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Abstract

When an infection spreads in a community, an individual’s
probability of becoming infected depends on both her sus-
ceptibility and exposure to the contagion through contact with
others. While one often has knowledge regarding an individ-
ual’s susceptibility, in many cases, whether or not an indi-
vidual’s contacts are contagious is unknown. We study the
problem of predicting if an individual will adopt a conta-
gion in the presence of multiple modes of infection (expo-
sure/susceptibility) and latent neighbor influence. We present
a generative probabilistic model and a variational inference
method to learn the parameters of our model. Through a se-
ries of experiments on synthetic data, we measure the ability
of the proposed model to identify latent spreaders, and pre-
dict the risk of infection. Applied to a real dataset of 20,000
hospital patients, we demonstrate the utility of our model in
predicting the onset of a healthcare associated infection using
patient room-sharing and nurse-sharing networks. Our model
outperforms existing benchmarks and provides actionable in-
sights for the design and implementation of targeted interven-
tions to curb the spread of infection.

1 Introduction and Background

In the early 1900s, a New Yorker was identified as the
first asymptomatic carrier of Typhoid. While she appeared
healthy, “Typhoid Mary,” as she later became known, in-
fected 51 individuals (Britannica 2014). A model estimating
the probability of contracting Typhoid for a New Yorker in
that era would have had to take into account three important
factors: 1) the personal characteristics that would make her
more or less susceptible to the infection (e.g., genetic fac-
tors) 2) the network of individuals she has come into con-
tact with, and 3) the contagious status of those individuals,
regardless of their apparent healthy state. Mary’s example
highlights the difficulty of estimating the risk of being acti-
vated (i.e., getting infected) in the presence of both endoge-
nous characteristics and exogenous factors that may be hid-
den. While we focus on infectious diseases, similar exam-
ples exist in other domains (e.g., social networks).

We present a generative probabilistic model for model-
ing each individual’s Probability of Activation in the pres-
ence of Latent Spreaders (PALS). PALS models the infec-
tion state of an individual as a random variable that depends

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

134

upon both the individual’s susceptibility, which we assume
is captured by observed individual-specific characteristics
(e.g., age, medical history), and an exposure state that can-
not be directly observed but can be inferred based on one’s
network of contacts.

In the information diffusion literature, previous ap-
proaches that tackle tasks with missing data do not explic-
itly take into account susceptibility factors that make an in-
dividual more/less likely to get infected and do not model
the spreader states based on neighbor characteristics (Sun-
dareisan, Vreeken, and Prakash 2015; Farajtabar et al. 2015;
He et al. 2016; Rozenshtein et al. 2016). Xing et al. (2014)
model susceptibility and infection as latent states but as-
sume that influence can be exerted by infected nodes only.
They conclude that their model could not identify “asymp-
tomatic shedders”. Fan et al. (2016) model the overall ex-
posure to the contagion (rather than the individual neigh-
bor influence state) as a latent variable. They do not attempt
to learn the neighbor-specific characteristics that make her
a spreader. In economics, the workhorse of quantitative re-
search pertaining to social interactions is the linear-in-means
model. This model captures the notion that an individual’s
behavior depends on the average behavior and/or character-
istics of members of her group. The linear-in-means model,
which assumes that the spreader status of the neighbors is
observed, is a special case of our proposed model. There
have been several extensions to the classical linear-in-means
model. Toulis and Kao (2013) consider situations where the
influence is observed but the network structure is uncertain
to derive a causal peer influence. In contrast to previous ap-
proaches, we assume a fully observed network structure and
individual characteristics, but make no assumptions about
the neighbors’ spreader states (latent or observed) and the
mode of infection (through exposure or susceptibility). Our
main contributions are:

1. Improved risk estimation: In situations where exposure
plays arole, PALS outperforms the baseline model. Addi-
tionally, PALS is robust to different modes of infection. It
accurately estimates the risk of infection if the infection is
acquired through exposure only, susceptibility only (e.g.,
non-communicable diseases), or a combination of both.

2. Identification of latent spreaders: PALS accurately

identifies influential individuals based on their character-
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Figure 1: Plate diagram for the proposed generative PALS
model for an individual ¢. Infection is directly influenced by
patient’s characteristics and her neighbors’ spreader states.

istics, even in situations where this influence is not ob-
served or recorded. We show that PALS applies to situa-
tions where the spreader states are partially observed.

