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Abstract

Task allocation is ubiquitous in computer science and
robotics, yet some problems have received limited attention
in the computer science and Al community. Specifically, we
will focus on multi-robot task allocation problems when tasks
have time windows or ordering constraints. We will outline
the main lines of research and open problems.

Introduction

Many real-world problems have constraints on when, where,
and in what order tasks need to be executed by robots. How-
ever, in the computer science and Al community limited at-
tention has been devoted to allocation of tasks that have to
be completed within a specified time window or have order-
ing or synchronization constraints. Other communities have
studied time-window versions of many problems, such as
Vehicle Routing Problem (VRP) with Time Windows, and
Team Orienteering Problem (TOP) with Time Windows.

Time windows make task allocation difficult because the
algorithms need to take into account both the spatial and the
temporal relationships among the tasks (Kumar, Cirillo, and
Koenig 2013). Dealing with general time windows in task
allocation remains an open problem (Koenig, Keskinocak,
and Tovey 2010).

The widely accepted taxonomy for multi-robot task allo-
cation (MRTA) problems (Gerkey and Matari¢ 2004) classi-
fies robots, tasks, and time as follows:

o Single-task robots (ST) vs. multi-task robots (MT): ST
robots can do at most one task at a time, MT robots can
work on multiple tasks simultaneously.

o Single-robot tasks (SR) vs. multi-robot tasks (MR): SR
tasks require exactly one robot to be executed, while mul-
tiple robots are needed for MR tasks.

o [nstantaneous (IA) vs. time-extended (TA) assignments:
Tasks are allocated as they arrive in IA, and scheduled
over a planning horizon in TA.

The taxonomy in (Korsah, Stentz, and Dias 2013) focuses
on schedule dependencies in individual robot schedules and
across robot schedules, but does not address different as-
pects of time-extended assignments, which is what we ad-
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dress here. We call this class of problems with temporal and
ordering constraints between tasks MRTA/TOC.

MRTA/TOC: Multi-robot Task Allocation
with Temporal and Ordering Constraints

We assume there is a finite set of robots and a set of tasks.
A robot may have a location, speed, route, and/or schedule.
A task may have a location, earliest start, latest finish time,
expected duration, cost, demand, and reward.

Constraints on tasks can be in the form of time windows,
which specify the period of time when a task can be done.
Ordering constraints specify a dependency between pairs
of tasks. They are usually represented as directed acyclic
graphs, where each node in the graph represents a task, and
each edge indicates a precedence constraint. In addition to
precedence constraints, ordering constraints can be synchro-
nization constraints, which specify, for instance, that two
tasks have to start at the same time or that a task has to start
a specific amount of time after another finishes.

We use the term synchronization constraints when there
is a specific time involved and precedence constraints when
there is only an ordering constraint. Those two types of con-
straints are indicated in the Operation Research literature as
General Precedence Relationship (GPR), i.e., task j has to
start within a given amount of time after the completion of
task ¢ or task j can start any time after the end of task ¢
(Monma 1981). We prefer to use terms that make explicit
the difference between those two types of constraints. More
details in (Nunes et al. 2017).

The objective is to optimize some function of the cost (or
reward) for doing the tasks for all the robots. Cost can be a
temporal measure, such as the makespan — the time differ-
ence between the end of the last task and the start of the first
task, a spatial measure, such as distance traveled, a combi-
nation of both, or some other measure.

Connections with Other Problems

Multi-robot task allocation is similar to the vehicle routing
problem (VRP) (Dantzig and Ramser 1959) the team ori-
enteering problem (TOP) (Chao, Golden, and Wasil 1996).
Variants of those problems include time windows, e.g., the
vehicle routing problem with time windows (Kolen, Kan,
and Trienekens 1987; Desrochers et al. 1988; Solomon and



Desrosiers 1988; Toth and Vigo 2002), or the team orien-
teering problem with time windows (Labadie et al. 2012;
Rubinstein, Smith, and Barbulescu 2012; Coltin and Veloso
2014a)). Even though MRTA problems make different as-
sumptions on the number of robots, task homogeneity, en-
vironment dynamics caused by failures or interference with
other robots, and communication restrictions, there is much
to be learned from work done in those other areas.

The solutions to several variants of VRP with time win-
dows, such as multi-depot (Polacek et al. 2004; Kang, Lee,
and Lee 2005), precedence and synchronization constrained
(Bredstrom and Ronnqgvist 2008; Korsah et al. 2012), have
been extended to MRTA/TOC settings.

