

Explaining Ourselves: Human-Aware Constraint Reasoning

Eugene C. Freuder
Insight Centre for Data Analytics, School of Computer Science and IT, University College Cork, Ireland

eugene.freuder@insight-centre.org

Abstract
Human-aware AI is increasingly important as AI becomes
more powerful and ubiquitous. A good foundation for hu-
man-awareness should enable ourselves and our “AIs” to
“explain ourselves” naturally to each other. Constraint rea-
soning offers particular opportunities and challenges in this
regard. This paper takes note of the history of work in this
area and encourages increased attention, laying out a rough
research agenda.

 Explaining Ourselves: Me and My AI
Human-aware AI (the IJCAI-16 Special Theme) is increas-
ingly important as AI becomes more powerful and ubiqui-
tous. A good foundation for human-awareness should ena-
ble ourselves and our “AIs” to “explain ourselves” natural-
ly to each other. Constraint reasoning offers particular op-
portunities and challenges in this regard. This paper takes
note of the history of work in this area and encourages in-
creased attention, outlining a rough research agenda.
 Constraint reasoning (or “constraint programming”)
involves finding values for problem variables that satisfy
constraints on which combinations of values are allowed.
The constraints may be “soft”, representing preferences or
probabilities or costs, introducing an element of optimiza-
tion. Constraint reasoning has been widely used in AI,
from vision to planning, and a great many practical prob-
lems, from factory scheduling to molecular biology, can be
modeled and solved as constraint satisfaction problems
(CSPs) (Freuder 2006).
 Constraints are a natural, and as opposed to rules, a de-
clarative way of expressing our needs. We encounter con-
straints in everyday interactions with computers, whether
or not there is specifically constraint programming tech-
nology operating behind the scenes. We are able to convey
simple constraints to our phones in plain English: “I want a
restaurant that has vegetarian options.” We express con-
straints that “filter” our purchasing options, e.g. for flights

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

by checking boxes for which airlines to use or moving
sliders to constrain arrival times.
 On the one hand, we are increasingly being led to expect
that we can simply explain to “intelligent assistants”, like
Siri or Alexa, what our needs or preferences are, and these
programs can then decide how best to satisfy them. On the
other hand, by 2018 the European Union General Data
Protection Regulation may give citizens the right to de-
mand explanations of decisions that computer algorithms
make about them (Goodman and Flaxmanar 2016).
 Of course, the constraint programming community has
been addressing related issues for some time, but it has not
been a primary focus, and now is a good time for a re-
newed emphasis on “user-friendly I/O”.
 Twenty years ago, in a paper entitled “In Pursuit of the
Holy Grail” (Freuder 1997), I laid out a strategic goal for
constraint programming where the user simply states the
problem and the computer solves it. Fifteen years ago, in
an invited talk for the International Conference on Princi-
ples and Practice of Constraint Programming (CP), I bor-
rowed James Carville’s famous line about a U.S. presiden-
tial election “It’s the economy stupid” to claim “It’s usabil-
ity stupid”, and Barry O’Sullivan and I organized the First
International Workshop on User-Interaction in Constraint
Satisfaction. Ten years ago, in a paper entitled “Holy Grail
Redux” (Freuder 2007), I spoke of the exciting opportunity
for members of the constraint programming community to
be pioneers of a new “usability science” and to go on to
“engineer usability”. Of course, I am hardly the only one to
have recognized this challenge. For example, Jean-
Francois Puget, now an IBM Distinguished Engineer, gave
an invited talk at CP 2004 entitled “The next challenge for
CP: Ease of use” (Puget 2004).
 However, as one crude example of the relative attention
to these issues, a search of over two decades of papers in
the CP conferences reveals an approximate average of only
one paper every two years with “explanation(s)” in the
title. So I expect there even remains some “low hanging
fruit” to be picked. In the following I lay out some “dimen-
sions of the orchard”. I also cite a few examples of “al-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4858

ready picked fruit” for illustration, but this short paper
should by no means be considered a survey.
 I divide the discussion into “Me” and “My AI”. The
former is usually treated as “problem acquisition” or
“modelling”, the latter as “explanation’, but here I view
them both as forms of explanation: users explaining their
problems and computers explaining their success or failure
at solving those problems.
 Also, while I treat these separately and sequentially, it is
important to note that ideally these can operate in a collab-
orative cycle: a user provides a problem, or an initial por-
tion of a problem specification, a solver provides a re-
sponse, based on this response the user alters the problem
to seek a different or more satisfactory result, or aug-
ments/refines the problem specification, and around we go
until the user is satisfied. This unified view of a us-
er/computer dialogue is particularly relevant to the current
interest in such themes as Human-Aware AI, Human-
Computer Collaboration, and Intelligent Personal Assis-
tants.