3. Interpretability and actionability: PALS learns weights
that parameterize a mapping from individual characteris-
tics and the exposure state to an infection state. By ana-
lyzing these weights, we can study factors that contribute
to the infection and design interventions that can curb its
spread. In addition, spreader states are modeled as func-
tions of one’s characteristics. This could prove useful in
a clinical setting—by understanding which patients are
most likely to spread the disease, physicians can preemp-
tively choose whom to isolate.

In a series of simulations, we show that PALS outperforms
benchmarks and estimates an accurate probability of infec-
tion regardless of the infection mode. In situations where
spreader states are partially observed, even greater gains in
accuracy can be achieved. Applied to a real dataset of admis-
sions at a large hospital, we demonstrate the practical utility
of our model for 1) identifying potential asymptomatic car-
riers of a hospital associated infection, and 2) identifying
which patients are likely to become infected.

2 Generative model

We model a population as a network in which nodes rep-
resent individuals and edges represent connections (e.g.,
shared rooms or caregivers). We present a generative proba-
bilistic model to estimate the Probability of Activation in the
presence of Latent Spreaders (PALS). Each neighbor’s latent
spreader state is modeled as a Bernoulli random variable, z;,
which takes on a value of 1 if she is spreading the infec-
tion and O otherwise. The parameter of the Bernoulli draw is
computed as a function of the neighbor’s vector of character-
istics, x;, and a set of weights u. For now, we assume that all
spreaders are latent, and address situations where spreader
states are partially observable in the next section. The prob-
ability that an individual ¢ has been exposed to the conta-
gion, 6;, is encoded as a Beta variable parameterized by the
number of contagious and non-contagious neighbors.! This
probability is then used as a parameter for a Bernoulli draw

!The parameters of the Beta distribution are shifted by one to
ensure numerical stability. One might incorporate some other in-
formative prior over the number of spreaders/non-spreaders.
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which defines the individual’s exposure state, 7;. Finally, in-
dividual ¢’s infection state y;, whether or not ¢ is infected,
is drawn from a Bernoulli distribution. This distribution is
parameterized by a probability computed as a function of i’s
inherent susceptibility x;, ¢’s exposure state 7; and a vector
of weights w. Putting the whole generative process together,
for a single individual ¢:

1. For each neighbor j € n()
Draw the spreader state: z; ~ Bernoulli(oc(u”x;))

2. Draw the probability of exposure:
0]z ~Beta(1+ 3, ;) 25, 1+ 22,0 1 — )
3. Draw the exposure state: 1;|0; ~ Bernoulli(6;)
4. Draw the infection state: y;|x;, 7; ~ Bernoulli(o(wTx%))

n(7) denotes the set of i’s neighbors, o(.) denotes the sig-
moid function, z; is a vector of the contagious states of ¢’s
neighbors and x;=(x;, n;), i.e., the concatenation of an in-
dividual’s characteristics and her exposure state. The joint
probability distribution is expressed as:

p(zi|w, X (i) p(0:]2:)p(n:|0:) p(yil xi, nis W),

where X,,(;) denotes the matrix of characteristics of all ¢’s
neighbors (figure 1). In general, we use lowercase to de-
note scalars, boldface to denote vectors, and uppercase to
denote matrices. This generative model captures several key
aspects of the spread of infections. First, by modeling each
individual spreader state, rather than the aggregate count of
spreading neighbors, we can make conclusions about each
individual. This representation is both realistic and useful.
It allows us to identify the culprits and target interventions.
Second, by aggregating over each of the neighbor states and
including exposure as a variable along with the susceptibil-
ity factors, we can directly infer the relative importance of
exposure and susceptibility, reflected in the weight vector w.
Finally, by parameterizing the two Bernoulli draws in steps
1 and 4 as functions of the neighbor and individual charac-
teristics respectively, our model gains the advantage of inter-
pretability: both spreader and infection states are traceable to
observed characteristics. By analyzing the model weights u
and w, we can understand how different factors affect both
states.

3 Inference

In this section, we give the details of the inference proce-
dure used to learn the parameters of the model. Typically,
one would use Expectation Maximization (EM) to find the
values of these parameters. However, the E-step would re-
quire finding the posterior distribution over the latent vari-
ables, which requires evaluating:

p(zi|w, X i) p(0:]2:)p(0:10:)p(yil xi, 16, W)
Jo 220 22, P(2i|w, Xy )p(0312:)p(1:10:)p(yi %, 1, W)

The denominator is computationally intractable since it re-
quires the evaluations of 2ln(d)|+2 terms, SO we resort to
approximate inference. For speed considerations, we chose
variational inference (Jordan et al. 1999). Specifically, we
learn a set of parameters that parameterize a distribution ¢




over the latent variables such that it closely approximates the
true posterior. We use mean-field variational inference, i.e.,
we restrict Q to the set of distributions that fully factorize:

