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Abstract

We contribute a learning from demonstration approach for
robots to acquire skills from multi-modal high-dimensional
data. Both latent representations and associations of differ-
ent modalities are proposed to be jointly learned through
an adapted variational auto-encoder. The implementation and
results are demonstrated in a robotic handwriting scenario,
where the visual sensory input and the arm joint writing mo-
tion are learned and coupled. We show the latent representa-
tions successfully construct a task manifold for the observed
sensor modalities. Moreover, the learned associations can be
exploited to directly synthesize arm joint handwriting motion
from an image input in an end-to-end manner. The advan-
tages of learning associative latent encodings are further high-
lighted with the examples of inferring upon incomplete input
images. A comparison with alternative methods demonstrates
the superiority of the present approach in these challenging
tasks.

Learning from demonstrations (LfD) is promising for an ef-
fective transfer of robotic skills from humans to robots. Tra-
ditional LfD approaches often learn with hand-crafted fea-
tures (e.g., the poses of labeled objects) in a low dimensional
space (e.g., robot operational space) (Khansari, Kronander,
and Billard 2014)(Calinon 2015). This is limited for broader
LfD applications in a more practical context, where high di-
mensional raw sensory data is pervasive. The desideratum of
learning from high dimensional demonstrations solicits LfD
to automate the extraction of task relevant features alongside
learning the underlying task constraints. Such a representa-
tion learning has the potential to free human users, from the
domain feature design as well as the restriction of sensor
selection, thus substantially improving the applicability and
the empirical value of the LfD framework.

Another often-overlooked aspect in LfD is learning from
multi-modal demonstrations. Previous LfD works tend to
focus on modeling data of a single sensor modality, even
though there is nothing preventing the task demonstrations
being observed through the lens of various robot sensors. On
the other hand, human beings are quite proficient in learning
and fusing the knowledge or experience gathered from dif-
ferent sensing systems. For instance, humans can perceive
the shape of an object through both vision and tactile sensa-
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Figure 1: Learning representations for multiple sensory
perceptions (vision and motion) and associating them in
the latent space for the underlying task. The desired sen-
sory/motor state, e.g., joint motion command, can be effi-
ciently derived from incomplete or novel input e.g., symbol
images.

tions. Such a redundant and associative description is benefi-
cial when only partial information is presented to the agents
in the task reproduction: humans can still effortlessly infer
the shape of an object with a hand exploration in darkness.
Therefore, by learning from multi-modal demonstrations,
the robots are enabled to gain a more complete task descrip-
tion, a natural mechanism to estimate what is unknown from
what is known, and as such, a capacity of robustly executing
the task in face of uncertainty.

In this paper, motivated by the above challenges, we
present an approach that allows robots to learn demonstrated
skills from high dimensional and multi-modal demonstra-
tion data. Among different LfD variants, we consider the
problem of inverse optimal control (IOC) which extracts and
represents task constraints as cost functions. We propose to
learn the task cost function as well as its features by inte-
grating a representation learning framework into LfD. More-
over, constrains in the latent space are imposed and jointly
learned, by exploiting the fact that the multi-modal data is
a redundant description for the underlying task to model.
To this end, we can obtain succinct task manifolds and rep-
resentations, which can be leveraged for efficient motion
derivation from the raw sensory input (Figure 1). The main
contributions of this paper are:

• An approach which enables an agent to learn from high
dimensional raw demonstration data, with an adaptation
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from the unsupervised representation learning.

• A KL-divergence-based metric that compactly associates
the statistics of latent encodings of different demonstra-
tion modalities, resulting in an efficient stochastic gradi-
ent descent training algorithm.

• An end-to-end system that enables the robot to derive arm
joint writing motion from observed symbol images, with
robustness against image occlusion.

Related Work
This section gives a brief discussion about related literature
in topics of learning from demonstrations and representation
learning.