In MRTA/TOC problems communication is important and
often constrained. Some approaches, such as (Nunes and
Gini 2015), cut down on communication costs by using
auctions for allocation and having each robot keep its own
schedule.

In the team orienteering problem with time windows, an
origin and destination pair is given. The goal is to search
for control points to visit between the origin and destina-
tion such that the profit (or score function) is maximized
while respecting all the constraints. Each control point is as-
sociated with a profit (or score), and each edge connecting
control points is weighted by the cost of moving between
the control points (Labadie et al. 2012). Control points are
equivalent to tasks in MRTA/TOC. One application of team
orienteering problems, dial-a-ride, has gained popularity in
MRTA/TOC (Coltin and Veloso 2014a), In dial-a-ride, the
problems are over-constrained, which means that not all the
tasks can be performed, and thus the goal is to find the subset
of tasks that maximizes the total profit (Rubinstein, Smith,
and Barbulescu 2012).

Temporal Models
Relationships between time intervals

Time can be modeled using points (e.g., 9:00am) or inter-
vals (e.g., [9:00-13:00]). The interval representation (Allen
1983) uses a set of relationships that hold between pairs of
time intervals. The relationships can be used to model par-
tial or complete ordering constraints between tasks, — for
example, task X should be done before, after, or at the
same time as task Y. The “X before Y operator can be
used to describe precedence constraints between tasks, while
the “X equal Y operator describes a synchronization con-
straint between the start and end points of two tasks.

Simple Temporal Networks (STN)

Dechter (Dechter, Meiri, and Pearl 1991) proposed to rep-
resent a class of temporal constraints with a graph, called a
simple temporal network (STN). Nodes represent time point
variables or time events, and weighted edges represent in-
equality constraints between time points. To reduce compu-
tational complexity, this representation requires exactly one
constraint between pairs of time point variables. A solution
to the scheduling problem can be computed in polynomial
time using the Floyd-Warshall algorithm. In an STN the re-
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lationship between time windows can be represented by es-
tablishing constraints between start and finish times of tasks.
STNs are used in MRTA problems (Barbulescu et al.
2010; Gombolay, Wilcox, and Shah 2013; Nunes and Gini
2015) because constraint consistency can be efficiently ver-
ified in polynomial time (Dechter, Meiri, and Pearl 1991;
Xu and Choueiry 2003; Planken, de Weerdt, and van der
Krogt 2008). An important feature of STNGs is that new time
points and constraints can be dynamically added in polyno-
mial time (Cesta and Oddi 1996), which is beneficial in dy-
namic domains where new tasks can appear and disappear.
STNs have been extended to multi-agent settings (Boerkoel
and Planken 2012) and to scenarios with uncertainties (Vidal
1999; Tsamardinos 2002; Fang, Yu, and Williams 2014).

Time Window Constraints

A time window specifies a temporal interval constraint on
the start and finish time of a task. A time window has a
lower bound value, usually the task’s earliest start time, and
an upper bound value, usually the task’s latest finish time.
A task can also have a latest start time and an earliest finish
time, resulting in a time window of the form [earliest start
time, latest start time, earliest finish time, latest finish time].
This representation implicitly provides an upper bound to
the task duration. When the earliest and latest start times are
the same, the time window specifies only a start time. Same
for finish time. If only a start time is given the finish time is
assumed to be the end of the scheduling horizon; similarly if
only a finish time is given the start time is the beginning of
the scheduling horizon.

Specifying earliest and latest start or finish times in-
creases the flexibility of task allocation, but increases the
search space because there are multiple ways of scheduling
a task within its time window. The use of time windows for
auction-based task allocation to agents was pioneered in the
MAGNET system, which proposed various task allocation
algorithms (Collins and Gini 2006).

Time windows can be used to model many types of
temporal relationships among tasks. For instance, dead-
line constraints (Amador, Okamoto, and Zivan 2014; Luo,
Chakraborty, and Sycara 2015) impose constraints on the
latest time robots can arrive to tasks before the task expires.

Task allocation problems with time windows are gener-
ally (except for a few special cases, e.g., (Melvin et al.
2007)) NP-hard (Solomon and Desrosiers 1988), and find-
ing a feasible solution is NP-complete (Savelsbergh 1985).
The inclusion of time windows makes it harder to design
efficient approximation algorithms.

Precedence and Synchronization Constraints

Precedence constraints specify a partial or total order for the
tasks, without necessarily providing a specific time window
for each task. Time windows can be used to specify implic-
itly precedence or synchronization constraints, but in gen-
eral they are not sufficient. Two time windows with the same
start time do not necessarily indicate a synchronization con-
straint. Time windows that overlap are not sufficient to spec-
ify precedence constraints.