1T aCzlei)a6:lviatmlm),

jen(i)

Z7479’L7772 - (1)

where each ¢(z;|¢;) and g(7;|m;) are Bernoulli distribu-
tions, and ¢(0;|7;) is a Beta distribution. For purposes of
easier notation, we express the Bernoulli distributions us-
ing two parameters—each ¢; is a vector of two parameters
signifying the probability of being a spreader, ¢; 1, and the
probability of being a non-spreader, ¢; 2 = 1 — ¢; 1. Simi-
larly, 7; 1 is the probability of being exposed, and 7; 2 is the
probablhty of not being exposed. Let D = {x;, X,,(s), i}
and A = {z;,0;,n;}. We can now maximize the evidence
lower bound (ELBO) which takes the expanded form:

L(q) := Ey[logp(D, Alu, w)] — Ey[log g(A)]
= Ey[log p(zi|u, Xp,4))] + Eq[log p(0;]2;)]
+ Eq[log p(1:0:)] + Eq[log p(yi|xi, ni, W)]
)l

— Y Eyllogq(z;]e;)] — Eqllog g(0ilv:
jen(i)

— Eq[log q(ni|ms)],

where L is the ELBO, and [E, is the expectation with respect

to the variational distribution ¢q. Two terms in the ELBO,
E,[logp(6;|z;)] and E,[log p(y;|x;, n:, w)], do not have a
closed-form expression. In the next section we show how to
evaluate them. The derivation of the other terms is presented
in Appendix A.

3.1 Evaluating the ELBO

Evaluating E,[log p(6;|z;)]. Two of the terms that arise
when expanding E,[log p(6;|z;)] do not have a closed
form solution. Specifically, we need to compute the terms
—Eqllog (32, 25)] and —Eg[logI'(3°;1 — z;)]. These
terms cannot be evaluated analytically since they involve
taking the expectation of the log of a nonlinear transforma-
tion of the summation of the latent variables. To untangle the
sums over z;, we utilize the following identity of the gamma
function:

logT'(a+ 1) =log'(a) + log(a). 2)
Note that when writing the likelihood as a function of a
single variable z;, the two problematic terms that we need
to compute the expectations over are expanded as follows:

—10gT (Y 2j) —1ogT(} 1 —2) =

J J
—1ogT'(> 2k +2) —logI'(O>_1—z+(1-2)). ()
k#j k#j

We will take the expectation over Equation 3 in two steps:
first according to ¢(z;) then according to ¢(z\ ;). First, since
z; can only take on one of two values (1 or 0), taking the
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expectation over z;, gives us the following expression:

Eg(z;) [ —108T(D 2k 4 25) —log T(> (1 — zi) + (1 — 25))]

k£ k#j
=—¢;1[logT'(D_ z) +1log(>_ zk)] — ¢j2[logT(>_ zx)]
k#j k#j k#j
— d)j,l [log F(Z 1— Zk)]
k#j
—¢j2[log (> 1—2) +1log(D> | 1 —z)] “
k#j k%5

Next, we take the expectation of this expression according to
q(z\ ;). This would once again entail taking the expectation
over the log transformation of a sum of the variables and the
log transformation of a nonlinear transformation of the sum
of the variables. Here, following (Chang and Blei 2009;
Braun and McAuliffe 2010) we use a first order Taylor ap-

proximation of equation 4 at E, (5, ) [Zk# 2k = Zk# Ok

Evaluating E,[logp(y;|x;,7;,w)]. The other expecta-

tion that is difficult to compute is

Eq[log p(yi|xi, ni, w)] = yiEq[log o(W.x; + wen:)]

+ (1= yi)Eqllog(1 — o(WieX; + wemi))], (5)

where w\, is a vector of weights excluding the exposure
weight and w,. is the exposure weight. Equation 5 once
again, requires computing the expectation of a log transfor-
mation of a nonlinear combination of the variables. Because
7); can only take on two values: 1 and 0, we can compute this
term as follows:

E,[log p(yi|xi, i, W)] = yi[mi,1 log U(W\Texi + we)

+ 7,2 log a(w\Texi)] + (1 — y;)[ms,1 log(1 — cr(w{exi + we))
+ 2 log(1 — J(W\Texi))].

This term simply computes the probability of infection in
case the individual is exposed and the probability of infec-
tion if she is not exposed then takes the weighted average of
the two using the probability of exposure as the weight.

