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Abstract

The human visual system is capable of learning an unbounded
number of facts from images including not only objects but
also their attributes, actions and interactions. Such uniform
understanding of visual facts has not received enough atten-
tion. Existing visual recognition systems are typically mod-
eled differently for each fact type such as objects, actions,
and interactions. We propose a setting where all these facts
can be modeled simultaneously with a capacity to understand
an unbounded number of facts in a structured way. The train-
ing data comes as structured facts in images, including (1) ob-
jects (e.g., <boy>), (2) attributes (e.g., <boy, tall>), (3) ac-
tions (e.g., <boy, playing>), and (4) interactions (e.g., <boy,
riding, a horse >). Each fact has a language view (e.g., <
boy, playing>) and a visual view (an image). We show that
learning visual facts in a structured way enables not only a
uniform but also generalizable visual understanding. We pro-
pose and investigate recent and strong approaches from the
multiview learning literature and also introduce a structured
embedding model. We applied the investigated methods on
several datasets that we augmented with structured facts and
a large scale dataset of > 202,000 facts and 814,000 images.
Our results show the advantage of relating facts by the struc-
ture by the proposed model compared to the baselines.

Introduction

It is a capital mistake to theorize in advance of the
facts. -Sherlock Holmes (The Adventure of the Sec-
ond Stain)

Despite recent significant advances in Computer Vision,
there is still a large gap between humans and machines in vi-
sual understanding. The human visual system is capable of
efficiently acquiring visual knowledge by learning different
types of facts in a never ending way from many or few ex-
amples, aided by the ability to generalize from other known
facts with related structure. For example, a human can learn
the concept of climbing and generalize it to rare interactions
like “hippo climbing fence”. To bridge this gap, we carefully
focus on five desirable characteristics

• Uniformity: ability to handle objects (“dog”), attributes
(“brown dog”), actions (“dog running”) and interactions
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Figure 1: Visual Facts in Images

between objects (“dog chasing cat”); see Fig 1 for other
examples.

• Generalization: ability to generalize to facts that have
zero or few examples during training.

• Scalability: ability to learn an unbounded number of facts
in one model.

• Structure: ability to provide a structured understanding
of facts, for example that “baby” is the subject and has an
attribute of “smiling”.

• Bi-directionality: ability to retrieve a linguistic represen-
tation of an image, and the ability to retrieve images given
language description of a fact.

Existing visual understanding systems may be catego-
rized by two trends: (1) fact-level systems and (2) high-level
systems. Fact level systems include object recognition, ac-
tion recognition, attribute recognition, and interaction recog-
nition (e.g., (Simonyan and Zisserman 2015), (Zhang et al.
2014), (Chen and Grauman 2014), (Zhou et al. 2014),
(Gkioxari and Malik 2015), (Antol, Zitnick, and Parikh
2014a)). These systems are usually evaluated separately for
each fact type (e.g., objects, actions, interactions, attributes,
etc.) and are therefore not uniform. Typically, these sys-
tems have a fixed dictionary of facts (assuming that facts are
found during training in at least tens of examples), and they
treat facts independently. Such systems cannot generalize
fact learning outside of the dictionary and will not scale to
an unbounded number of facts, since model size scales with
the number of facts. Furthermore, these recognition systems
are typically uni-directional, only able to return the condi-
tional probability of a fact given an image. In the zero/few-
shot learning setting (e.g., (Romera-Paredes and Torr 2015;
Lampert, Nickisch, and Harmeling 2009)), only a few or
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even zero examples per fact are available; this is typically
studied apart from the traditional recognition setting. We are
not aware of a unified recognition/few shot learning system
that learns an unbounded set of facts.