Solutions to MRTA/TOC problems might assign to dif-
ferent robots tasks that depend on each other. This creates
cross-schedule dependencies among robots (Jones, Dias,
and Stentz 2011; Korsah et al. 2012), which are undesir-
able because exogenous events during execution affecting
one robot will also affect the robots that depend on it.

Precedence and synchronization constraints impose par-
tial ordering between tasks, which can be used to eliminate
candidate solutions that violate the ordering. Instead tasks
with time windows are independent of each other and can be
done in any order, as long as there is enough time to reach
the tasks and execute them within their time windows.

In (Luo 2014) a model for tasks with set precedence con-
straints is presented. The model divides tasks into disjoint
sets with strict ordering between the sets, and assumes that
each robot can do at most one task per set. The model heav-
ily constrains the type of allowable precedence graphs, but
the algorithm proposed is proved to be sound and complete.
A very general model for allocation of tasks with any type of
precedence constraint is presented in (Mclntire, Nunes, and
Gini 2016).

Optimization Objectives

Applications of MRTA/TOC problems require the robots to
achieve a given optimization objective. There can be a sin-
gle or multiple objectives. Optimization objectives might re-
quire a quantity to be minimized, usually a cost (Chopra and
Egerstedt 2012; Gombolay, Wilcox, and Shah 2013; Nunes
and Gini 2015) or regret (Heap and Pagnucco 2014), or to be
maximized, usually a score (Ponda et al. 2010) or a reward
(Koes, Nourbakhsh, and Sycara 2005; Melvin et al. 2007;
Korsah et al. 2012).

Common optimization objectives for MRTA/TOC prob-
lems include:

e MiniSUM, i.e. minimize the sum of the robot path costs
over all the robots (Lagoudakis et al. 2005; Coltin and
Veloso 2014b; Chopra and Egerstedt 2012) or some time
measure over robot paths (Barbulescu et al. 2010; Heap
and Pagnucco 2014)).

e MiniMAX, i.e. minimize the maximum path cost of a
robot over all the robots (Lagoudakis et al. 2005). Instead
of minimizing the maximum path cost, a similar objective
function is to minimize the makespan, i.e. the time differ-
ence between the start of the first and the end of the last
task (Graham et al. 1979; Nunes and Gini 2015).

e MiniAVE: i.e. minimize the average per task cost of the
path over all the tasks. The per task cost is the cost of
the path from the initial location of the robot to the task
location (Lagoudakis et al. 2005). This is known as the
Traveling Repairman Problem (Fakcharoenphol, Harrel-
son, and Rao 2007), where the objective is to minimize
the wait time of the customers for a repairman.

e Minimize lateness or tardiness, which is the difference be-
tween the earliest start time of a task and the actual arrival
time of the robot (Ponda et al. 2010; Rubinstein, Smith,
and Barbulescu 2012).

e Maximize the number of tasks completed (Lau, Sim, and
Teo 2003) or minimize the number of tasks missed.
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e Minimize the number of robots used. This is common in
vehicle routing problems, where the number of vehicles
available is unlimited (Luo and Schonfeld 2007; Briysy
and Gendreau 2005a; Desrochers et al. 1988).

e Maximize profit, measured as the difference between
the reward of tasks and their respective costs (Melvin
et al. 2007; Korsah et al. 2012), or as the team utility
(Koes, Nourbakhsh, and Sycara 2005; Ponda et al. 2010;
Amador, Okamoto, and Zivan 2014).

Multi-objective problems are common, especially when
objectives are combined through linear aggregation. For ex-
ample, makespan and distance are minimized in (Ponda et al.
2010; Nunes and Gini 2015), while (Gombolay, Wilcox, and
Shah 2013) also minimizes workspace overlap. In (Alighan-
bari, Kuwata, and How 2003) a multi-objective function
minimizes the maximum and average task completion times,
as well as total idle times.

Dynamic Task Release and Execution

Execution of tasks in MRTA/TOC problems vary accord-
ing to the dynamics considered. Dynamics may be due to
faulty robots, changes in estimated cost due to uncertainties,
changes in task definitions, online arrival of tasks, addition
of robots to the team, and other changes made by external
agents (Sariel-Talay, Balch, and Erdogan 2009). While the
execution aspect is outside the task allocation scope, we con-
sider dynamics caused by task arrival and during task exe-
cution separately.

