deneve and Machens 2016), but supervised learning
in these networks has so far been limited to non-local rules
(Memmesheimer et al. 2014) or to linear dynamical systems
(Bourdoukan and Deneve 2015).

In this study, we fuse the EBN framework (Boerlin,
Machens, and Deneve 2013; Deneve and Machens 2016)
with adaptive nonlinear control theory (Slotine and Coet-
see 1986; Slotine and Li 1991; Sanner and Slotine 1992)
in order to derive local learning rules for arbitrary, nonlinear
dynamics, while resulting in highly efficient and robust spik-
ing networks. More specifically, we approximate nonlinear
dynamics using a set of basis functions. The coefficients of
the basis functions are then learned using a rule that utilizes
correlation between the coefficients and the error signal (the
difference between the desired trajectory and the approxi-
mated one). Adaptive control theory provides concepts such
as Lyapunov functions and related theorems for quantifying
convergence properties of this rule. Based on these concepts
we devise a local learning rule and construct an EBN that
inherit these tools from adaptive control theory.

Adaptive nonlinear control theory: a
teacher-student scenario

The learning task that we consider is presented in Fig. 1A.
An input signal c(¢) drives a recurrent spiking network. The
task is to learn the network connectivity such that a desired
dynamics (the smooth curve in blue with the state variable
x) can be decoded from the network spike trains (the zigzag
curve in red with the reconstructed state X). This task could
correspond to a sensorimotor learning task, where the net-
work learns a forward internal model that receives the ef-
ference copy (i.e. a copy of the input motor command) to
predict the body position given the sensory error feedback
and the motor command (Wolpert and Ghahramani 2000).

More formally, we assume that the desired dynamics stem
from a “teacher” dynamical system of the general form !

x = f(x) +c(t) (M
in which x is a time-dependent dynamic vector of contin-
uous, real-valued variables, c(¢) is a time-varying input or
command signal chosen as a filtered random signal unless
otherwise stated, and f(.) is an arbitrary, vector-valued func-
tion. Note that if the teacher dynamical system is of higher
order, we can transform it into a higher-dimensional, first-
order dynamical system.

To understand our approach to learning this teacher sys-
tem, we will first ignore the neural network, and briefly reca-
pitulate how the problem is solved in adaptive nonlinear con-
trol theory (Slotine and Coetsee 1986; Slotine and Li 1991;
Sanner and Slotine 1992). Here, the goal is to estimate the
parameters of a “student” dynamical system such that its dy-
namics matches the dynamics of the “teacher” system (See
Fig. 1B). The student system has the following form:

XK= M+ WT(X) +c(t) + ke, )

'Our dynamic variables x(t) and input signals c(t) are a func-
tion of time but sometimes for simplicity we omit the time variable
t, writing them as x and ¢
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Figure 1: Schematics of the learning task and the control-
theoretic approach. A. The task of learning an arbitrary dy-
namical system. The network is presented with a random in-
put command with certain statistics and it needs to produce
a trajectory (the zigzag curve in red) close to the trajectory
given by the teacher (the smooth curve in blue). The super-
visory error signal, i.e. € = x —X, should be used to train the
connections of the recurrent network to perform this task. B.
Adaptive nonlinear control theory for solving an estimation
problem formulated as a teacher-student scenario.

where X is the dynamic vector variable of the student, —\X
is a leak-term, W are the parameters of the student dy-
namics, 1)(X) are the student basis functions (e.g. ¥(X) =
tanh(MJ X + 6s)), e = x — X is the tracking error, and
k is the feedback gain. The goal of learning is to adapt the
parameters W such that the tracking error is minimized. In
the initial phases of learning, the feedback gain % is usu-
ally set to a large value, which causes the student to follow
the desired teaching dynamics closely. In turn, the student
variable X already traverses the state space correctly which
provides the opportunity for adjusting the adaptive parame-
ters W in order to learn the dynamics. Once these parame-
ters have been learned (at least approximately), the feedback
gain is decreased, which also helps to get good generaliza-
tion behavior and reduce the number of training iterations.
Once the system is learned, the feedback gain can be set to
zero, which is what we did in the test phases (ke = 0).