In the second trend, researchers study high-level tasks
like image captioning (e.g., (Karpathy, Joulin, and Li 2014;
Vinyals et al. 2015; Xu et al. 2015a; Mao et al. 2015)),
image-caption similarity (e.g., (Karpathy, Joulin, and Li
2014; Kiros et al. 2015)), and visual question answering
(e.g., (Antol et al. 2015; Malinowski, Rohrbach, and Fritz
2015; Ren, Kiros, and Zemel 2015)) with very promising re-
sults. These systems typically learn high-level tasks but their
evaluation does not answer of whether the systems can relate
captions or questions to images by fact-level understand-
ing. Psychologists have also studied how people caption im-
ages, e.g., (Chaplin 2006; Kaufman et al. 2007) showed that
captions usually reflect what a person sees as discrimina-
tive about a scene. This means that different captions for
the same image may convey different facts and but are con-
strained to correlate to the same scene in existing image-
caption similarity systems. In principle, captioning models
can relate images to sentences and thus can mention any fact.
However, we show in our experiments that image-caption
similarity systems trained on MS COCO dataset (Lin et al.
2014) are confused when they are evaluated for fact level
understanding even at a small scale; see Table 1. Also, (De-
vlin et al. 2015a; 2015b) reported that 60-70% of the cap-
tions generated by LSTM-based methods actually exist in
the training data; the authors also show that nearest neighbor
methods have competitive captioning performance. These
results call into question both the core understanding and the
generalization of the state-of-the-art caption-level systems.

High-level tasks requires attention to the fundamental
problem of rich understanding of images at the scale of mil-
lions of unique facts, which is exactly what we work towards
in this paper and may open the door to open-ended visual
reasoning. Our goal in particular is a method that achieves a
more sophisticated understanding of the actions, objects, at-
tributes, and interactions between objects, and possesses the
necessary properties of scalability, generalization, unifor-
mity, bi-directionality, and structure. To achieve these prop-
erties, the key to our solution is to make the basic unit of
understanding the structured fact, as shown in Fig. 1, and
to have a structured embedding space in which different di-
mensions record information about the subject S, predicate
P, and object O for a fact.

Contributions: (1) We propose a problem setting to help
study fact-level visual understanding of an unbounded num-
ber of facts while considering the aforementioned character-
istics. (2) We design and investigate several baselines from
multiview learning literature and apply them on this task. (3)
We propose a learning representation model that relate dif-
ferent fact types using the structure exemplified in Fig 1. (4)
We setup a large scale benchmark for this task that consists
of more than 814, 000 examples and 202, 000 unique facts
and we show the value of relating facts by structure using the
proposed model in comparison to the designed baselines.

Related Work

Many approaches has been proposed to facilitate recognition
in various settings, which may be categorized as follows

(A) Modeling Visual facts in Discrete Space: Recog-
nition of objects or activities has been typically modeled as
a mapping function g : V → Y , where Y is discrete set of
classes. The function g has recently been learned using deep
learning (e.g.,VGGNet (Simonyan and Zisserman 2015;
Szegedy et al. 2015)). Apart from being uni-driectional from
V to Y , different systems are typically built to recognize
each fact type which requires maintaining and retraining dif-
ferent systems as new facts are added, and also does not al-
low learning the correlation among different fact types (e.g.,
“person riding wave” and “dog riding a wave”) which lim-
its its generalization. It is also not scalable since model size
increases as new facts are added.

(B) zero/few shot fact learning with attributes: One of
the most successful ideas for learning from few examples
per class is by using semantic output codes like attributes
as an intermediate layer between features and classes. For-
mally, g is a composition of two function g = h(a(·)), where
a : V → A, and h : A → Y (Palatucci et al. 2009).
The main idea is to learn an intermediate attribute layer,
upon which classes are then represented to facilitate zero-
shot/few-shot learning. (Chen and Grauman 2014) realized
that attribute appearance is dependent on the class, as op-
posed to these earlier models (Palatucci et al. 2009; Lam-
pert, Nickisch, and Harmeling 2009; Farhadi et al. 2009).
However (Chen and Grauman 2014)’s approach is not scal-
able since it learns different classifiers for each category-
attribute pair. More recently, Attribute Embedding (Akata et
al. 2013) and ESZSL (Romera-Paredes and Torr 2015) have
shown strong zero-shot performance by joint embedding im-
ages and attributes. However, their capability in a rich under-
standing setting was not explored.