Learning from Demonstrations - in the research of im-
plicit learning from demonstrations, various features have
been investigated to parameterize the target cost functions.
A quadratic form was first researched as the inverse prob-
lem of linear quadratic optimal control in Kalman’s pio-
neering work (Kalman 1964). In (Rückert et al. 2013) and
(Yin, Paiva, and Billard 2014), structured quadratic forms
were learned to fulfill prior constraints of the task represen-
tation. As a more universal cost encoding, radial basis func-
tion (RBF) was vastly adopted as a popular feature choice
(Ziebart et al. 2008). This parameterization often results
in an intractable demonstration likelihood evaluation, for
which discretization (Dvijotham and Todorov 2010), Lapla-
cian approximation (Levine and Koltun 2012) and trajec-
tory sampling (Kalakrishnan et al. 2013) were resorted as
approximations. Moreover, research effort has been made
to avoid an explicit feature design. For example, Gaussian
Process was used to obtain a nonparametric cost representa-
tion (Levine, Popovic, and Koltun 2011). Recently, this line
of research was advanced by learning features of discrete
state (Wulfmeier, Ondruska, and Posner 2015) and continu-
ous robot joint state (Finn, Levine, and Abbeel 2016). Our
work learns cost features on high dimensional vision data, as
was envisioned in (Wulfmeier, Ondruska, and Posner 2015).
Also, the presented variational formulation leads to an op-
timization of the lower bound of the original demonstration
likelihood, which can be efficiently evaluated with sparse
samples.

Representation Learning - in the task of learning from
unlabeled data, representation learning has achieved re-
markable progresses with the contributions of variational
Bayes likelihood (Kingma and Welling 2014) and adversar-
ial training objectives (Goodfellow et al. 2014). These ad-
vancements caught the attention of roboticists on embed-
ding or building controllers on high dimensional sensory
input such as vision data. Notable results have been ob-
tained in different domains including robotic visuomotor
skills (Levine et al. 2015), human gait modeling (Chen et al.
2015) and pixels-based reinforcement learning tasks (Watter
et al. 2015). Our work differs from (Levine et al. 2015) in
that we consider the task of learning robotic skills from hu-
mans. Also our work proposes to learn a generative model,
which is arguably more flexible than searching a discrimi-
nant policy in dealing with incomplete sensory information.
The work of (Chen et al. 2015) suggested enforcing dynamic

movement primitives in the latent space extracted by a de-
noising auto-encoder, while (Watter et al. 2015) chose to im-
pose locally linear constraints for the latent dynamics. These
are similar to our work in terms of feature embedding and la-
tent association. However, our work emphasizes the associ-
ation among multiple general sensor readings from the per-
spective of imitation learning. With such an association en-
forced, the task can be learned by linking perceptual inputs
and encoded motor commands in a direct manner.

Background
This section presents necessary background to develop our
contributed approach. It starts with the introduction of the
target scenario and the relevant notations. Then this part is
followed by a very brief overview about variational autoen-
coder (VAE) (Kingma and Welling 2014), which is adapted
in the subsequent method development.

Preliminaries
We consider an imitation learning problem where a robot
needs to learn from expert demonstrations collected from
multi-modal sensors. In particular, learning handwriting is
taken as a running example throughout this paper. The
demonstration with multiple modalities implies various
types of sensory information (e.g., arm motion and visually
observed letter images) are collected from a same underly-
ing task procedure (writing the target letter). The demon-
strations are denoted as {xi}. Without the loss of generality,
the i-th joint observation xi is comprised of two modalities
as xi = {xi

v,x
i
m}, with subscripts indicating vision (pix-

els of letter images) and motion (arm joint trajectory or its
proper parametric representation) respectively. The goal of
imitation is to rationalize the expert behaviors, by learning
a model, e.g., a probabilistic one with maximum entropy in
the exponential family (Ziebart et al. 2008):

p(x) =
exp(−J (x,θ))∫
exp(−J (x′,θ))dx′ (1)

In this equation, as a statistic momentum, J (x,θ) assigns a
real value to ensure the observation of the interested modal-
ity x = {xi

v} or x = {xi
m} is more likely under the distri-

bution with a proper model parameter θ. The learning of θ
can be exercised by maximizing the likelihood or its appro-
priate surrogate.

Variational Autoencoder
Recently, the variational auto-encoder (VAE) (Kingma and
Welling 2014) emerged as a popular unsupervised learning
framework in representation learning. VAE assumes latent
variables to model complicated correlations between high
dimensional features, such as camera pixels and arm joint
trajectories in our case. Concretely, taking the example of
xv , the image pixels are assumed to be generated from a la-
tent distribution p0(zv). By taking the formula of total prob-
ability, (1) is re-written as:

p(xi
v) =

∫
pθv

(xi
v|zv)p0(zv)dzv (2)
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where zv denotes the latent representation and its prior is
p0. pθv (xv|zv) is the process to obtain xi

v by decoding a
sample zv .

