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Abstract

Despite recent advances in the visual tracking community,
most studies so far have focused on the observation model. As
another important component in the tracking system, the mo-
tion model is much less well-explored especially for some ex-
treme scenarios. In this paper, we consider one such scenario
in which the camera is mounted on an unmanned aerial ve-
hicle (UAV) or drone. We build a benchmark dataset of high
diversity, consisting of 70 videos captured by drone cameras.
To address the challenging issue of severe camera motion, we
devise simple baselines to model the camera motion by ge-
ometric transformation based on background feature points.
An extensive comparison of recent state-of-the-art trackers
and their motion model variants on our drone tracking dataset
validates both the necessity of the dataset and the effective-
ness of the proposed methods. Our aim for this work is to lay
the foundation for further research in the UAV tracking area.

Introduction

Visual tracking is a fundamental problem pertinent to many
real-world applications including video surveillance, au-
tonomous vehicle navigation, human-computer interaction,
and many more. Given the initial state (e.g., position and
size) of the target object in a video frame, the goal of track-
ing is to automatically estimate the states of the moving ob-
ject in subsequent frames. Although visual tracking has been
studied for decades, it remains a challenging problem due
to various factors such as partial occlusion, fast and abrupt
object motion, illumination changes, and large variations in
viewpoint and pose.

In recent years, we have witnessed the advent of a
new type of robot, unmanned aerial vehicles (UAVs) or
drones (Floreano and Wood 2015). Although drones were
mostly used for military applications in the past, the recent
commercial drone revolution has seen an increasing num-
ber of research laboratories working on small, affordable,
human-friendly drones. The rapid development of commer-
cial drones could have a major impact on many civilian
applications, including transportation and communication.
Meanwhile, a number of foreseeable applications on this
new platform will need visual tracking as a core enabling
technology. To name a few, visual tracking can make drones
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useful for tracking animals, finding people, monitoring real-
time traffic situations, and so on.

In this paper, we study visual tracking on the drone plat-
form. Besides the research issues common to visual track-
ing in general, a major new challenge that we have to face
is the abrupt camera motion frequently encountered when
using drones to capture video. Specifically, a small pertur-
bation such as a slight rotation of the camera often leads to
large displacement of the target position in the image scene.
Also, since a drone flies, its motion typically has a higher
degree of freedom than that of many conventional tracking
applications. Therefore a more sophisticated motion model
is needed. As a result, conventional motion models used for
tracking applications with stationary or slow-moving cam-
eras are no longer applicable. One focus of this paper is in
conducting a benchmark evaluation and proposing baseline
algorithms to explicitly estimate the ego-motion.

The goals of this paper are three-fold: 1. Construct a uni-
fied drone tracking benchmark dataset with detailed analysis
of statistics; 2. Design general baseline algorithms for cam-
era motion estimation and integrate them into various track-
ing systems; 3. Conduct an extensive experimental compar-
ison and provide basic insights into the motion model in
tracking, with the aim of opening up a new research direc-
tion for the visual tracking community.

Related Work

Many methods have been proposed for single object tracking
in the last decade. For a comprehensive review and compar-
ison of the trackers proposed, readers are referred to (Wu,
Lim, and Yang 2013; Smeulders et al. 2014). In this sec-
tion, we review some recent algorithms for object tracking
in terms of the target representation scheme and the motion
model. We also review the existing tracking benchmarks.