Expanding equation 2 and then maximizing, we get the
updates of the variational distribution parameters and the
global updates.

3.2 Variational E-step

In this step, we get the updates with respect to the free vari-
ational parameters that control our variational distributions.
Update with respect to ¢(z;):

di1 o o(ulx;) exp(yh(;,0)) 1+ Y 1)~
Py

i, o< (1= o(u'x;)) exp((v5,2)) (1 + > bop)
Py

6)

where v is the digamma function, the first derivative
of the log gamma function. This update has an intuitive
explanation: the posterior probability of j’s spreader state
is proportional to her probability of being a spreader
computed according to her own characteristics, and the
exposure state of the individual she is connected to but



inversely proportional to the individual’s other neighbors’
states. This means that if individual 7 is very likely exposed
to the contagion, but her {k € n(i) : k # j} neighbors are
very likely spreaders, the two last terms cancel out and the
posterior spreader state becomes equal to the probability of
being a spreader depending on j’s characteristics. In other
words, the {k € n(i) : k # j} neighbors are sufficient
to account for the individual’s exposure and no “blame” is
assigned to neighbor j.

Update with respect to ¢(6):

Vis = Y Gjs+mist1

jen(i)

fors=1,2. @)

The gamma update, which is interpreted as the variational

parameter that controls the probability of exposure, depends
on the individual’s neighbors’ spreader states and her
exposure state.

Update with respect to ¢(7):
mi1 o o (Wi 4 we)¥i (1 — o (wlx; + we)) ™ exp(t(7i.1))
mi,2 0 o (Wi, %)Y (1 — o (wi i)' 7V exp(sh(7i,2))-
The final exposure state also has an intuitive explanation:
the m; 1 update is proportional to the likelihood of infec-
tion given exposure and the probability of exposure, while

the 7; o update is proportional to the likelihood of infection
given non-exposure and the probability of non-exposure.

3.3 Variational M-step

This step gives us the updates with respect to the parameters
u and w. For a network with N nodes, we have to find u
and w that maximize the following two expressions:

N

Lo = Z Z ¢i,j,1logo(uij)

=1 jen(i)

+ ¢ij2log (1 - o(u'x;)),

®)

and
N
[,w = Z YiTi,1 IOg U(W{eXi + we) + YiTri,2 IOgU(W€eXi)
1=1
+ (1= yi)mialog(1 — o(Wiexi + we))

+ (1 — y;)mi,2 log(1l — U(W\Texi)). 9)

These two expressions are similar to the traditional cross
entropy of a logistic regression. However, in Equation 8 we
have a probability instead of having a binary outcome. In
Equation 9 the label is binary, but we take the weighted av-
erage over the probability of infection given exposure and
the probability of infection given non-exposure weighted
by the probability of exposure. These terms do not have a
closed form solution, but they can be solved using a numeri-
cal method such as BFGS. Additionally, in situations where
x is high dimensional, regularization can be incorporated,
which we have found useful in practice.

3.4 Predictions

We can use our model to make predictions about the
spreader and/or infection states of out-of-sample data. Since
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the spreader state of an individual depends on only u and
that individual’s characteristics, computing a prediction for
the spreader state is straightforward. To make predictions
about the infection states, we need to compute the expected
value of exposure. This requires a variational inference step.
This step is identical to the one outlined previously with the
exception that the terms that depend on the outcome y are
removed.

We can extend PALS to situations where some spreader
states are observed. In such a setting, we do not need to find
the posterior over ¢(z;) for any js where the spreader state
is known during inference and prediction.

4 Synthetic Experiments and Results

Through a series of experiments on synthetic data, we
evaluate the performance of our method under a variety of
different conditions. Synthetic data allow us to evaluate how
well the method does at identifying latent spreaders, which,
by definition, we would not have ground truth for in real
data.

4.1 Experimental setup

Generating the network. For all experiments in this
section, we generate a network of 500 individuals for
training and a held-out network of 500 individuals for
testing. We use a stochastic block model (SBM) to simulate
the network and set the probability that two individuals
within and across a sub-community form an edge is 0.5, and
0.01 respectively. We chose a SBM because it allows us to
create sub-communities and flexibly define the probability
of forming edges within and across sub-communities. For
simplicity, instead of drawing € as a stochastic function of
z, we compute it as the mean of the spreader states and set
n = 1if § > 0.5. We generate a vector of characteristics of
20 binary variables for each individual. Further details about
the data generation process and additional experiments are
available in Appendix B.