The above objective (2) is, however, not easy to evalu-
ate. In fact, a large amount of samples might be required
to obtain a sufficiently accurate estimation, because most
zv will not generate the observed xi

v and the contribution
of pθv

(xi
v|zv) would be extremely small. VAE proposes

to use a φ parametrized proposal distribution qφv
(zv|xi

v)

to approximate p(zv|xi
v). The approximation is regulated

through a Kullback-Leibler (KL) divergence:

KL[qφv
‖p(zv|xv)] = Eqφv

[log qφv
− log p(zv|xi

v)] (3)

Applying Bayes rule and noticing that total probability
p(xi

v) is independent of zv , the above equation can be ex-
panded and rearranged as:

Lv(θv,φv,x
i
v) =KL[qφv

‖p(zv|xi
v)]− log p(xi

v)

=KL[qφv
(zv|xi

v)‖p0(zv)]

−Eqφv
(zv|xi

v)
[log pθv (x

i
v|zv)]

(4)

Because of the non-negativity of KL-divergence, the right
hand side can be viewed as an upper bound of the negative
logarithm of (2). Hence Lv can be used as a valid surro-
gate to optimize the original objective when (3) is small. In
practice, qφv

(zv|xi
v) is often parameterized as a Gaussian

zv ∼ N (μ(xi
v,θv),Σ(xi

v,θv)), which is sufficiently rich
to provide a close approximation to p(zv|xi

v). The mean
and covariance are modeled as deep neural networks pa-
rameterized by φv . The generative process pθ(x

i
v|zv) also

uses a deep neural network to model the statistics of an ex-
ponential distribution, which could be a binomial distribu-
tion for pixel values or a multivariate Gaussian distribution
if a real-valued output is expected. As per the prior of the
latent variable, an isotropic Gaussian z ∼ N (0, I) is of-
ten used. This simplifies the evaluation of the regularization
term KL[qφv

(z|xi)‖p0(z)] to a closed-form. Finally, the in-
tegral term can be estimated by taking only a few samples
from qφv

, and as is shown in (Kingma and Welling 2014),
even a single sample is sufficient for stable iterations.

Learning and Associating Latent Encodings
Variational auto-encoder jointly learns the encoding and
decoding features to obtain a compact representation of
the original demonstrations. This section presents our main
contribution, an associative variational auto-encoder, which
adapts the original framework to couple different demon-
stration modalities in the latent space. We show that the ex-
tracted representations are flexible to conduct efficient infer-
ence in the context of motion synthesis.

Associating Latent Representations
An associative variational auto-encoder consists of multiple
variational auto-encoders, each of which models one modal-
ity of the demonstration. The factored probabilistic model
is correlated if we consider that each modality corresponds
to a different perspective on the underlying task. This im-
plies their latent encodings can be correlated by a metric, in

(a) Standard KL-divergence (b) Symmetrical KL-divergence

Figure 2: Standard and symmetrical KL-divergences be-
tween N (0, σ2

1) and N (0, σ2
2). The standard KL-divergence

fails to capture the discrepancy for certain cases, e.g., σ1 =
e−2 and σ2 = 1, while the symmetrical one is invariant w.r.t.
the commutation.

the general form h(zv, zm) = 0. While there exist numer-
ous assumptions to capture this relation, it is reasonable to
adopt an identity constraint. Indeed, the model flexibility is
not much compromised by such an assumption, thanks to the
expressiveness of the encoding and decoding features. Con-
cretely, the association can be expressed by matching the
distributions of the probabilistic latent encodings, namely
qφv(z|xi

v)
= qφm(z|xi

m), ∀z. We propose to quantify this re-
lation with a symmetrical composition of KL-divergences:

Lassoc = KL(qφv
(zv|xi

v)‖qφm
(zm|xi

m))

+KL(qφm
(zm|xi

m)‖qφv
(zv|xi

v))