The target representation scheme determines how the ap-
pearance of the target is represented. Most trackers can
be categorized into the generative or discriminative ap-
proaches. Generative approaches typically assume a gen-
erative process of the appearance model and locate an ob-
ject by searching for the region most similar to the ref-
erence model. Such methods are typically based on tem-
plates (Alt, Hinterstoisser, and Navab 2010; Matthews,
Ishikawa, and Baker 2004; Arandjelović 2015), principal
component analysis (Ross et al. 2008), sparse coding (Mei
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and Ling 2009), and dictionary learning (Wang, Wang,
and Yeung 2013). On the other hand, discriminative ap-
proaches usually learn classifiers capable of separating the
target from the background. Many advanced machine learn-
ing techniques have been applied, including boosting (Grab-
ner, Grabner, and Bischof 2006; Grabner, Leistner, and
Bischof 2008), multiple-instance learning (Babenko, Yang,
and Belongie 2011), structured output support vector ma-
chine (Hare, Saffari, and Torr 2011), and Gaussian pro-
cess regression (Gao et al. 2014). Recently, deep convo-
lutional neural networks (CNNs) have also demonstrated
great success in tracking applications. Some exploit the
representation power of CNNs by pre-training them on
an external large-scale image dataset (Hong et al. 2015;
Wang et al. 2015a) while others (Nam and Han 2016) utilize
existing tracking videos to capture more domain-specific
information. Besides, some correlation filter based track-
ing methods (Henriques et al. 2015; Danelljan et al. 2014;
2015) have been shown to achieve real-time speed and ro-
bust tracking performance.

The motion model generates a set of candidates for the
target based on an estimation obtained from the previous
frame. Both deterministic and stochastic methods are used.
Deterministic methods such as tracking-by-detection (Avi-
dan 2004; Danelljan et al. 2014; Ma et al. 2015) usually
adopt the sliding window approach to exhaustively search
for the best candidate within a region. On the other hand,
stochastic methods such as particle filters (Arulampalam et
al. 2002) recursively infer the hidden state of the target and
are thus relatively insensitive to local minima. Also, particle
filters can easily incorporate changes in scale, aspect ratio
and even rotation and skewness due to their efficiency. Ad-
ditionally, recent work (Ma et al. 2015) found it useful to
add a re-detection module to the tracking system, especially
in the case of fast motion and out-of-view targets in long-
term tracking tasks. While many studies focus on stationary
camera setting only, very few consider moving cameras. The
authors in (Mei and Porikli 2008) formulated a factorial hid-
den Markov model for joint tracking and video registration.
However, they only performed simple evaluation on toy se-
quences. A probabilistic framework was proposed in (Choi,
Pantofaru, and Savarese 2013) for tracking multiple persons
in a 3D coordinate system with a moving camera and (Liu
2016) presented a method for multi-view 3D human track-
ing. In all of these methods, initial camera information is
required for 3D localization.

In recent years, many datasets and corresponding bench-
marks have been developed for visual tracking. One mile-
stone is the work by (Wu, Lim, and Yang 2013) which set up
a unified benchmark consisting of 50 videos with full anno-
tations. The authors also proposed a novel performance mea-
sure and a strict protocol for tracker evaluation. Recently, the
benchmark has been extended (Wu, Lim, and Yang 2015).
Another representative work is the Visual Object Tracking
(VOT) challenge (Kristan et al. 2014). The major difference
is their evaluation metric. These recent efforts have sub-
stantially advanced the development of visual tracking es-
pecially with respect to the appearance model. Another in-
teresting work (Song and Xiao 2013) has built an RGB-D

dataset so that the depth information can also be utilized for
tracking. Other benchmark datasets include NUS-PRO (Li
et al. 2015) and ALOV++ (Smeulders et al. 2014). To sum-
marize, most existing benchmarks have been designed for
studying the challenging appearance changes in tracking,
but our dataset makes an attempt to open up a new direc-
tion that focuses more on the motion model.

Drone Tracking Benchmark

To construct the drone tracking dataset, we have collected
70 video sequences with RGB data and manually annotated
the ground-truth bounding boxes in all video frames. Some
of the videos are recorded on a university campus by a DJI
Phantom 2 Vision+ drone. These sequences mostly focus
on tracking people and cars with specially designed cam-
era motion. The other videos are collected from YouTube
to add more diversity to both the target appearance and the
scene itself. The original resolution of each video frame is
1280× 720.

Figure 1: First frames of some video sequences in our
dataset. A bounding box around the target is shown for each
video.

Figure 2: Statistics of our drone tracking dataset.
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Figure 3: Distribution of ground-truth bounding box location
over all sequences.
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Figure 4: Distribution of ground-truth bounding box size
over all sequences.