(C) Object Recognition with Vision and Language: Re-
cent works in language& vision involve using unannotated
text to improve object recognition and to facilitate zero-shot
learning. The following group of approaches model object
recognition as a g(v) = argmaxy s(v ∈ V, y ∈ Y), where
s(·, ·) is a similarity function between image v and class y
represented by text. In (Frome et al. 2013), (Norouzi et al.
2014) and (Socher et al. 2013), word embedding language
models (e.g., (Mikolov et al. 2013)) were adopted to rep-
resent class names as vectors. In their setting, the imageNet
dataset has 1000 object facts with thousands of examples per
class. In contrast, our setting assumes no limit for the facts
and naturally has a long-tail distribution witrh two orders of
magnitude more facts. Conversely, other works model the
mapping of unstructured text descriptions for classes into
a visual classifier (Elhoseiny, Saleh, and Elgammal 2013;
Elhoseiny, Elgammal, and Saleh 2016; Ba et al. 2015). In
contrast, we aim at extending the recognition task to an un-
bounded scale of facts, not only object recognition but also
attributes, actions, and interactions in one model.

(D) Image/Video-Caption Similarity Methods: Several
approaches have been proposed in this area (e.g., (Karpathy,
Joulin, and Li 2014; Kiros et al. 2015; Vendrov et al. 2016)

4017



Table 1: Image-Caption Models on Fact Level understanding (From “Image to Fact”(i2f) and from Fact to Image” (f2i)).
Performance metrics are detailed in the experiments section.

Caption-level (MS COCO) Fact-Level

Dataset Method i2f(Acc) f2i (mAP) i2f (Acc) f2i(mAP)
Standord40 (Kiros et al. 2015) 33.73 26.29 60.86 51.9

(Yao et al. 2011) (Vendrov et al. 2016) 32.32 29.3 66.36 67.78
Pascal 10 Actions (Kiros et al. 2015) 46.050 40.712 60.27 50.58

(Everingham et al. ) (Vendrov et al. 2016) 33.108 36.247 66.102 69.884
6DS (186) (Kiros et al. 2015) 15.71 9.37 26.13 26.17
see Table 2 (Vendrov et al. 2016) 12.56 10.21 31.57 35.23

for images and (Xu et al. 2015b; Elhoseiny et al. 2016b) for
video). There is two important and interesting questions to
explore. First, how image-caption similarity methods trained
on caption level (the typical setting) performs on fact-level
understanding; see Table 1 (caption-level columns). Second,
these systems could be retrained in our setting by provid-
ing them with fact-level annotation, where every example
is a phrase representing the fact and an image (e.g., “per-
son riding horse” and an image with this fact); see Table 1
(fact-level columns). The table consistently shows a big gap
between the two settings on three datasets varying in scale.
These results motivated us to dig deeper and study more
models to enable richer understanding.

Representation and Visual Modifiers

We deal with three groups of facts; see Fig. 1. First Or-
der Facts <S,*,*> are object and scene categories (e.g.,
<baby,*,*>, <girl,*,*>, <beach,*,*>). Second Order
Facts <S,P,*> are objects performing actions or attributed
objects (e.g., <baby, smiling,*>, <baby, Asian,*>). Third
Order Facts <S,P,O> are interactions and positional infor-
mation (e.g. <baby, sitting on, high chair>, <person, rid-
ing, horse>). By allowing wild-cards in this structured rep-
resentation (<baby,*,*>and <baby, smiling,*>), we can
not only allow uniform representation of different fact types
but also relate them by structure. We propose to model these
facts by embedding them into a “structured” fact space that
has three “continuous” hyper-dimensions φS , φP , and φO

φS ∈ R
dS : The space of object categories or scenes S.

φP ∈ R
dP : The space of actions, interactions, attributes,

and positional relations.
φO ∈ R

dO : The space of interacting objects, scenes that in-
teract with S for SPO facts.

where dS , dP , and dO are the dimensionalities correspond-
ing to φS , φP , and φO, respectively. First order facts like
<woman,*,*>, and <man,*,*> live in a hyper-plane in the
φP×φO space. Second order facts (e.g., <man, walking,*>,
<girl, walking,*>) live as a hyper-line that is parallel to φO

axis. Finally, a third order fact like <man, walking, dog>
is a point in the φS × φP × φO perceptual space. Inspired
from the concept of language modifiers, the φS , φP , and
φO could be viewed as what we call “visual modifiers”.
For example, the second order fact <baby, smiling,* > is
a φP visual modifier for <baby,*,*>, and the third order
fact <person, playing, flute> is the fact <person, *, *> vi-
sually modified on both φP and φO axes. By embedding

Figure 2: Structured Embedding

all language and images into this common space, our al-
gorithm can scale efficiently. Further, this structured space
can be used to retrieve a language view of an image as
well as a visual view of a language description, making the
model bi-directional.Modeling visual recognition based on
this notion gives it a generalization capability. For example,
if the model learned the facts <boy>, <girl>, <boy, pet-
ting, dog>, <girl, riding, horse>, we would aim at recog-
nizing an unseen fact <boy, petting, horse>. We show these
capabilities quantitatively in our experiments.