Evaluation metrics and benchmarks. We report per-
formance on the held-out test set, averaged over 30 runs.
We use the Area Under the receiver operating Curve (AUC)
to measure the performance of PALS in predicting the
spreader state and the infection state. We measure two
AUC’s: y-PALS, which measures the accuracy in predict-
ing the infection state and z-PALS, which measures the
accuracy in predicting the spreader state. We compare our
results to the following benchmarks:

e NoNet: A logistic regression model that ignores the net-
work, estimating an individual’s risk of infection y; using
only individual characteristics x;. When exposure is irrel-
evant, PALS should perform identically to NoNet.

e no: A logistic regression model that has oracle access to
the neighbor spreader states, and hence has access to the
ground truth of whether or not an individual is exposed
in addition to the individual’s characteristics. This model
presents a best-case scenario which is almost never avail-
able in a real setting.



0.8-

0.6-

Mean AUC

0.6-

0.5 0.6 0.7 0.8 0.9
p(ylS)

Figure 2: (Top) PALS outperforms NoNet when exposure is
important. (Bottom) PALS outperforms NoNet as suscepti-
bility changes.

e 7zo»: A logistic regression model that has oracle access to
the ground truth label of the spreader states, z, during
training time. At test time, it predicts the spreader states
based on individual characteristics and learned weights.
This provides a benchmark for the accuracy in predicting
the spreader state.

4.2 Experiments and Results

Experiment 1: varying the probability of infection con-
ditional on exposure. How does varying the importance
of exposure in determining infection, keeping all else con-
stant, affect the accuracy of PALS? To focus on the effect of
exposure, we keep the probability of infection conditional
on susceptibility, p(y|S), constant and equal to 0.5. By do-
ing so, we “turn off” the effect of susceptibility. We vary
the probability of infection conditional on exposure, p(y|&),
from 0.5 to 0.9 and measure changes in accuracy; the graph
is symmetric about 0.5.

The top panel in Figure 2 shows the results from Ex-
periment 1. At p(y|E) = 0.5, the infection state is akin
to a coin flip, since p(y|S) is also 0.5 by design. As ex-
pected, we see that all three models perform equally poorly
when predicting the infection state (AUC = (.5). However,
as p(y|€) increases, o, which has access to the ground
truth of the spreader states (and hence the exposure states)
makes more accurate predictions about the infection state.
On the other hand, NoNet, which ignores exposure contin-
ues making predictions only as good as random regardless
of the value of p(y|€). Importantly, we see that y-PALS im-
proves as p(y|€) increases. We also see that z-PALS im-
proves as p(y|€) increases, even performing comparably to
zo at high values of p(y|E).
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Experiment 2: varying the probability of infection con-
ditional on susceptibility. How does varying the level of
importance of susceptibility in determining infection, keep-
ing all else constant, affect the accuracy of PALS? Similar to
the previous experiment, we keep p(y|E) constant and vary
p(y|S). Unlike experiment 1, we do not set p(y|€) = 0.5
since there is no utility to using PALS in a setup where expo-
sure does not affect the outcome. Instead, we set p(y|E) =
0.8. Furthermore, to elucidate the utility of PALS, we im-
pose an upper bound on the percent of individuals who can
get the infection through susceptibility to be 50%. This in
turn means that 50% of the population can only get infected
through exposure. We vary p(y|S) from 0.5 to 0.9 only for
the 50% of the population that is susceptible.

The bottom panel in Figure 2 shows the results from Ex-
periment 2. When p(y|S) = 0.5, infection is independent
of susceptibility and only exposed individuals are infected.
We clearly see that y-PALS is better than NoNet. As p(y|S)
increases, the performance of all three models improves but
NoNet is consistently lower than y-PALS and 7. This is
because, by design, only a maximum of 50% of the sam-
ple can be detected by NoNet. Importantly, we notice that
z-PALS is unaffected by changes in p(y|S).

Results from the first two experiments suggest that the ac-
curacy in predicting the spreader states is unaffected by the
degree to which susceptibility decides infection but, as ex-
pected, is affected by how important exposure is in deciding
the infection state. This dependence is desirable: if exposure
is not important in determining the infection state, the en-
tire concept of detecting spreaders is useless and our model
appropriately defaults to one that ignores the exposure state.