If the student has sufficiently many rich basis functions to



approximate the function f(.), then there exists a solution
called W', If we define a Lyapunov function as
1 1 T

V=gelet o I (W'W), 3)
where W = W™ — W is the estimation error and Tr(.)
is the matrix trace operator, it can be shown (see Supple-
mentary Materials) that the following adaptation law (or the
learning rule)

W =79, @
where 7 is a learning rate, will decrease the Lyapunov func-
tion, ie. V = —(k + 1)e’e < 0. This result together

with boundedness conditions for V and V' guarantees that
V', and hence the tracking error e, will asymptotically go
to zero and that the system is asymptotically stable (Slotine
and Li 1991). Moreover, if the input c(¢) is rich enough, then
W — Wie,

Learning a functional spiking network

We want to translate our student into a recurrent network
of N leaky integrate-and-fire (LIF) neurons. Previous work
has shown how to implement arbitrary linear or nonlinear
dynamical systems in efficient balanced networks (Boerlin,
Machens, and Deneve 2013; Thalmeier et al. 2016). EBN
theory is based on two assumptions. First, an estimate of the
K -dimensional state variable, x, can be extracted from the
filtered spike trains, r, using a linear decoder, such that

x = Dr, &)

where D is a fixed decoding weight matrix of size KX x N
and the relation between r and the spike trains s is I =
—Ar + s. Filtered spike trains are the convolution of the
spike trains with a synaptic kernel and can be interpreted
as instantaneous firing rate. These slower variables than the
spike trains are used for dynamic computation (and readout
of the implemented dynamics) on a different time scale than
the fast one, which is used for making the system have a
robust representation and a tight E-I balance.

Second, neurons in the network fire spikes such that this
estimate, X, closely follows the true state variable, x, under
cost constraints. Specifically, the network minimizes the fol-
lowing objective function,

£ =0y = (Ix=RI*+plel3 +vlel).  ©

where || - ||, denotes the L,-norm, (-) is an average over
time, and p and v determine the costs associated with spik-
ing. The first term on the right-hand side of Eq. 6 ensures a
good reconstruction, whereas the L2 and L1 cost functions
on neural activity ensure a distributed and sparse spiking ac-
tivity, respectively (Boerlin, Machens, and Deneve 2013).

The resulting network consists of LIF neurons whose
membrane potentials, wu;’s, obey the equation (Boerlin,
Machens, and Deneve 2013; Bourdoukan et al. 2012) (see
also Supplementary Materials)

u; = DiT(x —X) — prg, @)
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and whose firing thresholds are given by T; = £ (||D;[|3+
p+v), where D is the i-th column of D. The thresholds en-
sure that each neuron fires only when its spike decreases the
objective function (Eq. 6). Differentiating Eq. 7 and simpli-
fying it yields the following membrane potential dynamics

U= - u+D'c— (DTD—I—MI)S-FDT()\X“‘JC(X))v ®)

which shows the optimal weight matrix for the fast connec-
tions is W' = DD + I, where I is the identity matrix,
and the optimal encoding weight matrix is D . In order to
implement arbitrary dynamical systems in this framework,
we need to include two approximations. First, we can ap-
proximate Ax + f(x) as a sum of the “student” basis func-
tions (similar to Eq. 2), so that Ax + f(x) = >, W;¢;(x),
where W,’s are the columns of W, and ¢(.) can be any sig-
moidal nonlinearity set to tanh(.) in the simulations. Sec-
ond, we can self-consistently replace the state x by its esti-
mate based on network activity (Eq. 5). In turn, we obtain
(Fig. 2B)

u=- u+D'c- W+ D'"WT¢pDr). (9

From a biological point-of-view, the last term corre-
sponds to nonlinear and highly structured dendrites. There
is evidence that dendrites can perform nonlinear operations
(Poirazi, Brannon, and Mel 2003a; 2003b). While dendrites
are often nonlinear, the required detailed spatial organiza-
tion of their inputs is rather speculative. To relax this latter
constraint, we can take advantage of the fact that the net-
work’s internal state dynamics is extremely robust to large
amounts of noise (as ensured by its constant, greedy min-
imization of its own coding errors), as long as N > 2K.
Thus, we can replace ¢(Dr) with an unstructured, nonlinear
dendrite that receives random connections from other neu-
rons, ¥;(r) = ¢(M, r + 0;) where M,’s are the columns
of the matrix M. Indeed, the quantity M " r can be written
as the sum of its projection onto the decoder D, and its pro-
jection onto the null space of D (denoted by DY), so that
M'r = MT% + M "D, Given that EBNs do not con-
trol spiking in the null space of the decoder, the second term
acts as unstructured noise. >

More concretely, now we have a network in which the
axon of a neuron makes contact with different parts of den-
dritic trees of other neurons. This dendritic tree structure
provides nonlinearities (any sigmoidal functional form with
random slope and threshold) instead of just linearly sum-
ming the inputs. This nonlinear operation in the dendrites
is utilized by the network as basis functions in order to ap-
proximate the unknown function f(.). The details of nonlin-
ear operation in dendritic trees are not clearly understood to
our knowledge. Therefore, we used random values for the
parameters of dendritic nonlinearity operation (M and 8).