We model this setting as a problem with two views, one
in the visual domain V and one in the language domain L.
Let f be a structured fact, fv ∈ V denoting the visual view of
f and fl ∈ L denoting the language view of f . For instance,
an annotated fact with language view fl =<S:girl, P:riding,
O:bike> would have a corresponding visual view fv as an
image where this fact occurs; see Fig. 2.

We denote the embedding functions from a visual view
to φS , φP , and φO as φV

S (·), φV
P (·), and φV

O(·), and the
structured visual embeddings of a fact fv by vS = φV

S (fv),
vP = φV

P (fv), and vO = φV
O(fv), respectively. Similarly,

we denote the embedding functions from a language view to
φS , φP , and φO as φL

S(·), φL
P (·), and φL

O(·), and the struc-
tured language embeddings of a fact fl as lS = φL

S(fl),
lP = φL

P (fl), and lO = φL
O(fl). Let v = [vS ,vP ,vO] and

l = [lS , lP , lO] (concatenation). Third-order facts <S,P,O>
can be directly embedded in the structured fact space with
v ∈ R

dS × R
dP × R

dO for the image view and l ∈
R

dS ×R
dP ×R

dO for the language view. Based on the “fact
modifier” observation, we represent both second and first-
order facts by wild cards “∗”, as illustrated in Eq. 2, 4. Set-
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ting φP and φO to ∗ for first-order facts means that the P and
O modifiers are not of interest for first-order facts, which is
intuitive. Similarly, setting φO to ∗ for second-order facts in-
dicates that the O modifier is not of interest for single-frame
actions and attributed objects. If an image contains lower
order fact such as <man>, then higher order facts such as
<man, tall> or <man, walking, dog> may also be present.
Hence, the wild cards (i.e. ∗) of the first- and second-order
facts are not penalized during training.

Second-Order <S, P,*>: v = [vS ,vP ,vO = ∗] (1)
l = [lS , lP , lO = ∗] (2)

First-Order <S,*,*>: v = [vS ,vP = ∗,vO = ∗] (3)
l = [lS , lP = ∗, lO = ∗] (4)

Structured Embedding Model

We propose a structured fact embedding model while con-
sidering the five properties discussed in the introduction.
Satisfying the first four properties can be achieved by us-
ing a generative model p(fv, fl) that connects the visual and
the language views of f , where more importantly fv and fl
inhabit a continuous space. We model p(fv, fl) ∝ s(v, l),
where s(·, ·) is a similarity function defined over the struc-
tured fact space. We satisfy the fifth property by building our
models over the aforementioned structured wild card repre-
sentation. Our objective is that two views of the same fact
should be embedded so that they are close to each other; see
Fig 2. The question now is how to model and train φV(·)
visual functions (φV

S (·), φV
P (·), φV

O(·)) and φL(·) language
functions (φL

S(·), φL
P (·), φL

O(·)) . We model φV(·) as a CNN
encoder (e.g., (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2015)), and φL(·) as word2vec en-
coder (e.g., (Mikolov et al. 2013; Pennington, Socher, and
Manning 2014)) due to their recent success as encoders for
images and words, respectively.

We start by defining an activation operator ψ(θ, a), where
a is an input, and θ is a series of one or more neural network
layers (may include different layer types, e.g., convolution,
pooling, then another convolution and pooling). The opera-
tor ψ(θ, a) applies θ parameters layer by layer to compute
the final activation of a using θ subnetwork.
Structured fact CNN image encoder: We use different
convolutional layers for S than for P and O, inspired by
the idea that P and O are modifiers to S (Fig. 3(a)). Start-
ing from fv , there is a common set of convolutional layers,
denoted by θ0c , then the network splits into two branches,
producing two sets of convolutional layers θSc and θPO

c , fol-
lowed by two sets of fully connected layers θSu and θPO

u .
Finally φV

S (fv),φ
V
P (fv) , and φV

O(fv) are computed by apply-
ing WS , WP , and WO transformation matrices for subject,
predicate, and object respectively. If we define the output of
the common S,P,O layers as d = ψ(θ0c , fv) and the output of
the P,O column as e = ψ(θPO

u , ψ(θPO
c , d)), then

vS = WS ψ(θSu , ψ(θ
S
c , d)), vP = WP e, vO = WO e. (5)