=
1

2
[log

|Σm(xi
m)|

|Σv(xi
v)|

+ log
|Σv(x

i
v)|

|Σm(xi
m)|

+(μm(xi
m)− μv(x

i
v))Σ

−1
m (xi

m)(μm(xi
m)− μv(x

i
v))

+(μv(x
i
v)− μm(xi

m))Σ−1
v (xi

v)(μv(x
i
v)− μm(xi

m))

+tr(Σ−1
m (xi

m)Σv(x
i
v)) + tr(Σ−1

v (xi
v)Σm(xi

m))]

(5)

which is still of a closed-form and differentiable with respect
to the model parameters φv and φm. Under such a constraint
penalty, the sequence of modalities is exchangeable, as is
shown in Figure 2(a) and 2(b). In our experience, this sym-
metrical formation generally yields better results comparing
with a standard KL-divergence.

Applying (4) to xv and xm, we obtain a joint objective as
L(θv,θm,φv,φm,xi

v,x
i
m) = Lv + Lm + λLassoc, with

λ denoting the weight of the imposed constraint. To this
end, the introduced loss term of association adds no extra
computational complexity to the regular variational auto-
encoder training, for which stochastic gradient descent still
applies. The overall model architecture is wrapped in Figure
3. Learning with such a model can be understood as extract-
ing low dimensional task manifolds that are, in an ideal con-
dition, fully overlapped . The projections of different obser-
vation modalities are co-located on the manifolds. Exploit-
ing this fact, we can infer one modality given the other one,
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Figure 3: Model architecture of learning latent representa-
tions and association on different modalities of demonstra-
tions. Latent layers of representation is annotated with fea-
ture type (Rectified Linear Unit) and size. The association is
captured by a symmetrical KL-divergence.

such as deriving arm joint motion from a target letter image:

p(xm|xv) =

∫
p(xm|z)qφv

(z|xv)dz (6)

Such an evaluation can be performed in an efficient way by
sampling from the low-dimensional manifold z.

Furthermore, the learning of each modality can be un-
derstood from the perspective of inverse optimal control,
which learns the cost function J in (1). To see this, we
take the negative logarithm of (1) to retrieve J with a con-
stant term. From (4), when encoder qφv

and decoder pθv

model multivariate Gaussians with fixed covariances such
as N (μe(xv), σ

2
1I) and N (μd(zv), σ

2
2I), we have:

J (xv) = − log p(xv) + C

=
1

2σ2
1

‖μe(xv)‖2 + 1

2σ2
2

Eqφv
[‖xv − μd(zv)‖2]

+ C ′ − KL[qφv
‖p(zv|xv)]

(7)

Thus, up to a constant term, the MaxEnt cost J is up-
per bounded by the first two terms which are a featured
quadratic cost and a reconstruction loss measuring how well
the original data xv is compressed by the feature. Ideally we
expect the learned encoder and decoder to yield small KL di-
vergence and reconstruction loss so only the first quadratic
term dominates. To this end, we obtain an estimation of the
cost J with a simple quadratic metric in a nonlinear feature
space, which is shared by the two associative modalities.

Efficient Inference on Incomplete Input
The learned full probability provides additional inference
options alongside correlating modalities. The low dimen-
sional latent encodings can be leveraged to evaluate the
marginal probability thus making the inference within the
space of each modality tractable. This can be applied to
an even more challenging scenario: while the input features
are incomplete or corrupted in comparison with the train-
ing demonstrations, the robot is still expected to derive the
desired motion in a robust manner.

We address the above challenge by first recovering the
complete input feature and then inferring upon the target
modality. Concretely, the incomplete input feature, e.g., a
letter image x̃v with some parts occluded, is projected into
the feature space to obtain its latent encoding. With the latent
encoding as an initial guess, the manifold can be explored to
search a most likely latent point whose reconstructed fea-
ture matches the observable part of x̃v . Quantitatively, it is
proposed to solve:

z∗
v = argmin

zv

− log p0(zv) + η‖x(obs)
v (zv)− x̃(obs)

v ‖ (8)

where η weights the difference between the observable parts
of the reconstructed and the target images. This objective lit-
erally seeks an image that, on one hand matches the observ-
able part of the target one, and on the other hand, is more
probable w.r.t the learned letter image knowledge. The in-
ference can be performed with the cross entropy method (de
Boer et al. 2005) . The cross entropy method optimizes the
target objective by alternating between taking samples from
a proposal distribution, e.g., a multivariate Gaussian distri-
bution, and estimating it with the samples weighted under
the target objective. Since the samples are taken in a low
dimensional space, this method can secure an efficient ex-
ploration on the manifold.