Me
For general constraint programming, high level languages
aim to simplify the problem modeling process (Frisch et al.
2008, Marriott et al. 2008). For industrial applications in
specific application domains, specialized programs may
facilitate the entry of constraints.
 Expressing constraints is naturally embedded in the fa-
miliar spreadsheet environment (Sample and Mouhoub
2011). (Hammond and O’Sullivan 2007) describe work on
processing problems presented as hand-drawn “constraint
networks”. (Kiziltan et al. 2016) have recently made pro-
gress in extracting constraints from natural language.
 One problem with letting a naïve user describe a CSP is
that the resulting model may be prohibitively inefficient to
solve. However, considerable progress has been made on
automating the reformulation of models into more ‘solver-
friendly’ form (Nightingale et al. 2014).
 Nevertheless, there is still a considerable way to go be-
fore the computer can fully replace the human personal
assistant on the one hand and the professional knowledge
engineer on the other. This challenge overlaps with the
general challenge of natural language processing. Howev-
er, users may have difficulty even articulating their con-
straints in natural language. As problems scale, we need to
find methods to keep the interaction required manageable
for the user.
 A back and forth dialogue may better simulate the inter-
action with a human assistant or consultant programmer.
(Freuder and Wallace 2002) studied a rudimentary
“matchmaker” system that simulated the kind of interac-
tion one might have, for example, with a salesperson. The

computer makes a suggestion (a solution to its current CSP
model of the user’s problem), the user says ‘no, because’
providing an additional constraint that the system uses to
refine its understanding of the user’s needs (update its CSP
model), then the system makes another suggestion (a solu-
tion to the updated model), and user and system continue
this dialogue until the user is satisfied.
 Machine learning may reduce the burden on the user.
Acquiring constraints from examples has a long history,
e.g. “Boltzmann Machines: Constraint Satisfaction Net-
works that Learn” (Hinton, Sejnowski, and Ackley 1984)
and “Constraint Acquisition” (Bessiere et al. in press).
(Beldiceanu and Simonis 2012) describes a system that
generates constraint models from example solutions, using
“global constraints” from a global constraint catalog as
primitives from which the models are created. (Shche-
kotykhin and Friedrich 2009) allows users to provide “ar-
guments” that can reduce the number of examples that they
need to classify.
 Articulating one’s constraints becomes an even more
challenging issue when soft constraints are involved. (Ros-
si and Sperduti 2004) describes a system that learns prefer-
ences over constraints from preferences over solutions.
 A further complication arises when several users are
working together to find a mutually acceptable solution,
and this can be complicated even more when the users are
reluctant to reveal their constraints because of privacy is-
sues. (Gelain et al. 2010) interleaves search and preference
elicitation, seeking to ask the user to reveal as few prefer-
ences as possible.
 Of course, one’s needs and preferences may change, so
maintaining an up-to-date understanding of and by the user
also presents a challenge (Nordlander, Freuder, and Wal-
lace 2007). Fortunately, there is a body of work on “dy-
namic constraint satisfaction” that may mitigate the com-
putational issues that can be especially challenging in a fast
changing real-time environment.

My AI
Explaining a successful solution for a constraint satisfac-
tion problem may seem straightforward, which is probably
one reason why there has been little attention paid to doing
so. One can simply show that the solution does indeed sat-
isfy each constraint. However, there may be occasions
when more information is sought by the user. The user
may be unsatisfied with the provided solution, because the
problem was incompletely, incorrectly or inadequately
specified. When there are multiple possible solutions the
user may want to know why one was chosen, especially in
the context of soft constraints, where indeed the user may
want some assurance that a solution is optimal. Users may
wish assistance in exploring the space of possible solu-

4859

tions, including those introduced by alternative choices for
the users’ constraints. One of the difficulties users may
have with constraint-based solutions is that a small change
in the formulation of a problem may lead to a large change
in the difficulty of the problem (or conceivably make it
unsolvable) and they do not know why. Users might also
want to see how the computer solved the problem as a way
of learning how to solve such problems themselves.
 A natural approach to providing a richer explanation of a
solution would be to ‘trace’ the program’s solution pro-
cess. However, constraint solvers generally employ search,
and tracing search tends not to provide a very satisfying
explanation. For backtrack search: “I tried this and then
that and hit a dead end, so I tried the other instead”. Even
worse, for local search: “I kept getting better, but then I
tried some other random thing”. However, constraint solv-
ing also employs inference. (Sqalli and Freuder 1996) pro-
vided explanations for logic puzzles by providing addition-
al opportunities for inference so the puzzles could be
solved entirely by inference, without search. A subsequent
trace of the inference, with some rudimentary natural lan-
guage processing, provided explanations for puzzles taken
from newsstand puzzle booklets that were reasonably simi-
lar to the answer explanations provided in the back of the
booklets.
 Much of the work on explanation for constraint satisfac-
tion, however, has dealt with situations in which the prob-
lem as stated is unsolvable. The user then needs assistance
in weakening or altering the problem specification to per-
mit solution. (Amilhastre, Fargier, and Marquis 2002) stud-
ies this problem for soft constraints, in particular for inter-
active configuration problems. They wanted to be able to
answer user questions like:

• “Which choices should I relax in order to recover
consistency?”