2We note that it would be possible to train the parameters M
using unsupervised learning, since D" corresponds to the eigen-
vectors with non-zero eigenvalues in the neural correlation matrix.
This should render the network even more efficient and robust as
will be explored in the future.
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Figure 2: Building a spiking network approximating arbitrary dynamical systems. A. The unfolded version of the network
of LIF neurons (with membrane potentials u and a threshold and reset mechanism) with three feedback loops implementing
desired dynamics of x in the network: the role of fast (red) loop is to implement nonlinear dynamical system, the slow (blue)
one provides efficiency and robustness, and the feedback (green) one feeds the error back into the network such that X closely
tracks x. B. The folded version of the network with slow and fast connections. The corresponding learning rules are shown at

the bottom.

To clarify the learning problem, we will write the resulting
student network dynamics in the general form

1= —\u+Fc - Ws + WiV (r), (10)

We note that the network has three sets of synaptic connec-
tions. The feedforward connections, F, receive and weight
the external signal input, c. The fast connections, Wiast
guarantee the proper and efficient distribution of spikes
across the network. Finally, the slow connections, Wslow,
implement the dynamics of the student system. In previ-
ous work, it is shown how to learn the feedforward connec-
tions (Brendel et al. 2017) and the fast recurrent connec-
tions (Brendel et al. 2017; Bourdoukan et al. 2012). Though
all connections could be trained simultaneously, we here
concentrate on how to train the slow connections based on
example trajectories from an unknown (teacher) dynamical
system. We use a fixed random decoding weight matrix D
(which is close to optimal in the case of uncorrelated com-
mand signals) and set the feedforward connections and re-
current connections to their optimal values, F = DT and
Wfast — DTD + MI

A direct translation of the adaptive control to the neural
network will finally permit us to define a local learning rule
for the slow connections. Rather than feeding back the error
into the student network by adding it to its input, we directly
inject the errors as feedback to each neuron with connections
D", which is mathematically equivalent. In the presence of
this feedback control loop, the network equation becomes

u=-\u+Fc—- W*s + W' (r)+kDe. (11)

Moreover W = DTW T is directly related to the
coefficients W of the basis functions in the control theory
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framework. This allows us to map the adaptation law (Eq. 4)
for the coefficients of the basis function to the following
learning rule for the slow connections. Replacing e in Eq. 4
with D "e, we obtain

WY — @ (r)(D7e)T. (12)

In other words, the resulting learning rule is the product of
a pre-synaptic input (passed through the dendritic nonlinear-
ity) and the projection of error feedback. Hence, the learning
is local.

For the case of sensorimotor learning, the quantity ke
could correspond to visual or somatosensory “prediction
errors”, e.g. the difference between the sensory input and
its prediction based on the efference copy of the motor
commands. Over the course of learning, the errors become
smaller and would eventually vanish in the absence of motor
noise or sensory noise. Consequently, the feedback would
become silent and could be removed entirely.

The general idea of this derivation, and the mapping from
the control-theoretical framework onto efficient balanced
networks, is also illustrated in Fig. 2A.

Implementing nonlinear dynamics

We employed the framework described above in the follow-
ing example tasks.