Structured fact language encoder: The structured fact lan-
guage view is encoded using word embedding vectors for S,
P and, O separately. Hence

lS = vecθl(f
S
l ), lP = vecθl(f

P
l ), lO = vecθl(f

O
l ) (6)

Figure 3: Structured Embedding Model (SEM). See Fig. 2
for the full picture.

where fSl , fPl , and fOl are the Subject, Predicate, and Ob-
ject parts of fl ∈ L. For each of them, the literals are
dropped. In our experiments, θl is fixed to a pre-trained
word vector embedding model (e.g. (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014)) for fSl , fPl , and
fOl ; see Fig 3(b).

Loss function: One way to model p(fv, fl) is to assume that
p(fv, fl) ∝= exp(−lossw(fv, fl)) and minimize the distance
lossw(fv, fl) defined as

lossw(fv, fl) = w
f
S · D(vS , lS) + w

f
P · D(vP , lP ) + w

f
O · D(vO, lO).

where D(·, ·) is a distance function. Thus we minimize the
distance between the embeddings of the visual view and the
language view. Our solution to penalize wild-card facts is to
ignore their wild-card modifiers in the loss. Here wf

S = 1,
wf

P = 1, wf
O = 1 for <S,P,O> facts , wf

S = 1, wf
P = 1,

wf
O = 0 for <S,P> facts, and wf

S = 1, wf
P = 0, wf

O = 0 for
<S> facts. Hence lossw does not penalize the O modifier for
second-order facts or the P and O modifiers for first-order
facts, which follows our definition of wild-cards. In this pa-
per, we used D(·, ·) as the standard Euclidean distance.

Testing (Two-view retrieval): After training, we embed
all the testing fvs (images) by the learnt models, and simi-
larly embed all the test fls as shown in Eq 6. For language
view retrieval (retrieve relevant facts in language given an
image), we compute the distance between the structured em-
bedding of an image v and all the facts structured language
embeddings ls, which indicates relevance for each fact fl for
the given image. For visual view retrieval (retrieve relevant
images given fact in language form), we compute the dis-
tance between the structured embedding of the given fact l
and all structured visual embedding of images vs in the test
set. For first and second order facts, the wild-card part is ig-
nored while computing the distance.
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Experiments

Datasets and Large Scale Benchmark

We began our data collection by augmenting existing
datasets with fact language view labels fl: PPMI (Yao and
Fei-Fei 2010), Stanford40 (Yao et al. 2011), Pascal Ac-
tions (Everingham et al. ), Sports (Gupta 2009), Visual
Phrases (Sadeghi and Farhadi 2011), INTERACT (Antol,
Zitnick, and Parikh 2014b) datasets. The union of these
6 datasets resulted in 186 facts with 28,624 images as
broken out in Table 2. We added to this data, structured
facts from the Scene Graph dataset (Johnson et al. 2015)
with 5000 manually annotated images in a graph structure
from which first-, second-, and third-order relationships can
be extracted. We extracted 110,000 second-order facts and
112,000 third-order facts. The majority of these are posi-
tional relationships.We also added to the aforementioned
data, 380,000 second and third order fact images from(El-
hoseiny et al. 2016a). We further augmented these data with
2000 images for each MS COCO object (80 classes) as first-
order facts. We also used object annotations in the Scene
Graph dataset as first-order fact annotations with a maxi-
mum of 2000 images per object. Table 3 shows the unique
facts of the resultant large scale dataset with > 202K facts
and 814,000 images. For fast retrieval, we used the FLANN
library (Muja and Lowe 2009) to compute the (approximate)
100 nearest neighbors for fl given fv , and vice-versa.