Experiment 3: varying levels of spreader observability.
How does the accuracy of PALS change as we incorporate
partially observed spreader states? This experiment high-
lights scenarios where PALS is most useful and explores
whether or not the accuracy improves when some of the
spreaders are known. This setup is similar to Experiment 1,
with p(y|€) := 0.8 and a slightly harder spreader predic-
tion task, where the spreaders are more dispersed among the
community. This is to study the impact when some propor-
tion of the spreaders is known. Here, we vary the proportion
of known spreaders from O to 1. We present results when
the proportion of spreaders is known at training time only
(y-PALS-T and z-PALS-T) and at both training and testing
time (y-PALS-TT)?. We introduce an additional benchmark
nok) for this experiment, where the subscript O(k) denotes
oracle access to the ground truth state of k% of the spread-
ers. This is a logistic regression with oracle access to the
ground truth spreader states of only k% of the population
(rather than 100% for 7). For the remaining 100 — k%, the
model assumes that they are non-spreaders, which mimics
real world situations. For example, when a patient is asymp-
tomatic, she is assumed to be healthy and not spreading the
disease.

Figure 3 shows the results from Experiment 3. The top
and bottom panels show results from the infection and

2Since there is no utility to predicting the spreader state when it
is known, we do not present z-PALS-TT.
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Figure 3: Incorporating known spreader states leads to gains
in accuracy for both infection and spreader prediction tasks.

spreader prediction tasks respectively. We see that as the
proportion of known spreaders increases PALS makes more
accurate predictions for both tasks. Specifically, we see the
greatest increase in accuracy when ground truth states are
available at training and testing time. Beyond 30% known
spreaders, increasing the proportion of known spreaders at
training time does not affect the accuracy of y-PALS be-
cause it is already able to perfectly predict the spreader state.
This shows that PALS can be easily extended to incorporate
observed spreader labels which in turn leads to better perfor-
mance.

Additional experiments studying how PALS performs un-
der varying levels of sparsity of the graph and dispersion of
the spreaders are presented in Appendix B.

5 Real Data Experiments

Clostridium difficile (C. diff) is responsible for over
300,000 healthcare-associated infections per year (Magill
et al. 2014). To acquire a C. diff infection (CDI), a patient
must be both susceptible (e.g., immunocompromised)
and exposed to the disease (i.e., ingest C. diff spores
excreted through an infected patient’s stool). A patient
may become exposed to the disease either before, during,
or after a hospital admission. Importantly, even though
medical experts hypothesize that asymptomatic carriers
of C. diff contribute to the spread of the infection, the
Center for Disease Control recommends only testing
symptomatic patients, since there is no principled way of
identifying potential asymptomatic carriers (Muto 2007;
Cohen et al. 2010). Existing methods for predicting the on-
set of CDI assume that only symptomatic carriers can spread
the disease, and do not consider patient specific character-
istics that make them likely spreaders (Wiens et al. 2014;
Wiens, Guttag, and Horvitz 2016; Dubberke et al. 2007).
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PALS is therefore suitable for this task, since it would
help identify asymptomatic carriers and compute a better
estimate of exposure. We applied PALS to a dataset of
patient admissions to a large urban hospital. We consider
the task of predicting who is most likely to be diagnosed
with CDI during a hospitalization, while explicitly modeling
asymptomatic carriers as latent spreaders.

Main patients. We consider inpatient hospitalizations that
occurred from May 2012 to May 2014. After applying ex-
clusion criteria, 20,147 admissions remained. These criteria
(outlined in detail in the Appendix C) exclude young pa-
tients and short-stays. We split the data into training and
testing temporally, using hospitalizations from May 2012
to May 2013 as training data. Our outcome of interest is a
binary label indicating whether or not the patient was di-
agnosed with CDI after the fifth day of their visit but be-
fore discharge. We chose the fifth day as a prediction date
in order to focus on infections that are most likely hospital-
associated rather than infections that may be attributable to
contact outside the hospital. Since we are interested in pre-
diction, we exclude patients who test positive for CDI prior
to the fifth day of their visit. In our final population, there
are 305 cases of CDL.

Auxiliary patients. We include patients who do not meet
our inclusion criteria but who come into contact with our
study population as auxiliary patients. We are only interested
in predicting their spreader states, not their infection states.
We consider them only as potential spreaders who come into
contact with the main cohort.