Implementation and Experiment
This section presents the implementation and application of
the proposed method in the task of associating handwriting
arm motion and the letter image. Details about the exper-
iment setup are given and the presented approach is also
compared with other alternatives.

Data Augmentation
The dataset used in the experiment is UJI Char Pen 2 dataset,
from which, for simplicity, only one-stroke-formed alpha-
betical letters and digits are involved. The images are gen-
erated from the 2D online handwriting motion to obtain
28 × 28 grayscale thumbnails, resulting a xv of a length
of 784. Iterative LQR (Todorov and Li 2005) is used to
derive the optimal joint motion of a 7-DOFs Baxter robot
arm. The derived arm joint motion is expected to fit the let-
ter trajectory in the Cartesian space with joint torque efforts
minimized. Then joint trajectories are further parameterized
with a function approximator for each DOF, yielding a 147-
dimension vector xm.

Unfortunately, the original dataset is sparse and unbal-
anced thus the model tends to fail in learning rare sam-
ples. We propose to address this by augmenting the dataset.
Specifically, this is done by learning each character with a
probabilistic model and re-sampling with perturbations con-
strained in a kinematics feature space, see (Yin et al. 2016)
for details of the method. Eventually, above 70000 pairs of
images and arm motion are obtained, with about 1000 sam-
ples per each character.

Model Implementation
Similar to the standard variational auto-encoder, neural net-
work (NN) models are used as the data encoder q(z|x) and
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decoder p(x|z). Each of the NNs is comprised of two layers
of rectified linear units (ReLU) as the nonlinear hidden fea-
tures. Sigmoid functions are adopted as the output features
of the vision modality, in order to obtain valid gray-scale val-
ues. The entire model is trained through the stochastic gra-
dient descent with an adaptive moment estimation (ADAM)
(Kingma and Ba 2015), a learning rate of 1e−4 and a batch
size of 64. The other hyper parameters, including the length
of the latent variable and the weight of association term,
are selected according to the cross-validation of the recon-
struction performance. The code implementation and trained
models are publicly accessible1.

To illustrate the strength of feature learning, Gaussian
Mixture Models (GMM) on raw data are also trained as
baselines. Training these models with full covariance ma-
trices suffers from severe overfitting issues due to the high
dimensionality of the data. To alleviate it, we also use other
variants. These encompass a GMM model with diagonal co-
variance matrices, a GMM model with a PCA dimension
reduction and the combination of these two. For the PCA
preprocessing, the number of eigenvectors is selected to ex-
plain 99% data variance, yielding a reduced dimension of
240 for the image modality and 37 for the motion modal-
ity. The number of mixture components is determined based
on the BIC criterion. In our experiment, GMMs with 350
components and diagonal covariance matrices give the best
BIC score. Since a diagonal matrix cannot capture the cor-
relation across feature dimensions, the best full covariance
models with 10 components are also included in subsequent
comparisons.

Deriving Motion from Image
A natural application of the learned encodings and associa-
tion is to infer one data modality from the other one. In our
handwriting context, this implies the model can be used to
immediately derive the handwriting motion when a symbol
image is presented.

Figure 4 depicts concrete samples of deriving writing mo-
tion from symbol images. It is worth noting that the images
here are not from the dataset itself but generated in real-time.
By real-time generation, we mean the symbols are drawn by
hand on a canvas or a user interface. The images are then
retrieved and fed to the model to obtain the writing motion
in real-time. For the convenience of visualization, all of the
joint motion is transformed into the Cartesian space and ren-
dered as 3D plots.