Some dynamics are caused by the arrival of tasks over
time without further knowledge of future tasks. Usually
when a new task arrives there is already an existing allo-
cation for previously scheduled tasks that have not yet been
performed. Thus, replanning occurs at task arrivals, while
robots are executing previously assigned tasks (Cordeau and
Laporte 2007). In (Nunes and Gini 2015) both determin-
istic and dynamic task arrivals are considered, assuming
the robots know the map where tasks appear. In contrast,
problems defined as online pickup and delivery problems
or dial-a-ride include not only online arrival of tasks but
other uncertain events, such as vehicle breakdowns and de-
lays (Cordeau and Laporte 2007). Recent examples of on-
line pickup and delivery consider transfers in addition to the
arrival of tasks with hard temporal constraints (Coltin and
Veloso 2014b; 2014a).

The dynamics that occur during plan execution (Sariel-
Talay, Balch, and Erdogan 2009; Shah, Conrad, and
Williams 2009) are very important for the practical use of
robots, because execution can fail due to many reasons and
replanning is essential to maintain some level of efficiency.
In (Barbulescu et al. 2010) dynamics during execution are
created by unexpected events and changes in costs and con-
straints; in (Ponda et al. 2010) dynamics are caused by
breaks in communication links, which may cause conflict-
ing assignments, as more than one robot could be assigned
the same task.



Typical Solution Approaches
Centralized Solutions

Centralized methods rely on a central controller that allo-
cates tasks to robots. The robots simply execute the assigned
schedule. Optimal solutions are typically computed us-
ing Branch-and-Bound (Clausen 1997). Branch-and-Bound
searches the state space of candidate solutions represented
as a tree and uses upper and lower bounds of the opti-
mal solution to prune the branches of the search tree that
have costs higher than the computed lower bounds. Variants
of Branch-and-Bound, such as Branch-and-Cut (Bard, Kon-
toravdis, and Yu 2002; Ropke, Cordeau, and Laporte 2007),
Branch-and-Price (Dohn, Kolind, and Clausen 2009; Korsah
et al. 2012), and Branch-Price-and-Cut (Barnhart, Hane, and
Vance 2000; Desaulniers 2010; Archetti, Bouchard, and De-
saulniers 2011) have been used for VRP with time windows
problem, but not as much for MRTA/TOC problems.

MRTA/TOC is intractable for large numbers of robots and
tasks. Thus, the focus of MRTA/TOC solutions is largely on
approximation and heuristic solution methods. For example,
a Mixed Integer Linear Programming solver is used in con-
junction with a task sequencer to solve separately task allo-
cation and task sequencing efficiently. The method does not
provide theoretical guarantees, but experimentally produces
near optimal schedules for up to 10 robots and 500 tasks in
less than 20 seconds (Gombolay, Wilcox, and Shah 2013).

Another way to gain computational efficiency is to use
metaheuristic approaches. Metaheuristics are algorithmic
templates that use heuristics to produce approximate solu-
tions for hard combinatorial optimization problems. Unlike
other combinatorial optimization algorithms, metaheuristics
may allow lower quality solutions in the search process
to escape local optima (Briysy and Gendreau 2005b; Vi-
dal et al. 2013). Metaheuristic approaches have been shown
to outperform other methods (e.g. construction heuristics
and local search) for standard benchmarks for VRP and
TOP with time windows (Bridysy and Gendreau 2005b;
Hu and Lim 2014). Recent trends in the metaheuristic liter-
ature seek to reduce the computation time and improve the
solution quality by using parallelization and hybridization
of different heuristics and exact techniques (e.g., (Mitiche,
Bougaci, and Gini 2015)). However, metaheuristic param-
eters remain hard to tune (Brdysy and Gendreau 2005b;
Birattari 2009; Mitiche, Godoy, and Gini 2015).

In addition to scalability issues, centralised methods suf-
fer from being a single point of failure. In addition, they have
to generate a new solution whenever new tasks appear dur-
ing execution or when significant delays disrupt the execu-
tion schedule. This is not only undesirable computationally,
but it tends to produce instability since tasks might be real-
located in the new solution. To the contrary, distributed allo-
cation methods degrade gracefully in the presence of com-
munication interruptions, communication errors, and robot
malfunctions.

Decentralized Solutions

Decentralized approaches vary widely. Here we focus on (1)
distributed constraint optimization and (2) market-based al-
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gorithms since these have received a great deal of attention
in the MRTA community.

