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2 MLG, Département d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe CP212, 1050 Brussels, Belgium
3 Department of Telematic Engineering. University of Vigo. 36310-Vigo, Spain

Corresponding: eliferna@vub.ac.be and tlenaert@ulb.ac.be

Abstract

Evolutionary game theory focuses on the fitness differences
between simple discrete or probabilistic strategies to explain
the evolution of particular decision-making behavior within
strategic situations. Although this approach has provided sub-
stantial insights into the presence of fairness or generosity
in gift-giving games, it does not fully resolve the question
of which cognitive mechanisms are required to produce the
choices observed in experiments. One such mechanism that
humans have acquired, is the capacity to anticipate. Prior
work showed that forward-looking behavior, using a recurrent
neural network to model the cognitive mechanism, are essen-
tial to produce the actions of human participants in behavioral
experiments. In this paper, we evaluate whether this conclu-
sion extends also to gift-giving games, more concretely, to a
game that combines the dictator game with a partner selection
process. The recurrent neural network model used here for
dictators, allows them to reason about a best response to past
actions of the receivers (reactive model) or to decide which
action will lead to a more successful outcome in the future
(anticipatory model). We show for both models the decision
dynamics while training, as well as the average behavior. We
find that the anticipatory model is the only one capable of
accounting for changes in the context of the game, a behav-
ior also observed in experiments, expanding previous conclu-
sions to this more sophisticated game.

Introduction

Many situations related to trust and fairness are modeled
through gift-giving games, of which the Ultimatum and
Dictator games are two examples (Forsythe et al. 1994;
Cooper and Kagel 2009; Bardsley 2008; Nowak, Page, and
Sigmund 2000; Fehr and Schmidt 1999; Kirchsteiger 1994).
The Dictator Game (DG) takes place between pairs of indi-
viduals, where one is assigned the role of dictator and the
other receiver. At the start of the game the dictator is as-
signed an endowment and she is requested to give an amount
between 0 and the entire endowment to the receiver. The re-
ceiver has no choice in the matter: she just receives what-
ever the dictator gives. Game Theory predicts, under the
assumption of rational and selfish behavior, that the dic-
tator should keep everything for herself, which is referred
to as the sub-game perfect Nash equilibrium of the game.
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Experiments have logically revealed that humans are not
hyper-rational or fully selfish: 60% of the participants de-
cide to share a positive amount of money with a mean trans-
fer of approximately 28% of the endowment (Camerer 2003;
Engel 2011). The Ultimatum Game (UG) differs from the
DG in that the receiver obtains the power to refuse an offer,
with the consequence that they both get zero payoff. This
new bargaining power results into a significant increase in
the amount offered, reaching almost half the endowment on
average (Oosterbeek, Sloof, and Van De Kuilen 2004). Re-
cently, a variation on these two games was proposed, i.e.,
the Anticipation Game (AG) (Zisis et al. 2015), to study the
impact of group formation on generosity. The AG differs
from the UG in the sense that the decision by the receiver
is made prior to the offer of the dictator: The receiver is
first informed about the reputation of the dictator, i.e., the
amounts he or she gave in previous interactions. Using this
information she then has to decide whether to play the DG
with that particular player. If she refuses they both get zero
payoff, if she agrees the payoff is defined by the outcome of
the DG. Once the game is played the reputation of the dicta-
tor is updated by including the last donation that she made.
The game has an equivalent sub-game perfect equilibrium as
the UG and experiments show that also in that case, dicta-
tors give an amount close to an equal split of the endowment
(Zisis et al. 2015).

To explain the origin of the behavior observed in the AG
experiments, a stochastic evolutionary dynamics model was
used similar to the one in (Rand et al. 2013). This model eas-
ily reproduces the average donations observed in different
AG experiments using simple discrete strategies, yet does
not capture closely the individual behaviors used by the par-
ticipants (Fowler and Christakis 2013). To overcome this
problem, the model had to incorporate in the dynamics that
the participants have the capacity to anticipate (Zisis et al.
2015), i.e., they take into account that the amount they give
will have an effect on being accepted in future interactions.
This feature was implemented by simply assuming that the
success of an individual is defined by the donation made
now, the likelihood of being accepted in the next round and
the payoff obtained for the same donation in the next round.
Although this adaptation leads to a closer fit with the exper-
imental results, it does not explain which cognitive mecha-
nisms are necessary or which features they should have. Ad-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4399



ditionally, in order to transfer the insights from these experi-
ments to autonomous agent-based systems, it is important to
make these mechanisms explicit, so that we can understand
how the agents need to be implemented to display anticipa-
tory behavior.