Dataset Statistics

A good benchmark dataset should exhibit high diversity and
low bias. Fig. 1 shows the first frames of some examples
from our drone tracking benchmark, with a bounding box
around the target shown for each video. Fig. 2 summarizes
the statistics of our dataset. We further analyze the dataset
according to the following aspects:
Motion type: The biggest distinction from the existing
tracking datasets such as VOT (Kristan et al. 2014) and
VTB50 (Wu, Lim, and Yang 2013) is that our dataset covers
different types of camera motion including both translation
and rotation. This distinction poses great challenges to the
conventional motion models used in the existing trackers.
Occlusion: Our dataset covers both short-term and long-
term occlusion. It also contains some highly challenging
cases in which there is high similarity between the occluder
and the target in addition to having fast camera motion.
Target type: We divide the targets into three types: humans,
animals, and rigid objects. Rigid objects such as cars and
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Figure 5: Attribute distribution of the entire dataset. Each
subset of sequences corresponds to one of the attributes,
namely: scale variation (SV), aspect ratio variation (ARV),
occlusion (OCC), deformation (DEF), fast camera mo-
tion (FCM), in-plane rotation (IPR), out-of-plane rotation
(OPR), out-of-view (OV), background cluttered (BC), simi-
lar objects around (SOA), and motion blur (MB).

boats can only translate or rotate. As for animals and hu-
mans, their movements have a higher degree of freedom and
usually consist of deformation which makes tracking more
difficult.
Scene type: Different from the PTB (Song and Xiao 2013)
dataset, all the videos in our dataset capture outdoor scenes.
The background differs considerably from sequence to se-
quence. For example, while the grass background is simple,
the one of extreme water sports is more complex.
Bounding box distribution: Fig. 3 and 4 show the location
and size distributions of the ground-truth bounding boxes
over all sequences. The box location distribution is com-
puted as a normalized histogram in a 640 × 360 image space
where the value in each pixel denotes the probability for a
bounding box to cover that pixel. The box size distribution
is computed with respect to the width, height, and aspect ra-
tio over all sequences. The dataset covers different objects
with large variations in size and aspect ratios.

For better evaluation and analysis of the strengths and
weaknesses of different tracking methods, we follow the
VTB50 (Wu, Lim, and Yang 2013) to categorize the se-
quences by annotating them with different attributes. We
remove the attributes with too few videos and add the
following three attributes: “aspect ratio variation (ARV)”,
“fast camera motion (FCM)”, and “similar objects around
(SOA)”. The first one measures the ability of a tracker to
handle deformation and rotation while the other two mea-
sure the performance of the motion model in extreme cases.
The attribute distribution of the entire dataset is shown in
Fig. 5.

Evaluation

For the evaluation of tracking methods, we follow (Wu,
Lim, and Yang 2013) to use the success and precision plots
for quantitative analysis. Both plots show the percentage of
successfully tracked frames with respect to the threshold.
The success plot thresholds the intersection over the union
(IOU) metric and the precision plot thresholds the center
location error. To rank the trackers, two types of ranking
scores are used: the Area Under the Curve (AUC) metric for
the success plot and the representative precision score at the
threshold of 20 for the precision plot. Different from (Wu,
Lim, and Yang 2013), here we only keep the one-pass
evaluation (OPE) setting since it is the most common setting
in practical applications.

Methods
In this section, we consider the design of special motion
models to address the issue of camera motion in online
tracking. We first present our approximate camera model
from the viewpoint of multiple view geometry. Based on the
camera model, we then propose a simple yet effective base-
line method for camera motion correction during tracking.
We note that it is general enough for all existing trackers.

Camera Model

A camera model describes a mapping between the 3D world
(object space) and a 2D image plane. Various camera models
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have been well studied in the topic of multiple view geom-
etry (Hartley and Zisserman 2003). The most widely used
one is the general pinhole camera model. (Hoiem, Efros, and
Hebert 2008) proposed a simplified camera model which
assumes that all the objects of interest rest on the ground
plane. This simplified camera model has been used for track-
ing ground-plane objects such as cars and pedestrians (Choi,
Pantofaru, and Savarese 2013). However, all the camera
models need initial information about the camera to infer the
3D location of the object and for camera calibration. Unfor-
tunately, such information is not usually available in many
object tracking applications.