Bistable attractor

The bistable attractor is an important nonlinear dynamical
system which is widely studied in systems neuroscience. We
implemented the following one-dimensional attractor dy-
namics

i =2(0.5—2)(0.5 + ) + c(t), (13)
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Figure 3: Result of learning a bistable attractor in an spiking network. The desired dynamics given by a teacher is & = (0.5 —
2)(0.5 + ) + ¢(t) where ¢(t) is a random input signal. A. In the beginning of learning, the reconstructed dynamics of the
student network (thin cyan trace) during the presentation of the input (shaded area) is due to the random inputs (two trials
shown). After the input is turned off, the reconstruction does not go to any of the attractor states. B. At the end of learning,
when the input is off, the reconstructed signal falls into one of the stable attractors (three trials). C. Learning curve showing the
smoothed training error after 500 learning iterations.
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Figure 4: Result of learning to walk in spiking networks. A. The dynamics of the walk of a sticky man implemented by a network
of spiking model neurons. The training data is from CMU Motion Caption Library. B. Two first principal components of the
desired trajectory of the walk. The original dataset for the walk has 62 channels. C. Learning curve showing the smoothed
normalized error during training as a function of learning iterations. D. Raster plots for networks that learned a walking
dynamics based on four principal components of a trajectory of the walk. The left panel shows the plot for a network of 50
neurons. Four principal components were provided to the network as desired trajectories. The reconstruction of the first two
principal components are shown overlaid on the raster plot. As the number of neurons in the network increases to 200 neurons
(middle panel) the firing rates decrease and spiking activity becomes more asynchronous and irregular and the reconstruction
improves. The network is drastically robust to silencing neurons as shown in the right-most panel where 70% of the neurons
are silenced for a period of around one second but the network continues to generate walking with a short, negligible distortion.
Note that after silencing the neurons, the network weights do not undergo any learning, but other active neurons compensate
for neuronal loss in the network.

where ¢(t) is a random input command. This system has two namics given by the teacher (in thick blue trace) goes to one
stable fixed-point attractors at x = 0.5 and a saddle-point of the stable attractors. But the decoded dynamical variable
at x = 0. We used N = 50 neurons with random readout of the network (in cyan) has not yet learned the desired at-
weights D to implement this system. As shown in Fig. 3A, tractors. After learning (Fig 3B), the network closely follows
the random input ¢(¢) drives the student network in the be- the desired trajectories in response to a random unseen input
ginning of learning. Once this input is zero the desired dy- (not used during training) and, more importantly, once the
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input is turned off, it settles into the correct attractors %90
of the times. It took around 500 iterations to learn the bi-
astable attractor as the learning curve shows the smoothed
normalized training error as a function of learning itera-
tions in Fig 3C. Note that the network exhibits realistic spik-
ing activity with low firing rates and asynchronous, irregu-
lar spiking activity. The overall number of spikes is drasti-
cally lower than that of spiking networks that effectively use
rate codes (Eliasmith and Anderson 2004; Eliasmith 2005;
Gilra and Gerstner 2017).

Motion capture example

We also implemented the walking dynamics from the
database of Carnegie Mellon University Motion Capture Li-
brary (MOCAP) http://mocap.cs.cmu.edu/. We used a sim-
ilar preprocessing procedure as in (Sussillo and Abbott
2009). Briefly, the data was taken from file “08_01.amc”
which consisted of 62 channels out of which three were set
to zero, converting the movement to a walk on a treadmill.
We preprocessed the data by a moving average.

In order to reduce the dimensions of the input signal, we
took the first four principle components. This reduced input
closely follows the original walking dynamics with minor
loss. As the system is a mechanical system, and therefore of
second order, we require both velocity and position informa-
tion. Therefore, in order to be able to model it, we fed both
the trajectories and its derivatives to the network, so that the
overall input was 8-dimensional. Similarly, we provided a
linear combination of the position error and the velocity er-
ror as the error feedback to the network. We then learned the
dynamics of the 8-dimensional input with two different net-
works, one of size N = 50 and and one of size N = 200
(compare with (Sussillo and Abbott 2009)).

Fig. 4A shows the learned walking and Fig. 4B shows the
first two principle components of the full 62-channel dynam-
ics.The left and middle panels of Fig. 4D show the raster
plot of the 50-neuron and 200-neuron networks, respec-
tively. The learning curve in Fig. 4C shows the smoothed
normalized training error as a function of learning itera-
tions. The normalized test error reached to 0.16 £ 0.08 in
the walking example after ~ 500 learning iterations with
200 neurons. An important feature of our model is its ex-
pansion: the number of input channels (KX') must be smaller
than the number of neurons (/NV) in the network. In order
for the network to have the desired aforementioned proper-
ties, as a rule of thumb, the expansion ratio (A = N/K)
should be larger than 5-10. This expansion provides many
possible solutions for the network to perform a task. Thanks
to the efficiency principle, the network is able to choose
the most efficient one. It should be noted that the realis-
tic spiking activity is closely linked to the expansion: in-
creasing the expansion ratio results in lower firing rate and
more irregular spiking activity (compare left and right pan-
els of Fig. 4D). This is one of the main differences with
other spiking networks (but in fact they use a rate code)
implementing complex dynamics such as the Neural Engi-
neering Framework (NEF) (Eliasmith and Anderson 2004;
Eliasmith 2005), as they would typically need firing rates
in the order of the inverse of synaptic time-scales to learn
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properly. Another striking feature of the model is its robust-
ness to neural death and noise. Thanks to the presence of the
fast connections, even if %70 of the neurons in the network
are silenced the network would still be able to perform the
task with minimal loss in the performance (right-most panel
in Fig. 4D and videos in Supplementary Materials). This is
consistent with the expected robustness of the EBN frame-
work (Barrett, Deneve, and Machens 2016).