Prior works on anticipation in AI have discussed different
approaches to model individual anticipatory behavior (Pez-
zulo et al. 2008). Some of these approaches use recurrent
neural networks (RNN) (Elman 1990; Funahashi and Naka-
mura 1993) to determine the action that may lead to the best
future outcome in the prisoners dilemma(Lalev and Grin-
berg 2006). In this paper we examine whether the results
in that work expand to the AG, which is more complex in
the sense that more actions are possible for both the dicta-
tor and receiver. We show that while the reactive model is
capable of identifying optimal actions for simple scenarios
(e.g., all the receivers have the same fixed strategy), it’s per-
formance decreases considerably when faced against more
realistic situations. In contrast, the forward-looking model
is able to respond to changes in the context of the game,
which leads it to a more successful outcome. Furthermore,
the RNN is able to effectively represent the consequences of
the dictator’s actions for several time-steps.

The remainder of this paper is organized as follows. First
we discuss the prior work in modeling anticipation on which
the current paper is based. Then, in the Methods section, we
explain the reactive and anticipatory models used. After-
wards, we present the results obtained from simulations and
relate them to the experimental results obtained in (Zisis et
al. 2015). Finally, we draw some conclusions about the re-
sults and explain the next steps we will take in this line of
research.

Related Work
Learning theory applied to social dilemmas focuses often on
the Prisoners Dilemma (PD) and on reactive models to ex-
plain the observed behavior (Fudenberg and Levine 1998;
Roth and Erev 1995; Börgers and Sarin 1997; Macy 1991;
Macy and Flache 2002; Flache and Macy 2002; Masuda and
Nakamura 2011; Ezaki et al. 2016). Reactive systems are
those that respond or react to immediate environmental and
internal needs. In consequence, they do not focus on fu-
ture needs, but rather they have to wait for the conditions
to occur first (Pezzulo et al. 2008). Macy and Flache, for
instance, proposed a backward-looking (reactive) stochastic
reinforcement learning model based on the Bush-Mosteller
(BM) model, which adapts the probability of cooperation
depending on the difference between an aspiration level and
the received payoff. This aspiration level represents the
threshold reward an agent is expecting to receive. Conse-
quently, the perceived stimulus will be either negative or
positive, if the payoff obtained at a certain instant falls be-
low or above this threshold. The agent then reacts to these
stimuli so that actions associated to positive sensed values
are reinforced, in other words, the player will continue the
action after gaining a relatively large payoff (which they
call satisficing) and would switch otherwise. The authors
identify a dynamic solution concept, and claim that it might
lead adaptive agents out of the social trap of the PD and

into stable mutual cooperation, a process they call stochas-
tic collusion. However, they show that this process is highly
sensitive to the dynamics of the aspiration. (Macy 1991;
Macy and Flache 2002; Flache and Macy 2002).

Masuda and Nakamura argue that the BM player with a
fixed aspiration level is essentially the same as the Pavlov
strategy that only uses the information about the immedi-
ate past (Kraines and Kraines 1989; Nowak and Sigmund
1993). They also say that the BM model with adaptive as-
piration level is not known to yield a large probability of
mutual cooperation except in some limit cases. With this in
mind, they analyse a slightly modified version of the model,
in which the reinforcement signal has a stronger effect on
the action selection. They show that for low to intermedi-
ate speeds of adaptation of the aspiration level, the modified
BM player mutually cooperates with a large probability and
is competitive in evolutionary dynamics, which may serve
to explore the relationship between learning and evolution in
social dilemmas (Masuda and Nakamura 2011). A more re-
cent paper, applies this model to a multi-agent environment
in which agents play the two-player PD against each (direct)
neighbor in a square lattice. The agents behave similarly to
conditional cooperators, a strategy identified in behavioral
experiments, and so the authors claim that this aspiration
learning model is able to give a proximate explanation to the
conditional behavior of humans (Ezaki et al. 2016).