Here we take a different approach by parameterizing the
camera directly in the 2D image plane. Note that since the
camera on a drone is usually far away from the target, we
may simply ignore any differences in depth between the
target and the background clues and thus assume that the
captured frames can be regarded as different planar ob-
jects. Then, from the viewpoint of two view geometry, these
planes are related by a projective transformation which is
also known as 2D homography. Mathematically, let gt and
gt−1 denote the homogeneous coordinates of a static feature
point in frame t and t− 1, respectively. We can then param-
eterize the camera model by a transformation matrix H:

gt = Hgt−1, H =

[
h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 1

]
. (1)

Note that since our main motivation for introducing the
camera model is to roughly guide the search area for track-
ing instead of determining the exact location, the above
homography approximation works well in practice. Conse-
quently, we only need to estimate the transformation matrix
H. Since initial camera information is no longer needed, this
approach is more general in its applicability.

Baseline Method

In conventional tracking methods, only the target motion is
modeled. Let zt and zt−1 denote the target coordinates in
frame t and t− 1, respectively. The motion model is simply
expressed as:

zt = zt−1 +Δzt, (2)

Particle filter based methods model Δzt by a Gaussian dis-
tribution while sliding window based methods model Δzt
by a uniform distribution in a local area. This simple motion
model works well under normal scenarios. However, in ex-
treme cases such as drone tracking, modeling Δzt alone is
inadequate. Specifically, assuming a small Δzt will simply
miss the target in the next frame while assuming a large Δzt
will increase the risk of drifting.

Based on the camera assumption above, we can express
the new motion model as a combination of the camera pro-
jection and the target motion:

zt = Ht zt−1 +Δzt, (3)

where Ht denotes the camera motion and Δzt is the loca-
tion displacement due to motion of the target. Once we get
a reasonable estimate of the camera motion Ht, the target

motion displacement can be estimated more accurately in a
local area.

Note that this baseline method can easily be incorporated
into all existing tracking methods. Specifically, we first es-
timate the homography Ht by feature point matching as
in (Fischler and Bolles 1981). Then the previous target lo-
cation estimation is projected to the current image plane by
Ht. For sliding window based trackers, a local area cen-
tered on the transformed target coordinates will be searched.
For particle filter based trackers, all the sample candidates
which are maintained will be transformed to the current im-
age plane. Other than these changes, each tracker still works
in the same way.

Experiments

In this section, we present an extensive evaluation of the re-
cent state-of-the-art trackers and their motion model variants
on the drone tracking dataset.

Dataset Validation

To understand the performance gap between the traditional
tracking setting and the drone tracking setting, we first vali-
date the proposed drone tracking benchmark (DTB) by con-
ventional state-of-the-art tracking approaches. Specifically,
we choose the following representative trackers:

• three correlation filter based approaches: KCF (Hen-
riques et al. 2015), DSST (Danelljan et al. 2014),
SRDCF (Danelljan et al. 2015)

• a color-based discriminative tracker: DAT (Possegger,
Mauthner, and Bischof 2015)

• a competitive particle filter based approach: HOG-
LR (Wang et al. 2015b)

• an expert ensemble based approach: MEEM (Zhang, Ma,
and Sclaroff 2014)

• two deep learning based approaches: SO-DLT (Wang et
al. 2015a), MDNet (Nam and Han 2016)

All of these approaches have shown excellent performance
in the VTB50 dataset. Their overall performance for our
DTB dataset is shown in Fig. 6. We can see that the perfor-
mance of these state-of-the-art trackers is significantly worse
when compared to their performance in the VTB50 dataset,
showing that DTB is quite a challenging dataset even for the
top performing trackers.