Setup of of the investigated Models

Our Structured Embedding Model (SEM-A and SEM-B
): We used is the GloVE840B model (Pennington, Socher,
and Manning 2014) to encode structured facts in the lan-
guage view (i.e., θl). For the visual encoder, The shared lay-
ers θ0c match the architecture of the convolutional layers and
pooling layer in VGG-16 named conv_1_1 until pool3,
and have seven convolution layers. The subject layers θSc and
predicate-object layers θPO

c are two branches of convolution
and pooling layers with the same architecture as VGG-16
layers named conv_4_1 until pool5 layer, which makes
six convolution-pooling layers in each branch. Finally, θSu
and θPO

u are two instances of fc6 and fc7 layers in VGG-
16 network. WS , WP , and WO are initialized randomly and
the rest are initialized from VGG-16 trained on ImageNet.

Table 2: Our fact augmentation of six datasets

Unique language views fl Number of ( fv, fl) pairs

S . SP. SPO . total S SP SPO total images

INTERACT 0 0 60 60 0 0 3171 3171
VisualPhrases 11 4 17 32 3594 372 1745 5711

Stanford40 0 11 29 40 0 2886 6646 9532
PPMI 0 0 24 24 0 0 4209 4209

SPORT 14 0 6 20 398 0 300 698
Pascal Actions 0 5 5 10 0 2640 2663 5303

Union 25 20 141 186 3992 5898 18734 28624

Table 3: Large Scale Dataset (202K facts, 814K images)

S SP SPO Total

Training unique facts 6116 57681 107472 171269
Testing unique facts 2733 22237 33447 58417

Train/Test unique Intersection 1923 13043 11774 26740
Test unique unseen facts 810 9194 21673 31677

In order to show the value of branching some convolutional
layers, we performed experiment on a variant of our SEM
model where θSc = θPO

c = θc and θSu = θPO
u = θu (all

layers shared except WS , WP , and WO). We denote this
Model as SEM-B while the original SEM model as SEM-A.
Multiview CCA IJCV14 (Gong et al. 2014) (MV CCA)
and ESZSL ICML15 Baseline (Romera-Paredes and
Torr 2015) : Both methods expects features from both
views. For visual view features, we used VGG16 (FC6). For
the language view features, we used GloVE. Since MV CCA
does not support wild-cards, we fill the wild-card parts of
ΦL(fl) with zeros for First Order and Second order facts.
Image-Sentence Similarity (TACL15 (Kiros et al. 2015))
(MS COCO pretrained) and (retrianed): We used the
theano implementation of this method published by the au-
thors.In order to test these models in our setting, we provide
them with the image and a phrase constructed from the fact
language representation. For example <person, riding, horse
> is converted to “person riding horse”. We evaluated two
instances of this model (One trained on captions level on
MSCOCO dataset) and another instance retrained on image-
fact training pairs where facts are converted to phrases.

It is not hard to observe the multiview nature of the base-
lines make them applicable to bidirectional retrieval tasks
that we evaluate against our method.

Evaluation Metrics For visual view retrieval (To retrieve
images given a fact in language view like <S: person, P:
riding, O: horse>), we measure the performance by mAP
(mean Average Precision) and a variant of it mAP10 which
is restricted to the top 100 images respectively. For recog-
nizing facts given an image (language view retrieval), we
use top 1, top 5, top 10 accuracy.

Datasets Setup We performed experiments on several
datasets ranging in scale: Stanford40 (Yao et al. 2011), Pas-
cal Actions (Yao and Fei-Fei 2010), Visual Phrases (Sadeghi
and Farhadi 2011), the union of six datasets described earlier
in Table 2. In all these training/testing splits, each fact lan-
guage view fl has corresponding tens of visual views fv (i.e.,
images) split into training and test sets. So, each test image
belongs to a fact that was seen by other images in the training
set. We also performed comparison between the designed
methods on the Large Scale Benchmark in Table 3. In this
dataset, we randomly split all the annotations into an 80%-
20% split, constructing sets of 647,746 (fv, fl) training pairs
(with 171,269 unique fact language views fl) and 168,691
(fv, fl) testing pairs (with 58,417 unique fl), for a total of
(fv, fl) 816,436 pairs, 202,946 unique fl. Table 3 shows the
coverage of different types of facts. There are 31,677 lan-
guage view test facts that were unseen in the training set
(851 <S>, 9,194 <S,P>, 21,673 <S,P,O>). The majority
of the facts have only one example; see the supplementary.