Discussion

We have proposed a local learning rule in an spiking neu-
ral network of LIF neurons for learning arbitrary com-
plex dynamics. The resulting networks exhibit low firing
rates with asynchronous, irregular spiking activity where the
spiking representation is as efficient as possible. The effi-
ciency principle that we have exploited has direct conse-
quences: the inhibitory input currents in each neuron closely
track the excitatory input (E-I balance); and the network is
highly robust to noise, neural elimination, and uncertainty
in desired dynamics (Boerlin, Machens, and Deneve 2013;
Barrett, Deneve, and Machens 2016). The learning rule is
obtained thanks to concepts and tools in nonlinear adaptive
control theory. This approach has the benefit of providing a
systematic way to study convergence and stability properties
of the learning process which currently is not pursued in the
mainstream learning procedures in neuroscience for spik-
ing neurons (Sussillo and Abbott 2009; Abbott, DePasquale,
and Memmesheimer 2016; Thalmeier et al. 2016). Studying
the effect of synaptic delays needs to be addressed in fu-
ture versions of our model, although previous work suggests
that increasing the amount of noise may help avoiding os-
cillation and synchronization (Chalk, Gutkin, and Deneve
2016). EBNs can be implemented in non-spiking networks
(see e.g. (Vertechi, Brendel, and Machens 2014)), therefore
our framework should also be implemented with rate-based
neurons as well.

Spiking efficiency in our framework can be translated to
computational efficiency if proper neuromorphic hardware
is utilized for implementing this framework. The neuromor-
phic community has recently started shown interest for emu-
lating efficient balanced networks in silicon (Boahen 2017)
and it would be interesting to compare computational effi-
ciency of EBNs with their rivals in a neuromorphic setup
(Voelker et al. 2017; Voelker and Eliasmith 2017). Further-
more, the fast inhibition in neuromorphic hardware can eas-
ily be achieved so as to provide the required spiking effi-
ciency in EBNs.

The learning rule can learn any complex dynamics f(.).
However, it may not learn the target dynamics if the input is
not sufficently rich (Slotine and Li 1991). Mathematically,
sufficient richness means that 3o > 0,3ty > 0,37 > 0, V¢
such that the following matrix quantity Q be positive semi-

definite: Q = 1/T "7 w®T — oI, where Lis the identity
matrix and W " is the outer product of the basis function
outputs.

If function f(.) has singularities that make the dynamics
unstable, the learning may fail. Another requirement is that

the states (for example, position and velocity in the motion



capture example) need to be well-defined. Any task that can
be cast as a well-behaved dynamical system can be learned
in the current framework.

The different parts of the spiking network have straight-
forward biological interpretations. Fast connections could
correspond to interneurons which would mostly be driven
by monosynaptic, fast AMPA synapses from excitatory neu-
rons, targeting the soma and relying on ionic (GABA-A)
neurotransmission. Slow connections could be implemented
by slower metabolic channels (e.g. NMDA/GABA-B) and
correspond either to direct connections between pyramidal
cells, or disynaptic inhibition using another type of interneu-
rons, in the case of negative weights.

The network seems to be highly structured in the current
framework. However, it has already been shown that most
of the other connections in the network can be trained us-
ing local spike-time-dependent plasticity rules with the ex-
ception of WV which is the contribution of the present
work. In particular, the fast connections W can be trained
using local plasticity rules, while the feedforward connec-
tions (and thus, the decoding weights) can be trained using
a Hebbian spike-time-dependent rule (Brendel et al. 2017;
Bourdoukan et al. 2012) . Note that these inhibitory fast con-
nections could be thought of as implementing a kind of ‘dy-
namic’ Winner-Take-All (WTA) network where once a neu-
ron wins and spikes, then other neurons have a chance to fire
as well. This is a different scheme from a distributed WTA
of inhibitory neurons (Wang and Slotine 2006).