To further identify the most challenging factors of our
new dataset, we also show the attribute-based performance
of each tracker in Fig. 7 where each group corresponds to
a different attribute. In general, deep learning based track-
ers outperform other trackers by a large margin, especially
for MDNet, which utilizes additional tracking sequences for
training. In terms of the appearance challenge, we find that
all the trackers get the lowest score in the attribute “out-of-
plane rotation (OPR)”, which means that significant target
deformations and rotations are still the most challenging part
of the appearance model. We note that deep learning feature
representation is superior to traditional handcrafted features.
Some of the trackers (MEEM, KCF, DSST) do not account
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Figure 6: Success and precision plots of conventional track-
ing approaches for DTB. The performance score of each
tracker is shown in the legend.
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Figure 7: Average performance ranking scores of the track-
ers on different subsets of the test sequences in DTB.

for scale variation or aspect ratio variation, so they perform
poorly in the “scale variation (SV)” and “aspect ratio varia-
tion (ARV)” attributes. As for the motion model related at-
tribute, we can see that particle filter based methods (MD-
Net, HOG-LR) are better than local sliding window based
methods (SO-DLT, DAT, DSST, KCF). One reason is that
the particle filter framework can explore the state space in a
more efficient way. Nevertheless, none of them is satisfac-
tory in the drone tracking setting. We believe that a more
sophisticated motion model is an indispensable part of the
drone tracking system.

Motion Model Evaluation

In this part, we empirically evaluate the proposed motion
model by integrating it into the above state-of-the-art track-
ers. Note that the focus of this paper is on demonstrating
the benefit of the proposed motion model in a tracking sys-
tem. Thus comparison is done by fixing the other parts of the
trackers.

Implementation Details The static feature points are de-
tected using the SURF detector (Bay et al. 2008). After that,
we use feature matching and then apply a RANSAC (Fis-
chler and Bolles 1981) step to estimate the homography H.
For comparison, we also consider a more restricted form of

H, the affine transformation, in the following experiments.
In the feature point matching process, we discard feature
points which are near the current target location estima-
tion. The maximum number of feature points is set to 100.
The tracker implementation is based on the code from the
original authors with only modification made to the motion
model.

Quantitative Evaluation The overall performance scores
of the trackers and their motion model variants in DTB are
shown in Tab. 1. We can see that the homography generally
gives more robust and accurate estimation than the affine
transformation, especially for local sliding window based
approaches (DSST, DAT, KCF, SO-DLT). We notice that for
SRDCF and MDNet, the affine estimation performs com-
parably or even better than the homography motion model.
This seems to imply that with a very strong observation
model, both forms are reasonable approximations of the
camera motion in practice. Under the homography camera
motion assumption, all the trackers with the new motion
model outperform the original ones by about 8% on aver-
age. The improvement is more significant for local sliding
window based methods such as SO-DLT and DSST, where
the homography motion model can achieve more than a 15%
performance gain. This demonstrates both the importance
of the motion model and the effectiveness of the baseline
method in the drone tracking setting.

Overlap AUC Precision@20
original affine homography original affine homography

MDNet 0.456 0.511 0.499 0.690 0.766 0.749
MEEM 0.365 0.323 0.379 0.581 0.500 0.616
SO-DLT 0.364 0.350 0.416 0.547 0.533 0.632
SRDCF 0.339 0.362 0.367 0.495 0.544 0.544
HOG-LR 0.308 0.310 0.343 0.462 0.478 0.524
KCF 0.280 0.263 0.302 0.468 0.433 0.498
DAT 0.266 0.231 0.279 0.422 0.372 0.447
DSST 0.264 0.273 0.330 0.402 0.420 0.512

Table 1: Overall performance scores of different trackers and
their motion model variants in DTB. The best one is in bold.

To gain more insights, we further compare the perfor-
mance of the homography motion model with conventional
models under different individual sequence attributes in
DTB. Due to space limitations, we only show the percentage
improvement of the proposed methods in terms of the AUC
score in Tab. 2. We first observe that the proposed baseline
method is very effective for handling fast camera motion. In
such circumstances, the conventional approach will simply
miss the right search area. It might appear that the conven-
tional model can tackle it by adjusting the search step size.
However, searching for a larger candidate region without
considering the camera motion also increases the chance of
drifting. On the contrary, with the camera motion taken into
consideration, the proposed method can guide the tracker to
the right local search area and thus perform better. This can
be verified in the “similar objects around (SOA)” attribute.
Besides, the performance gain in the “motion blur (MB)”
attribute also demonstrates that our method is robust to cam-
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SV(22) ARV(25) OCC(17) DEF(18) FCM(41) IPR(47) OPR(6) OV(7) BC(13) SOA(27) MB(27)