Small and Mid-Scale Results Table 4 shows the perfor-
mance of our SEM-B, SEM-A, and the designed baselines
on these four datasets for both view retrieval tasks. We note
that SEM-A works relatively better than SEM-B as the scale
size increases as shown here when comparing results on Pas-
cal dataset to larger datasets like Stanford40, and 6DS; see
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Table 4: Bi-directional Retrieval Experiments

Dataset Method i2f f2i

Top1 mAP

Standord40 SEM-A 74.46 73
(40 facts) SEM-B 71.22 74.57

(11 SP, 29 SPO) MV CCA IJCV14 67.74 66.00
Chance = 2.5% ESZSL ICML15 40.89 50.9

TACL15 (COCO pretrained) 33.73 26.29
TACL15 (retrained) 60.86 51.9

Pascal Actions SEM-A 74.760 80.950
(10 facts) SEM-B 74.080 80.530

(5 SP, 5 SPO) MV CCA IJCV14 59.82 33.45
Chance = 10% ESZSL ICML15 44.846 54.274

TACL15 (COCO pretrained) 46.050 40.712
TACL15 (retrained) 60.27 50.58

Top1 mAP/mAP100

6DS SEM-A 69.63 34.86/ 50.68
(186 facts) SEM-B 68.94 34.64 / 47.87

(25 S, 20 SP, 141 SPO) MV CCA IJCV14 29.84 23.93 / 36.44
Chance = 0.54% ESZSL ICML15 27.53 30.7 / 47.58

TACL15 (COCO pretrained) 15.71 9.37 / 15.88
TACL15 (retrained) 26.13 26.17 / 40.4

Top1/5/10 mAP100

Large Scale Dataset SEM-A 16.39 / 17.62 / 18.41 0.96
Chance = 0.0017% SEM-B 13.27 / 14.19 / 14.80 0.73

MV CCA IJCV14 12.28 / 12.84 / 13.15 1.0
ESZSL ICML15 5.80 / 5.84 / 5.86 0.4

TACL15 (COCO pretrained) 3.48 / 3.48 / 3.5 0.021
TACL15 (retrained) 5.87 / 6.06 / 6.15 0.29

Fig 4. In the next subsection, we show also that SEM-A is
clearly better than SEM-B in the large scale setting. Our in-
tuition behind this result is that SEM-A learns a different
set of convolutional filters in the PO branch to understand
action/attributes and interactions which is different from the
filter bank learned to discriminate between different subjects
for the S branch. In contrast, SEM-B is trained by optimizing
one bank of filters for SPO altogether, which might conflict
to optimize for both S and PO together; see Fig 3.

Compared to other methods on language view retrieval,
we can see that both SEM-B and SEM-A perform signifi-
cantly better than TACL15 (Kiros et al. 2015) even when re-
training on our fact-level setting, especially on PASCAL10,
Stanford40, and 6DS datasets which are dominated by SP
and SPO facts; see Table 2. For visual view retrieval, per-
formance is competitive in some of the datasets. We think
the reason is due to the structure that makes our models re-
late all fact types by the visual modifiers notion. Although
ESZSL is applicable in our setting, it is among the worst per-
forming methods in Table 4. This could be because ESZSL
is mainly designed for Zero-Shot Learning, but each fact has
some training examples in these experiments. Interestingly,
MV CCA is among the best.

Large Scale Benchmark Results Qualitative results of
the large scale setting are shown in Fig. 5, 6 (with many
more in the supplementary). In Fig. 5, our model’s ability to
generalize can be seen in the red facts. For example, for the
leftmost image our model was able to correctly identify the
image as <dog, riding, wave> despite that fact never being

seen in our training data. The left images in Fig. 6 show the
variety of images we can retrieve for the query <airplane,
flying>. In the right images in Fig. 6, note how our model
learns to visually distinguish gender (“man” versus “girl”),
and group versus single. It can also correctly retrieve im-
ages for facts that were never seen in the training set (<girl,
using, racket>). Highlighting the harshness of the perfor-
mance metric, Fig. 6 also shows that <airplane, flying> has
zero AP10 value giving us zero credit since the top images
were just annotated as just an < airplane>.