In our general framework, nonlinear dendrites compute
the basis functions where we used tanh(.) nonlinearity.
However, the learning rule is not limited to that and can
work with any basis functions (nonlinearities) that can ap-
proximate arbitrary functions e.g. Gaussian, sigmoid basis
functions, though sigmoids are more biologically plausible.
Apart from the form of nonlinearity, we have a large de-
gree of freedom in the choice of parameters of basis func-
tions M i.e., in the design of the dendritic tree. The case
that might be easiest to map to the control-theoretic frame-
work is the case where M = DM’ is a low rank matrix.
But other cases such as random M also work in practice.
We provided intuitions for why such a suboptimal archi-
tecture still functions: the network activity is forced to be
as efficient as possible due to the presence of the fast con-
nections (E/I balance). This defines an optimal combina-
tion of neural activities for each state X. In other words,
neural firing rates become almost completely determined
by the internal state estimate (up to their “Poisson-like”
variability). This neural activity projected onto an arbitrary
matrix will also be a function of X, plus some unstruc-
tured input that may be considered as noise. This noise
is automatically compensated by the network robustness.
In the case of the walking example, we tested a diagonal
matrix M (in which case, the dendritic nonlinearity is re-
placed by a nonlinear transfer function for each neuron) and
the network was still able to learn without any difficulty.
The best choice of M (including the possibility of learn-
ing these parameters) remains to be explored further else-
where. Our approach is aligned with other works taking sim-
ilar strategies for implementing nonlinearities in recurrent
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networks (Abbott, DePasquale, and Memmesheimer 2016;
Thalmeier et al. 2016).

Nonlinear adaptive control theory yields a local learning
rule for the Neural Engineering Framework (Gilra and Ger-
stner 2017) to learn complex dynamics. However, the result-
ing networks do not implement fast connections to provide
spiking efficiency and balance. This in turn implies that they
do not scale easily when applied to large dynamics (Sus-
sillo and Abbott 2009; Gilra and Gerstner 2017), making it
more challenging for these networks to exhibit realistic spik-
ing activity and robustness. Our work aims to seamlessly
blend nonlinear adaptive control with earlier work on EBNSs,
which exploits the spiking nature of neural activity rather
than treating it as a hindrance.

In conclusion, we argue for a close relationship between
spiking efficiency, robustness and the tight E-I balance
observed in cortical circuits. We suggest that experimen-
tally observed spike trains, with low-firing rate and asyn-
chronous, irregular spike trains, are a signature of an effi-
cient spike-based coding, and not a noisy rate-based pop-
ulation code. The network effectively implements dimen-
sionality reduction: regardless of its size, the dimensional-
ity of its population dynamics and recurrent weights even-
tually becomes restricted to the dimensionality of the task,
while neural fluctuations occur in direction orthogonal to the
task. Thus, we predict that such low-dimensional dynamics
emerge through experience in biological neural circuits. Fi-
nally, learning in biological circuits would require that feed-
back connections monitoring the network performance both
drive the neurons and modulate learning. Each slow con-
nection is learned as a function of the correlation between
presynaptic input rate and postsynaptic error feedback, until
this error feedback is canceled. Thus, only neurons with cor-
relations to the error (and presumably contributing to such
error) see their synaptic weights change. In contrast, back-
propagation would result in diffuse change in the entire net-
work. These predictions have broad implications for Brain
Machine Interfaces. In the near future, this theory may pave
the way for implementing more complex tasks and for spike
based unsupervised, hierarchical and reinforcement learn-
ing, in both biological and artificial spiking networks.

The framework presented here can have engineering ap-
plications for example in light-weight robots or robots that
are sent to space missions where efficiency matters. Fur-
thermore, we have used the framework to estimate the pa-
rameters of a desired system but it can also be used for
adaptive nonlinear control applications — where the con-
troller needs to adapt to unknown changes in dynamics
and kinematics of robots (Cheah, Liu, and Slotine 2006;
DeWolf et al. 2016) — to give an efficient adaptive spik-
ing controller. The current framework is obtained for deter-
ministic dynamical systems — future work will extend it to
stochastic dynamical systems.
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