Despite the extensive use of backward-looking reactive
models, some authors have argued that forward-looking or
anticipatory learning models are more suitable to explain
experimentally observed results. An anticipating system
will be defined here as a system containing a predictive
model of itself and/or its environment, which allows it to
change state at an instant in accord with model’s predic-
tions pertaining to a later instant (Rosen 1985). A nice
overview of anticipatory learning is provided in (Pezzulo et
al. 2008). Of direct interest for the current work is (Taiji and
Ikegami 1999): Taiji and Ikegame, presented ”pure reduc-
tionist Bob”, an anticipative agent that is able to generate
a predictive model of the opponent, and ”clever Alice”, an-
other agent that assumes the opponent is ”pure reductionist
Bob”, thus, generates a predictive model of itself. Both mod-
els use a RNN (Elman 1990; Funahashi and Nakamura 1993;
Bhatia and Goldman 2014). They show how the learning
agent is able to select the optimal actions against players
with a fixed strategy. Also, when playing among themselves,
the anticipative agents reproduced complex dynamics that
concluded with full defection. In (Lalev and Grinberg 2006),
the authors compare the performance of an adapted version
of the reactive model of Macy and Flache to an anticipatory
model in the context of the two-player PD. Both models use
the same RNN to generate predictions about the game. The
backward-looking model uses the prediction of the payoff as
the aspiration level, while the forward-looking model uses
the network to predict several future outcomes and make a
decision based on them. Lalev and Grinberg showed that
both models produced no statistical difference to the exper-
imental results in regards to the mean payoff. On the other
hand, when comparing the mean levels of cooperation, only
the anticipatory model resembled the experimental data, as
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the levels of cooperation for the reactive model were higher.
Moreover, when comparing the response of the models to
changes introduced in the payoff matrices the reactive model
gave a totally inadequate description of the experimental re-
sults, while the forward-looking model fitted them closely.
A possible reason for this may be that the backward-looking
mechanism only accounts for the previously received payoff
and the expected payoff, thus not making use of the pre-
dictions about the change of context that the network was
able to make. The authors concluded that the anticipatory
model accounts better for human behavior. The RNN model
of Lalev and Grinberg will be discussed in more detail in the
next section as it is the foundation for the work we present
here.

Finally, anticipative learning in combination with game
theory was also applied to real world problems. For in-
stance, (Slimani, El Farissi, and Achchab ) show how it
can be applied to study behavioral probabilities in a supply
chain, where firms face the problem of predicting the mar-
ket demand in order to start the production before orders are
made. This is necessary, as manufactures cannot risk for the
actual demand to occur to start reacting. However, the ones
that posses a better view of the market are the retailers, who
may choose to withhold the information, and making an er-
ror on the prediction here can cost too much. The author ex-
perimented with different architectures of multi-layer neural
networks and were able to produce satisfactory results while
forecasting demands.

Model and Methods

Modeling Receivers

To train the dictators, other agents that play the role of re-
ceiver need to be provided. Here the receivers are modelled
using a fixed conditional strategy that specifies from which
amount onwards she accepts a dictator. In the result section,
these receivers will be used to train and test the dictators’
performance using two scenario’s: The first scenario con-
siders only one receiver with a specific strategy. The second
scenario assumes that there is a pool of receivers with dif-
ferent strategies that can be encountered with a particular
probability, which corresponds to more realistic situations
as observed in (Zisis et al. 2015). The decision to accept or
not by the receiver depends on the availability of reputation
information for the proposed dictator. In the final subsection
of the result section, we will also examine how the dictator
behaviour changes if that information is not always avail-
able.

Modeling Dictators

Although both dictators and receivers could be modeled us-
ing forward-looking learning, we will for now only focus
on the modeling of the former. Both reactive and anticipa-
tive agents were developed, using the models in (Macy and
Flache 2002) and (Lalev and Grinberg 2006) as a basis. We
use a RNN to generate a predictive model of the player itself
and of the environment. Then, each model makes use of this
network differently to make decisions. We will explain this
further in the next subsections.

Figure 1: Schematic representation of the recurrent neural
network used by the dictator’s agent. Explanation is pro-
vided in the text.