The large scale results in Table 4 indicate that SEM-A
is better than SEM-B for retrieval from both views, which
is consistent with our medium scale results and our intu-
ition. SEM-A is also multiple orders of magnitude better
than chance and is also significantly better than the com-
peting methods. To test the value of structure, we ran an ex-
periment where we averaged the S, P, and O parts of the vi-
sual and language embedding vectors instead of keeping the
structure. Removing the structure leads to a noticeable de-
crease in performance from 16.39% to 8.1% for the K1 met-
ric; see Table 4 (Large Scale Dataset). The other datasets in
Table 4 are orders of magnitudes smaller and also less chal-
lenging since all facts were seen during training. Figure 4
shows the effect of the scale on the Top1 performance for
language view retrieval task (denoted K1). There is an ob-
servable increase on the improvement of SEM-A compared
to the baselines in the large scale setting and performance of
the image-caption similarity methods degrade substantially.
We think this is due to both the large scale of the facts and
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Figure 4: K1 Performance Across Different Datasets. These graphs show the advantage of the proposed models as the scale
increases from left to right. (R) for TACL15 means the retrained version, (C) means COCO pretrained model

that the majority of the facts have zero or very few train-
ing examples. Interestingly, MV CCA is among the best per-
forming methods in the large scale setting. However, SEM-
A and SEM-B outperform MV CCA on both Top1 and Top 5
metrics; see Table 4. On the language view retrieval, SEM-A
and MV CCA performs similarly.

Generalization It is desirable for a method to be able
to generalize to understand an SPO interaction from train-
ing examples involving its components, even when there
are zero or very few training examples for the exact SPO
with all its parts S,P and O. Table 5 shows the K10 per-
formance for SPOs where the number of training exam-

<dog, riding, wave> 0.88
<one, riding, wave> 0.62
<guy, riding, wave> 0.60

<man, on, sand> 0.52
<man,on, beach> 0.51
<man, pushing, boat> 0.48

<boat, behind, boat> 0.775
<boat, beside, boat> 0.765
< boat, pulling, boat> 0.753

Figure 5: Language View Retrieval examples (i2f) (red
means unseen facts during training)

Figure 6: Visual View Retrieval Examples (f2i))

Figure 7: K10 Performance (y-axis) versus the number of
images per fact (x-axis) for interactions (SPO) facts (other
fact types are attached in the supplementary)

ples is ≤ 5. For example, the column SP≥15, O≥15 means
≤ 5 examples of an SPO that has at least 15 examples for
the SP part and for the O part. An example of this case is
when we see zero or very few examples of <person, pet-
ting, horse>, but we see at least 15 examples of <person,
petting, something=dog/cat/etc (not horse)> and at least
15 examples of something interacting with a horse <*,*,
horse>. SEM-A performs the best in all the listed gener-
alization cases in Table 4 and also in additional generaliza-
tion cases in the supplementary. Figure 7 analyzes the Top10
large scale knowledge view retrieval (K10) results reported
in Table 4 broken out by the number of images per fact (for
SPO facts). These results show that SEM-A generally be-
haves better with compared other models with the increase
of fact examples. Figures for other fact types are in the supp.

Conclusion

We introduce a problem setting for learning unbounded
number of facts in images, which facilitates gaining vi-
sual knowledge. While studying this task, we consider Uni-
formity, Generalization, Scalability, Bi-directionality, and
Structure. We investigated several baselines from multi-
view learning literature, adapted to our setting. We pro-
posed a structured embedding model that outperform the de-
signed baselines mainly by the advantage of relating facts
by structure. Our comparison to the baselines further show
that the structure, we introduced in the convolutional lay-
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Table 5: Generalization: SPO Facts of less than or equal 5 examples (K10 metric)

Cases SP≥15, O≥15 SO≥15, P≥15 SO≥15, PO≥15 SO≥15, SP≥15

Number of Facts 10605 4842 1755 3133

SEM-A 2.063 3.022 3.092 2.962
SEM-B 1.751 1.961 1.645 2.097
ESZSL 0.149 0.098 0.041 0.038

TACL15 (COCO pretrained) 0.013 0.025 0.000 0.013
TACL15 (retrained) 0.367 0.473 0.543 0.586

MV CCA 1.221 1.462 1.786 1.109

ers (i.e.,branching in Fig 3(a)), enabled our model to learn
in a data efficient way relatively and to generalize better
on unseen/rarely seen facts (Table 5,Fig 7). A future inter-
esting direction is to adopt dependency based word embed-
ding like (Levy and Goldberg 2014) to improve the language
representation and to incorporate information from ontolo-
gies like DOLCE (Gangemi et al. 2002) to enable reasoning
about facts.
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