• “Which choices should I relax in order to render
such a value available for such a variable?”

• “From which subsets of current choices did incon-
sistency follow?”

• “Why is this value not available any longer for
this variable?”

 In (Jussien and Barichard 2000) we encounter questions
like:

• “How come I do not get value x for variable v?”
• “How come that problem has no solution?”
• “How come y is the only remaining possible value

for variable v?”

 (Freuder, Likitvivatanavong, and Wallace 2001) uses
“explanation trees” that show the basis for assignments and

deletions in terms of previous selections, whether leading
to success or failure. The intent is to provide explanations
that help the user understand the following situations:

• “Why did we get this as a solution?”
• “Why did this choice of labels lead to a conflict?”
• “Why was this value chosen for this variable dur-

ing processing?”

and also to help users in an interactive problem-solving
setting understand the implications of their choices by
providing help with these kinds of questions:

• “Is there a basis for choosing among values in a
future domain?”

• “Are there values whose choice will lead to con-
flict, even though they are consistent with the pre-
sent domains?”

 (Junker 2004) describes work that provided the techno-
logical basis for the explanation facility in commercial
products produced by ILOG, now part of IBM. (Liffiton et
al. 2016) describes recent progress in computing “minimal
unsatisfiable subsets”, which provide a kind of minimal
explanation of infeasability. (O’Sullivan et al. 2007) seeks
to assist users by identifying subsets of explanations that
are “representative” of all possibilities. (Wallace and
Freuder 2001) explores general issues such as what makes
for a “good” explanation.
 Much of the work on explaining failure actually is fo-
cused on programs explaining intermediate failures to
themselves in order to reach a solution more efficiently.
There has also been work on providing explanations of
program operation to programmers for development or
debugging. Some of this work might be repurposed to pro-
vide user explanations.

Challenges and Opportunities
The efforts cited here, and others like them, represent en-
couraging progress. At the same time, the issues they ad-
dress stand as continuing, and ever more timely, challenges
and opportunities for increasing mutual understanding of
user and machine for Human-Aware Constraint Reasoning.
 A research roadmap might include the following sign-
posts:

• Multiple interaction modalities: natural language,
examples, analogies, stories, histories, …

• Efficient interaction: reducing user effort
• Multiple users: cooperative and adversarial
• Maintainability: as needs and contexts change
• Transparency and privacy: “need to know”

4860

• Scaling up to large-scale problems
• Extracting constraints and CSP models from “big

data” and the web and using “deep learning”
• Learning and improving models by observing or

interacting with human domain experts
• Learning from experience with users
• Measuring confidence in, quality of, and com-

pleteness of acquired models
• User interfaces for interactive problem solving,

especially for real-time, dynamic problems
• Explaining the implications of choices or changes

in problem specification
• Providing appropriate insight and guidance for

human-machine collaboration
• Acquiring, improving and utilizing “background

knowledge” of user and problem domain con-
straints to facilitate future problem solving.

• Incorporating “outside” constraints, legal, regula-
tory, contractual, ethical

• Specialized methods for different classes of con-
straints

• Specialized tools for specific application domains
• Specialized methods for answering specific user

questions
• Distinguishing and evaluating varieties of expla-

nation
• Measuring and improving explanation quality

Such a research program can draw on, as well as contribute
to, the work of many fields of AI that bear upon human-
machine communication, including machine learning, rec-
ommender systems, knowledge acquisition, intelligent user
interfaces, and natural language understanding.

Acknowledgments
This publication has emanated from research conducted
with the financial support of Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289.

References
Amilhastre, J., Fargier, H., Marquis, P. 2002. Consistency resto-
ration and explanations in dynamic CSPs—application to config-
uration, Artificial Intelligence 135: 199–234.
Beldiceanu, N., Simonis, H. 2012. A Model Seeker: Extracting
Global Constraint Models from Positive Examples. In Proceed-
ings of the Eighteenth International Conference on Principles and
Practice of Constraint Programming, 141-157. Springer LNCS
7514.
Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B. in press.
Constraint acquisition. Artificial Intelligence.
Freuder, E. 1997. In Pursuit of the Holy Grail. Constraints 2(1):
57-61.