The RNN used has 14 inputs and 13 outputs and 100 hid-
den nodes. We also tested other possible sizes for the hidden
layer, however this was the one that showed a best response,
without exceeding the constraints of our resources. The acti-
vation functions of the hidden layer and the output layer are
tan-sigmoid and log-sigmoid respectively. All inputs to the
network are normalized to the interval [0, 1]. Figure 1 repre-
sents schematically this network. The actions of the dictator
and the receiver are encoded as orthonormal vectors on the
inputs, so that each time only one input is active for each ac-
tion. In the AG, the dictator has 10 possible actions (Zisis et
al. 2015), ranging from 1 to 10, thus the input vector for the
dictator’s action is of size ten. Prior to the action of the dic-
tator, the receiver has to decide to either accept or reject the
interaction, so the input vector for her actions has size two.
Yet note that when the action is not accept the input vector
of the dictator is an array of zeros. This is because, the game
does not proceed if the receiver does not accept the interac-
tion. In Figure 1, the first ten inputs named Ad(t − 1) cor-
respond to the dictator’s action on the last game. Ar(t − 1)
corresponds to the action of the receiver on round t− 1 and
πd(t − 1) refers to the payoff received by the dictator on
that round. Finally w represents the state of the game. If
w = 0, the receivers have to choose their actions without
having any information about the dictator, which according
to the experiments, increases the probability of acceptance
and also reduces the amount the dictators share (Zisis et al.
2015). When w = 1, receivers have information about the
past 3 actions of the dictator when they were accepted by a
receiver.

The outputs of the network are interpreted as probabili-
ties. The first 10 outputs correspond to the expected value
of each possible action of the dictator (p(t)1−10). The 11th
output refers to the probability of acceptance of the receiver,
qt. The 12th output is the predicted dictator’s payoff for the
round t, πd(t) The last output is again w, which corresponds
to the output of the same name. This is intended to generate
a representation of the state of the game within the network
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as in (Lalev and Grinberg 2006).
The code used to implement the models presented can be

found at https://github.com/Socrats/anticipation-matlab.

Training

The network is trained after every game with a sliding win-
dow that includes the last 10 epochs. The inputs to the net-
work are always the last game outcome (dictator action, re-
ceiver action and payoff of the dictator) and the state at the
present game w, and the targets are generated after the play-
ers finish the game: the target for the predicted probabil-
ity of acceptance, q(t), is exactly the action of the receiver.
The payoff (πd(t)) corresponds to the payoff of the dicta-
tor in this game for the Anticipatory model and to the av-
erage of the payoff through the past games for the reactive
model. The target probability for each action of the dicta-
tor (p(t)1−10) is calculated using one of the two methods
presented in the following subsections.

Reactive model

The backward-looking reinforcement learning proposed in
(Macy 1991) is a variant of the Bush-Mosteller model (Bush
and Mosteller 1953). The model consists of a stochastic
decision rule and a learning algorithm in which the conse-
quences of the decision create positive and negative stimuli
(rewards and punishments) that update the probability p that
the decision will be repeated.

Originally, this model was defined for the PD game,
which comprises of only two possible actions. We have
adapted this model to our specifications: Given that our
game has 10 different actions, the following extension of
the model needs to be used:

s(t) =
r(t)−Asp(t)

sup[|max(r)−Asp(t)|, |min(r)−Asp(t)|] (1)

In Equation 1, s(t) is the sensed stimulus, r(t) is the pay-
off obtained and Asp(t) is the aspiration level of the player
at round t. The aspiration level indicates the threshold for
which the player satisfices, which means that the player will
increase the probability of repeating the previous action.
Therefore, the dynamics of this threshold are also important
to understand the outcome of the game and the strategies se-
lected by the player. Here, we use the payoff predictions of
the RNN defined in the previous subsection as a represen-
tation of the player’s expectations and use it to update the
aspiration level in the model, similarly to what is done in
(Lalev and Grinberg 2006). The probabilities of each action
are updated according to Equation 2 when the action to up-
date is the last selected action (A(t− 1) = i) and according
to Equation 3 when it is not (A(t− 1) = j, j �= i).

pi(t) ={
pi(t− 1) + (1− pi(t− 1))ls(t) (s(t− 1) ≥ 0),
pi(t− 1) + pi(t− 1)ls(t) (s(t− 1) < 0)

(2)

pi(t) =
(1− pj(t))pi(t− 1)∑N

n=1,n �=j pn(t− 1)
(3)

N is the number of actions, pi(t) is the probability of action
i at round t and l is the learning rate.

Anticipatory Model

Here we explain the anticipatory agent model, which uses
the RNN to estimate the impact each action may have on the
future. The decision-making process then decides what is
the best strategy to take on the present, given those future
outcomes.

RNN
Ad(t-1)
Ar(t-1)
πd(t-1)

w

q(t) Ad(t’)Ar(t’)
πr(t’)

w

q(t’+n)
πd(t’-n)

w’

p(t’+n)

Fictitious Play

RNN

Sample
Sample

Figure 2: Schema of the anticipation process. Explanation
is provided in the text.