Constructing the network. We construct two networks
consisting of patients who come into contact with the main
patients. In the room network, two patients are connected
by an edge if they spend any time in the same room during
the same day. In the nurse network, patients are connected
if they have drugs administered by the same nurse on the
same day. The nurse network is denser than the room net-
work (median of 12 vs. 2 contacts per patient), because room
changes are less frequent than nurse visits. Additional statis-
tics about the population are included in Appendix C.
Extracting patient characteristics. We extract a set of vari-
ables available upon admission such as demographic de-
tails, and medical history. We also extract data about the
patient’s current visit such as procedures, medications, lab-
oratory tests and values and hospital location (units) occur-
ring prior to the maximum extraction date. All non-binary
variables are binned into quintiles and made binary. A sin-
gle patient can have multiple extraction dates corresponding
to multiple views: 1) as the “main” patient for whom we are
trying to make predictions, and 2) as a “neighbor” of another
patient for whom we are trying to make predictions. In the
first role, we extract information about the patient up until
the fifth day of admission. In the second, we consider data
about the patient only up until the date of contact with the
main patient under consideration.

Extracting the data in this way respects the causal
ordering of events and does not leak information that would
be unavailable at the time of prediction. Additionally, we
exclude medications meant to treat CDI from the patients’



information when they are in the first role, but include
them when they are in the neighbor role®. We refer to the
collection of main patient, room-sharing and nurse-sharing
views as the main, room, and nurse cohorts, respectively.

Benchmarks and Models

We compare PALS to models that take into account suscep-
tibility, exposure and a combination of the two. To do so, we
construct several proxies for exposure:

e Neighbor infection (Nbrlnf): this exposure measure as-
sumes that there are no asymptomatic carriers, and com-
putes the patients’ exposure as the mean number of in-
fected patients she has come into contact with. This is
similar to the colonization pressure approach presented in
(Wiens et al. 2014; Wiens, Guttag, and Horvitz 2016).

e Neighbor infection rate (NbrInfRate): takes the contacts’
infection rates to be a proxy for exposure. If main patient
A is in contact with B, we count the proportion of contacts
that B has, excluding A, who have acquired CDI. We then
take the average of all of patient A’s contacts’ rates as the
exposure measure.

e Neighbor’s probability of infection (NbrProblnf): takes
the contacts’ probabilities of infection as a proxy for ex-
posure. We use the contacts cohorts’ characteristics to
predict whether or not they will get CDI. We then aver-
age over all the predicted probabilities of infection for all
contacts of a given patient to estimate her exposure.

For the exposure-only benchmarks, we use the exposure as a
direct estimate of the main patients’ probability of infection.
For the exposure and susceptibility benchmarks, we add
the exposure estimate to the main patients’ characteristics
and use an L1-regularized logistic regression to learn the
parameters. We run two versions of PALS considering each
of the two networks. The first version, (NoObs), assumes
that spreaders are completely unobserved; the second
(PartObs), uses the CDI test values of the patients who got
tested (=10%) as observed spreader labels, and assumes the
remaining are unobserved.

Results

Table 1 shows performance on the held-out test sample in
terms of AUC for the task of predicting CDI. Results from
the exposure-only and susceptibility-only models imply that,
while exposure has a good predictive power, susceptibility-
only variables tend to dominate in terms of performance. We
find that the benchmarks that incorporate both susceptibility
and exposure are not able to leverage the predictive power
of exposure, as evidenced by the fact their performance
is nearly identical to the susceptibility-only model. The
greatest improvements over the susceptibility-only model
are achieved by the PALS-PartObs (nurse) and the PALS-
NoObs (room) respectively (0.705 and 0.704 compared to
0.7 for the best benchmark).

3Even though all the patients in this cohort have not tested pos-
itive for CDI before the fifth day, occasionally physicians will start
treating the patient before receiving the conclusive test results.
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In addition to the AUC, we also consider the TPR at FPR
= 0.1. If a model is used to help decide when an interven-
tion (e.g., testing or isolating a patient) should be under-
taken, a decision threshold must be chosen. The appropri-
ate threshold depends upon the intervention. In this evalua-
tion, we chose a cutoff corresponding to a false positive rate
(FPR) of 0.1. This is appropriate because the cost of a typi-
cal intervention for CDI (e.g., isolating the patient) is high.
A threshold with a high FPR would lead to wasting valu-
able resources treating and testing patients who are not go-
ing to get infected. We find that PALS-PartObs (room) has
the highest TPR, which is statistically significantly higher
than all benchmarks. Specifically, it is 2% higher than the
best benchmark, the model that combines the room con-
tacts’ infection state and the main patient’s susceptibility
characteristics. Note that 2% of 300,000 (the number of
hospital-associated CDI infections per year in the US) is
6,000 patients whose treatment might be changed. Further-
more, we find that our conclusions hold for other FPRs. At
FPR=0.01, 0.05 and 0.5, PALS models achieve TPRs equal
to 0.034 (95% CI: 0.033, 0.035), 0.149 (95% CI: 0.147,
0.151) and 0.78 (95% CI: 0.777, 0.782) respectively. Bench-
mark TPRs are 0.023 (95% CI: 0.02, 0.024), 0.14 (95% CI:
0.138, 0.142), and 0.77 (95% CI: 0.767, 0.772). In all cases,
the PALS models outperform benchmarks.