Freuder, E. 2006. Constraints: The Ties that Bind. In Proceedings
of the Twenty-first National Conference on Artificial Intelligence,
1520-1523. Menlo Park, Calif.: AAAI Press.
Freuder, E. 2007. Holy Grail Redux. Constraint Programming
Letters 1: 3-5.
Freuder, E., Likitvivatanavong, C., Wallace, R. 2001. Deriving
Explanations and Implications for Constraint Satisfaction Prob-
lems. In Proceedings of the Seventh International Conference on
Principles and Practice of Constraint Programming, 585-589.
Springer LNCS 2239.
Freuder, E., Wallace, R. 2002. Suggestion Strategies for Con-
straint-Based Matchmaker Agents. International Journal on Arti-
ficial Intelligence Tools 11(1): 3-18.
Frisch, A., Harvey, W., Jefferson, C., Hernández, B., Miguel, I.
2008. Essence: A constraint language for specifying combinatori-
al problems. Constraints 13(3): 268-306.
Gelain, M., Pini, M., Rossi, F., Venable, K., Walsh, T. 2010.
Elicitation strategies for soft constraint problems with missing
preferences: Properties, algorithms and experimental studies.
Artificial Intelligence 174(3–4): 270-294.
Goodman, B., Flaxmanar, S. 2016. European Union regulations
on algorithmic decision-making and a "right to explanation".
Xiv:1606.08813v3 [stat.ML].
Hammond, T., O’Sullivan, B. 2007. Recognizing Free-form
Hand-sketched Constraint Network Diagrams by Combining
Geometry and Context. In Proceedings of Eurographics Ireland
2007, 67-74.
Hinton, G., Sejnowski, T., and Ackley, D. 1984. Boltzmann Ma-
chines: Constraint Satisfaction Networks that Learn, Technical
Report, CMU-CS-84-119, Carnegie Mellon University, Pitts-
burgh, PA.
Junker, U. 2004. QUICKXPLAIN: Preferred Explanations and
Relaxations for Over-Constrained Problems. In Proceedings of
the Nineteenth National Conference on Artificial Intelligence,
167-172. Menlo Park, Calif.: AAAI Press.
Jussien, N., Barichard, V. 2000. The PaLM system: explanation-
based constraint programming. In Proceedings of TRICS: Tech-
niques foR Implementing Constraint programming Systems, a
workshop of CP 2002, 118–133, Technical Report TRA9/02,
School of Computing, National University of Singapore, Singa-
pore.
Liffiton, M., Previti, A., Malik, A., Marques-Silva J. 2016. Fast,
flexible MUS enumeration. Constraints 21(2): 223-250.
Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., de la Banda,
M., Wallace, M. 2008. The Design of the Zinc Modelling Lan-
guage. Constraints 13(3): 229-267.
Nightingale, P., Akgün, Ö, Gent, I., Jefferson, C., Miguel, I.
2014. Automatically Improving Constraint Models in Savile
Row through Associative-Commutative Common Subexpression
Elimination. In Proceedings of the Twentieth International Con-
ference on Principles and Practice of Constraint Programming,
590-605. Springer LNCS 8656.
Nordlander, T., Freuder, E., Wallace, R. 2007. Maintaining con-
straint-based applications. In Proceedings of the 4th International
Conference on Knowledge Capture, 79-86. New York, NY:
ACM.
O'Sullivan, B., Papadopoulos, A., Faltings, B., Pu, P. 2004. Rep-
resentative Explanations for Over-Constrained Problems. In Pro-
ceedings of the Twenty-Second Conference on Artificial Intelli-
gence, 323-328. Menlo Park, Calif.: AAAI Press.

4861

Puget, J.-F. 2004. Constraint programming next challenge: Sim-
plicity of use. In Proceedings of the Tenth International Confer-
ence on Principles and Practice of Constraint Programming, 5–8.
Springer LNCS 3258.
Rossi, F., Sperduti, A. 2004. Acquiring Both Constraint and Solu-
tion Preferences in Interactive Constraint Systems. Constraints
9(4): 311-332.
Sample, T., Mouhoub, M. 2011. Augmenting spreadsheets with
constraint satisfaction. In Proceedings of the 2011 24th Canadian
Conference on Electrical and Computer Engineering(CCECE),
1028-1031. New York, NY: IEEE.
Shchekotykhin, K., Friedrich, G. 2009. Argumentation Based
Constraint Acquisition. In Proceedings of the Ninth IEEE Interna-
tional Conference on Data Mining, 476-482. New York, NY:
IEEE.
Sqalli, M., Freuder, E. 1996. Inference-based constraint satisfac-
tion supports explanation. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, 318-325. Menlo
Park, Calif.: AAAI Press.
Wallace, R., Freuder, E. 2001. Explanations for Whom?. In
Working Notes of the First International Workshop on User-
Interaction in Constraint Satisfaction, 119-130.

4862