In order to assess the outcome of a potential action, the
dictator generates a sequence of n elements using the RNN
under the assumption that she uses that particular action
now. The initial input for the RNN consist of this particular
action, a prediction of the receiver’s action and a payoff. The
latter is calculated by πd(t

′) = 10 − Ad(t
′), where Ad(t

′)
is the dictator’s action at time t′, of the fictitious play (see
Figure 1). The action of the receiver at time t′ is obtained by
feeding the past game information (actions of both players,
payoff and state at time t−1), generating a prediction of the
strategy of the opponent in form of a probability distribution
(i.e., q(t) in Figure 1). As we mentioned before, the reason
the outputs of the network are interpreted as probabilities is
related to the sigmoid function that activates the outputs and
that squashes them into the interval [0, 1]. It is important
to notice that there is zero payoff when the receiver rejects
an interaction. In the following (n − 1) steps of this ficti-
tious play, the actions of the dictator are taken by choosing
the action with maximum expected value, and the actions
of the receiver are generated by sampling from the distribu-
tion of probabilities predicted by the RNN. At each step we
also calculate the expected payoff with the utility function:
u(t′) = πd(t

′)q(t′) This process is repeated until t′ + n.
The same process is executed for every action the dictator
can take. Once the sequences and corresponding payoffs
are obtained, the expected values, Qi(t), are calculated us-
ing Equation 4. In this equation, λ is a discount factor that
defines the importance of the future predictions to the prob-
ability. Finally, the probabilities for each possible action of
the dictator are calculated with Equation 5, wherein β rep-
resents the sensitivity towards the difference in payoff. The
bigger β is, the more sensible to this difference in payoff.
Figure 2 visualizes the entire process.
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Qi(t) = ui(1) +

n∑
k=2

ui(k)λ
k−2 (4)

pi(t) =
eQi(t)β∑N
j=1 e

Qj(t)β
(5)

Results

Both reactive and anticipatory models identify the
required donation when the receiver strategy is
fixed

As a first step, we study the performance of dictators with
reactive (see Figure 3) and anticipatory (see Figure 4) mod-
els by playing against a receiver with a fixed strategy, which
is in this case accepting more than 2. As a consequence,
the maximum possible average payoff that the dictator can
obtain is 7. In the Figures, we show the dynamics of the
probability distribution over the actions for each round dur-
ing the training process. We can see that in both models
the probability distribution converges to the best choice (i.e.,
giving 3), however the reactive model takes longer to reach
that equilibrium. In Figure 3 (embedded plot) we can see
that the dictator’s aspiration level is converging very slowly
towards 7. It is important to notice that in both models we
selected the best parameter settings, which is l = 1 for the
reactive model, and λ = 0.3 and β = 1/0.01 = 100 for the
anticipating model.

Figure 3: Variation of the probability of each action dur-
ing training for the reactive model. The dictator plays only
against receivers that accept anything above 2 and that will
always accept the dictator if she was rejected by the receiver
on the previous round. We set l = 1.

Playing against different receiver types leads also
to similar results

Here, we study the behavior of the models in a more realistic
scenario: the dictators play against receivers with different
strategies drawn randomly (with a certain probability distri-
bution) from a pool. Concretely, the receivers in the pool

Figure 4: Variation of the probability of each action dur-
ing training for the anticipatory model. The dictator plays
against a pool of receivers that accepts anything above 2 and
that will always accept the dictator if she was rejected by
the receiver on the previous round. We set λ = 0.3 and
β = 100.

follow one of 5 possible strategies, named strategy S1 to S5,
which differ in the minimal donation they accept from the
dictator. This acceptance threshold ranges from accepting
everything to accepting anything above 4, respectively. We
determined the results for two cases: the receivers are drawn
with uniform probability from the pool and the receivers are
drawn according to the following probability distribution:
0.2 for strategy S1 , 0.5 for S2 , 0.15 for S3 , 0.1 for S4 and
0.05 for S5. We call this latter scenario non uniform for the
sake of legibility. We used the same parameter settings for
each model as in the previous subsection.