MDNet 6.97% 2.35% 2.56% 0.39% 16.23% 7.52% -2.61% -1.36% 21.55% 21.30% 29.50%
MEEM -1.23% -1.74% 10.16% 2.72% 4.32% 0.85% -7.41% 2.74% -1.10% 3.37% 4.53%
SO-DLT 5.67% 2.93% 11.19% -9.13% 36.49% 6.99% -23.92% -11.11% 11.64% 39.28% 48.42%
SRDCF 0.27% -2.52% 23.19% -0.18% 14.29% 8.00% -2.71% -1.05% 19.00% 23.70% 25.65%
HOG-LR 14.36% -1.34% 32.69% 0.00% 12.11% 8.08% -10.40% -25.66% -5.41% 30.61% 20.23%
KCF 6.29% -2.59% -0.48% -12.52% 27.11% 3.96% -22.82% -30.59% -8.28% 32.61% 34.70%
DAT -6.64% -4.28% 15.69% -8.56% 15.30% 1.34% -7.50% -10.77% 11.93% 15.72% 18.65%
DSST 12.46% 0.60% 16.29% 7.03% 44.82% 16.50% -5.56% 5.24% 22.05% 36.69% 72.24%

Table 2: Per-attribute comparison between trackers and their homography motion model variants. The number shows the per-
centage improvement in the AUC score of the homography motion model over the original ones. A positive value indicates that
the proposed motion model is better.
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Figure 8: Qualitative comparison of trackers with different motion models on some challenging sequences in DTB.

era shakes. Note that the proposed motion model might fail
when both the estimation of homography is too noisy and
the observation clue in the target tracker is also distracted by
noise. The compounding error in these cases will lead to in-
correct tracking results. For the newly introduced attribute
“aspect ratio variation (ARV)”, we notice a small perfor-
mance drop in a few extreme cases with serious deforma-
tion. For the “deformation (DEF)” and “out-of-plane rota-
tion (OPR)” attributes, object deformation and out-of-plane
rotation pose significant challenges to the observation model
of the tracker. For the “out-of-view (OV)” attributes, simply
estimating the camera motion cannot predict where the tar-
get will reappear. As a result, the proposed motion model
might hurt the actual performance in those cases.

Qualitative Results To have a more comprehensive un-
derstanding of both the dataset and the proposed approach,
we show a qualitative comparison of different methods on
some challenging videos in Fig. 8.

The first row shows an example of tracking a car with
very similar objects around, where the drone camera is rotat-
ing sharply. DSST fails immediately when the camera starts
to rotate while the homography motion model can success-
fully track the target to the very end. The second row demon-
strates a more challenging case where the goal is to track a

flying drone. Both the target and the camera are moving fast
and randomly. Although the MEEM tracker itself contains
a re-detection module, it still loses the target when the pur-
suing drone makes a sharp turn in frame #164. On the other
hand, the modified model can handle it quite well. In the
last row, we show a more difficult example where the cam-
era motion causes significant blur of the target object. In this
case, only the deep learning based tracker with additional
homography estimation succeeds to track the target.

Conclusion and Future Work

In this paper, we have explored the potential of conducting
visual tracking on the drone platform. We propose a unified
drone tracking benchmark which covers a variety of videos
captured by drone cameras. To address the challenging is-
sue of abrupt camera motion, we design simple baselines
to model the camera motion by projective transformation
based on background feature clues. We present an extensive
comparison of recent state-of-the-art trackers and their mo-
tion model variants on the drone tracking benchmark. The
result demonstrates that by explicitly modeling camera mo-
tion, trackers can achieve substantial performance improve-
ment under the proposed motion model.

Although our proposed baseline methods are effective,
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some cases of failure do exist. For example, the camera esti-
mation is based on traditional low-level feature point detec-
tion which is noisy and even wrong in some circumstances.
How to design convolutional neural networks to learn more
accurate camera motion on video data is an interesting prob-
lem. Currently in the baseline method, camera estimation
works in a standalone way. Integrating camera estimation
and target tracking in a coherent learning framework is ex-
pected to help. We will pursue research in these directions
in our future work.
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