In addition to improved predictions, inspecting u gives us
insight into the factors that lead to an elevated risk of be-
ing a spreader. Analyzing the u weights from our best per-
forming model, PALS-PartObs (nurse), we find that receiv-
ing treatment for CDI is associated with the largest negative
weight, indicating that that patients being treated for CDI
are not spreading the pathogen. This implies that the hospi-
tal’s contact precautions are effective in curbing the spread
of the infection from patients who have been clinically di-
agnosed with CDI. We also find that the highest positive
u weights are those associated with broad-spectrum antibi-
otics (IV-Vancomycin, Ciprofloxacin, and Ceftriaxone) and
treatment for diarrhea (Loperamide). Broad spectrum antibi-
otics are known to create an environment where C. diff flour-
ishes, and diarrhea increases the spread of C. diff. These re-
sults suggest that asymptomatic patients who are on antibi-
otics, have diarrhea, and are not being treated for CDI may
be shedding C. diff spores and putting their neighbors at a
higher risk of CDI.

6 Conclusion and Future Work

We presented a novel and computationally efficient method,
PALS, for inferring the latent influence of neighbors, esti-
mating exposure and predicting risk of infection based on
both exogenous exposure and inherent susceptibility. In a se-
ries of simulations, we demonstrated that PALS was strictly
better than a baseline method that does not take into account
exposure to the contagion. When the probability of infec-
tion was independent of exposure, PALS’ performance was
the same as the baseline method. But when the probability
of infection could be affected by neighbors, PALS had bet-
ter predictive performance than the baseline method. Addi-
tionally, we showed that PALS can accurately identify latent
spreaders of infection.



AUC TPR at FPR = 0.1
Exposure-only (room)

NbrInf 0.507 (0.506, 0.507) 0.110 (0.110, 0.110)
NbrInfRate  0.503 (0.502, 0.503)  0.107 (0.105, 0.108)
NbrProbInf  0.585 (0.584, 0.587) 0.153 (0.151, 0.155)
Exposure-only (nurse)
NbrInf 0.543 (0.542,0.545) 0.109 (0.108,0.111)
NbrInfRate  0.606 (0.605, 0.608)  0.127 (0.125, 0.129)
NbrProbInf  0.641 (0.639, 0.642)  0.196 (0.194, 0.198)
Susceptibility-only
0.698 (0.694, 0.703)  0.298 (0.296, 0.300)
Exposure (room) + Susceptibility
NbrInf 0.697 (0.695, 0.698)  0.292 (0.289, 0.294)
NbrInfRate  0.694 (0.693, 0.695)  0.263 (0.260, 0.265)

NbrProbInf  0.697 (0.696, 0.698)  0.278 (0.276, 0.280)
Exposure (nurse) + Susceptibility

NbrInf 0.694 (0.693,0.696) 0.264 (0.262, 0.266)

NbrInfRate  0.700 (0.699, 0.702)  0.300 (0.297, 0.302)

NbrProbInf  0.695 (0.694, 0.696)  0.278 (0.276, 0.281)
PALS (room)

NoObs 0.704 (0.702, 0.705)  0.299 (0.296, 0.302)

PartObs 0.701 (0.700, 0.702)  0.324 (0.322, 0.327)
PALS (nurse)

NoObs 0.700 (0.699, 0.702)  0.298 (0.296, 0.301)

PartObs 0.705 (0.703, 0.706)  0.310 (0.308, 0.313)

Table 1: Predicting onset of CDI, test set performance.
Benchmarks incorporating both susceptibility and exposure
are not able to leverage the predictive power of exposure to
the same extent as PALS.

We also tested PALS on data from a large hospital, and
used it to build a predictive model for C. diff infections.
Our model outperformed all other benchmarks in predicting
CDI. Unlike existing work, our model sheds light on how the
infection is spread within the hospital. This enables targeted
interventions, designed to reduce the overall prevalence of
the disease, increasing the actionability of the model.

Though we present PALS in the context of infectious dis-
ease, our approach is widely applicable. For networks in
which transmission dynamics are governed by latent spread-
ers and underlying node characteristics, PALS can accu-
rately model the likelihood of adopting the contagion while
shedding light on what makes a node more likely to transmit.
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