In this case, we first trained the reactive and anticipat-
ing dictators until they converged and, afterwards, they play
10 times for 30 rounds against the receivers from the pool.
In Figure 5, we show the average payoff obtained over this
10 runs for the 2 scenarios we mentioned. The maximum
average payoff that could be obtained for the scenario with
uniform probability is 7 and for the other is 7.7. From the re-
sults, we can see that both dictators obtain an average payoff
very close to 5 in both scenarios. This outcome is sensible
as it is not possible for the dictators to predict the strategy
of each receiver individually, even for the non uniform case.
Therefore, the best is to try to maximize the acceptance, as
not being accepted means receiving 0 payoff, and always
donating an amount close to 5 is the only strategy that guar-
antees full acceptance.

Anticipatory model identifies changes in the game
context

The experiments from (Zisis et al. 2015) show that the av-
erage acceptance increases when the receivers have partial
or no information about the reputation of the dictator they
are facing. Additionally, the dictators tend to share more
of the endowment when they know receivers can see their
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Figure 5: Average payoff obtained by the dictators while
playing against a pool of receivers that have different strate-
gies. The uniform case means that the receivers are drawn
with uniform probability from the pool and the non uniform
means that they are drawn following the probability distribu-
tion explained in the text. In the 2 cases and for both models,
the average payoff is similar and is close to 5.

history of past actions. Now, we show the behavior of both
the reactive and anticipatory models when facing a similar
situation. We train the reactive an anticipating dictators in
3 different contexts: w = 1, when the receivers have all
the information about the dictator and in this case they only
accept shares above 2 units; w = 0.5, in the experiments
this means the receivers have all the information only half
of the time, we modeled this by making the receivers ac-
cept lower endowments (of above 1 unit); and w = 0, when
the receivers have no information about the dictator, and in
this case they accept any share from the her. In Figure 6
we show for each context the average amount the dictators
share. We can see how the anticipatory model performs well
and is able to detect the changes in context which allow her
to make the optimum action almost each time. In contrast,
the reactive model is not able to account for the change of
context, despite using the same recurrent neural network as
the anticipatory model and having the same inputs.

Conclusions

We have compared a reactive and an anticipatory model ap-
plied to a novel gift-giving game, i.e., the AG. We used a
RNN to generate a predictive model of the player, the op-
ponent and the context of the game. The reactive dictators
use this RNN in a backward-looking reinforcement learn-
ing model based on aspirations. This aspiration was updated
based on the predicted payoff generated by the RNN, as pro-
posed in (Lalev and Grinberg 2006). The anticipative dicta-
tors, used the network to generate the distribution of prob-
abilities for the available actions through fictitious play, so
that actions that lead to better future rewards would have
greater probability of being chosen.

The results we obtained have shown that, in general, the
anticipatory model is able to learn the best action much
faster than the reactive model. In addition, the later model
was not able to perform well in more complex environments,

3.00 3.07 3.00 

1.00 

2.03 

3.00 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

w=0 w=0.5 w=1 

Reactive Anticipatory 

Figure 6: Average donation for each model for three differ-
ent contexts: w = 0, w = 0.5 and w = 1. The reactive and
anticipative dictators were first trained playing against a pool
of receivers that accept anything above 0, 1 and 2 respec-
tively for each context. The context changed randomly dur-
ing the training every 5 rounds. The results were obtained by
letting the trained dictators play for 30 rounds against the re-
ceivers on each context, and then averaging the results over
10 runs.

where receivers play different strategies. More importantly,
the anticipative dictator was able to identify the change in
game context and play accordingly. In contrast, the reactive
agent converged to a suboptimal state, that is, she chose as
action the minimum amount required to be accepted in the
most restrictive context. Therefore, the anticipatory model
can describe better the experimental results in (Zisis et al.
2015). This is relevant as it gives a proximate confirmation
for the results, where the levels of dictators’ donations de-
crease when they know the receivers have no information
about their reputation. Thus, anticipation, together with the
presence of reputation, truly guides participants towards a
more fair outcome.

Our results highlight the importance of anticipation for
human cognition. However, the capacity to anticipate also
comes with a cost. In order to plan or reason about the con-
sequences of their actions through anticipation, individuals
need to build useful model representations of the environ-
ment (Pezzulo et al. 2008). In more complex environments,
individuals might be mislead by wrong predictions that can
lead them into suboptimal or harmful states. Nevertheless,
these drawbacks are minor in comparison to the potential ad-
vantages of anticipatory reasoning and its relation to the ca-
pacity of humans to accomplish simple and complex forms
of social interaction.
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