As is clear from the figure, the proposed approach gener-
ates the most plausible arm joint motion for the drawn image
samples. Because of the rich mode patterns of data, a model
learned in the original feature space requires a large amount
of local models to fully cover the data modes. Henceforth,
among the alternative methods, GMM with diagonal covari-
ance matrices, which allows for a larger number of compo-
nents, appears to have a comparatively better performance.
However, due to the high dimensionality, such a shallow
model still fails at times. Additionally, the PCA, aiming to
reduce the data dimension, is not helpful in this task. In fact,

1https://github.com/navigator8972/vae assoc

the methods with PCA preprocessing perform worse than
the GMMs learned in the original feature space. This can be
partially explained by the fact that the PCA inherently learns
linear correlations as the features, which are not expressive
in general cases. In our experiment, we observe that some-
times the generated movement forms an incomplete loop,
like the cases of ”g” and ”8” in Figure 4. A possible cause
is that, in the data augmentation, the samples are perturbed
without an explicit constraint of maintaining the closeness of
a loop thus the samples with a loop cut dominate the training
data. We expect to obtain improved performance when the
data of a better quality is used.

The qualitative visual results are also in accordance with
the numerical result. In this experiment, motion trajectories
are predicted for the test dataset and the Euclidean distance
between the prediction and ground-truth is measured in the
function approximator basis space. As is clear from Figure
5, the presented associative VAE outperforms the competing
methods by a significant margin. These results demonstrate
the advantage of the proposed nonlinear feature learning in
such a challenging task that involves high dimensional raw
sensory input.

Handling Incomplete Images

In this experiment, the letters are again written by a person
whose handwriting is not included in the dataset. However,
the model only receives a corrupted symbol image, with a
random quartile covered. We use the cross-entropy method
to optimize the objective proposed in (8). In order to guaran-
tee the real-time performance, the number of iterations and
samples are both limited to 20. Figure 6 presents some ex-
amples of the experiment and clearly illustrates how the pro-
posed inference proceeds. Initially, the algorithm attempts
to make up the missed pixels with a plausible component.
Then the recovered part is progressively refined and sharp-
ened as the iteration continues. At last, the resultant latent
encoding appears to be a good representation of the full un-
derlying image, leading to correct writing motion (the last
column). In practice, we observe that 20 iterations are of-
ten more than enough to reconstruct the image, thanks to the
efficiency from the learned latent representation. With a pro-
jection from the observed pixels, the obtained initial guess is
expected to be close to the ideal reconstruction on the mani-
fold. In addition, the learned low dimension parameter space
only desires a limited number of samples to secure a stable
exploration.

The GMM-based models are not compared here as it
could be notoriously expensive to apply the cross-entropy
method to sample pixels of hundreds of dimensions in
the original space. We also emphasize that this experiment
showcases an unique benefit of learning a generative model
of demonstrations. Indeed, it provides a principled way to
handle sensor uncertainties in the task execution. The robot
systems can benefit from this in terms of skill generaliza-
tion and robustness. Approaches in which sensory states are
mapped directly to actions are unable to achieve this.
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Figure 4: Deriving handwriting motion with different models and symbol images outside the test dataset: the resulted trajectories
are transformed to the Cartesian space and shown in 3D plots.

Figure 5: Error comparison of different models on predicting
the arm joint motion from a symbol image of the test dataset.

Conclusion
In this paper, we propose an approach that enables robot
agents to extract complex task representations and con-
straints from high dimensional demonstrations. To realize
this, a variational autoencoder is adapted with an imposition
of a symmetrical KL-divergence metric in the latent space.
The resulting objective remains differentiable and therefore
the demonstration features and association can be jointly
learned with existing standard techniques. The effectiveness
of feature extraction and associating control to perception is
demonstrated in a series of handwriting related tasks, which
include inferring writing motion from symbol images that
are high dimensional or even incomplete.

Possible extensions include the introduction of dynamical
latent representations. This requires to learn the temporal
association in the latent space besides the relations among
sensory modalities. The work (Watter et al. 2015) presents a
way to realize this in a control task with a single modal sen-
sory feedback. Also, it will be interesting to explore special
representation architectures. Along this line of research, we
can expect to reuse fruitful results from relevant domains
to cope with specific sensor modalities, e.g., using convo-

Figure 6: Inferring arm joint motion given occluded letter
images: the latent encodings are explored to search complete
images to match the observed parts before deriving the asso-
ciated handwriting motion. The first column: input images;
the second to the fifth columns: evolution of the recovered
full images in iteration steps of 3, 8, 13, 18; the last column:
Cartesian letter trajectories resulted from the inferred arm
joint motion.

lutional filters to construct features for locally correlated
demonstration data such as videos and natural language.
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