Distributed Constraint (DCOP)-Based Methods.
MRTA/TOC problems can be modeled as a Distributed
Constraint Optimization Problem (DCOP) (Maheswaran et
al. 2004) and solved using DCOP methods. Solving DCOP
exactly is NP-hard and impractical even for unconstrained
MRTA problems (Junges and Bazzan 2008). Optimal
solutions also require an exponential coordination overhead
(i.e. communication computation). Thus, approximate
methods such as Max-Sum have been used for task allo-
cation in sensor networks (Farinelli, Rogers, and Jennings
2014) and in RoboCup Rescue (Ramchurn et al. 2010;
Pujol-Gonzalez et al. 2015; Parker, Farinelli, and Gini
2017).

In (Ramchurn et al. 2010) the Fast Max-Sum algorithm
is proposed and shown to be robust in situations where
the number of tasks is dynamic; the approach reduced the
computation time, number and size of messages sent com-
pared to Max-Sum, but it is still exponential. When the con-
straints are expressed using Tractable Higher Order Poten-
tials the computation time can be reduced to polynomial
(Pujol-Gonzalez et al. 2015).

Another approximation method is LA-DCOP (Scerri et al.
2005; Farinelli et al. 2006), which uses token passing to pass
the token to a randomly chosen agent. This tends to guide the
search quickly towards a greedy solution.

Market Based Methods. Among the decentralized al-
gorithms, sequential auction- and negotiation-based algo-
rithms (Sariel-Talay, Balch, and Erdogan 2009; Nanjanath
and Gini 2010; Ponda et al. 2010; Heap and Pagnucco 2014;
Nunes and Gini 2015) are widely used. Sequential auc-
tion algorithms produce solutions that are two away from
optimal in the worst-case in both single-item (Lagoudakis
et al. 2004) and multi-item auctions (Choi, Brunet, and
How 2009). This, together with the ease of implementa-
tion and extension to dynamic scenarios and robust execu-
tion (Nanjanath and Gini 2010) makes single-item sequen-
tial auctions an attractive solution. However, the greedy na-
ture of sequential auctions and the complex structure of most
MRTA/TOC problems cause the addition of temporal con-
straints to auction algorithms to produce suboptimal solu-
tions (Nunes, Nanjanath, and Gini 2012). Temporal model-
ing and balancing between temporal- and distance-based ob-
jectives can help auctions perform better (Ponda et al. 2010;
Nunes and Gini 2015).

Auctions distribute the computation to individual agents
but require communication to share bids and results. To re-
duce the need for communication, several approaches use
consensus algorithms (Zavlanos, Spesivtsev, and Pappas
2008; Choi, Brunet, and How 2009; Ponda et al. 2010),
where each agent determines independently which tasks it
should do. An equilibrium is reached by iteratively shar-
ing information with neighbors and re-allocating tasks if
needed. In (Godoy and Gini 2012) the Consensus Based
Bundle Algorithm (CBBA) (Choi, Brunet, and How 2009)
is extended to optimize the number of completed tasks.

Despite the development of many decentralized methods



for MRTA/TOC problems, very limited work offers theoret-
ical analysis of the quality of these solutions. There is a need
for theoretical performance bounds for both centralized and
decentralized heuristics for the MRTA/TOC problem.

Swarm-based approaches have been proposed for various
tasks, such as foraging, where robots need to find food and
bring it to the nest (Lerman et al. 2006; Brutschy et al. 2014)
or where swarms of robots are allocated different moni-
toring tasks without any communication among the robots
(Berman et al. 2009). Swarm methods often work well but
do not have theoretical guarantees.

Open Issues and Future Research

There are several open issues that need to be addressed, such
as: (1) theoretical guarantees for approximate solutions, (2)
richer and more complex temporal models with provably
good and efficient algorithms, (3) models and algorithms
for stochastic MRTA/TOC problems, (4) models and algo-
rithms for MRTA/TOC problems that require multiple robots
to work together on a task as well as for robots that can do
more than one task at once.

Research in stochastic MRTA/TOC problems is still very
sparse. The development of MRTA methods that take advan-
tage of simulation and stochastic models to better plan under
uncertainty is worth pursuing because robots often operate
in uncertain environments.

There is also a need for work on theoretical guaran-
tees for heuristic schedulers for MRTA/TOC problems. The
NP-complete nature of the problem and the need for rela-
tively fast planners has generated many heuristics. However,
heuristics typically lack performance guarantees, which can
be crucial for safety critical systems.

More complex temporal constraint types, such as disjunc-
tive temporal models, need to be addressed, as well as com-
binations of precedence with synchronization constraints.
A mix of these constraints might produce more expressive
models for a larger set of real-world problems.
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